Skip to main content

Advertisement

Log in

Progress and Future Aspects in Genetics of Human Hypertension

  • Prevention of Hypertension: Public Health Challenges (P Muntner, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Hypertension has become a major global health burden due to its high prevalence and associated increase in risk of cardiovascular disease and premature death. It is well established that hypertension is determined by both genetic and environmental factors and their complex interactions. Recent large-scale meta-analyses of genome-wide association studies (GWAS) have successfully identified a total of 38 loci which achieved genome-wide significance (P < 5 × 10-8) for their association with blood pressure (BP). Although the heritability of BP explained by these loci is very limited, GWAS meta-analyses have elicited renewed optimism in hypertension genomics research, highlighting novel pathways influencing BP and elucidating genetic mechanisms underlying BP regulation. This review summarizes evolving progress in the rapidly moving field of hypertension genetics and highlights several promising approaches for dissecting the remaining heritability of BP. It also discusses the future translation of genetic findings to hypertension treatment and prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2224–60.

    Article  PubMed  Google Scholar 

  2. Danaei G, Finucane MM, Lin JK, Singh GM, Paciorek CJ, Cowan MJ, et al. National, regional, and global trends in systolic blood pressure since 1980: systematic analysis of health examination surveys and epidemiological studies with 786 country-years and 5.4 million participants. Lancet. 2011;377:568–77.

    Article  PubMed  Google Scholar 

  3. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet. 2006;367:1747–57.

    Article  PubMed  Google Scholar 

  4. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365:217–23.

    PubMed  Google Scholar 

  5. •• Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478:103–9. To date, this is the largest meta-analysis of genome-wide association studies (GWAS) of the phenotypes of blood pressure by the International Consortium of Blood Pressure (ICBP). It included a discovery GWAS among 69,395 individuals and a combined sample of about 200,000 Europeans. It identified 16 novel loci associated with blood pressure. A genetic risk score calculated by GWAS significant variants was associated with hypertension, left ventricular wall thickness, stroke, and coronary artery disease.

    Article  PubMed  CAS  Google Scholar 

  6. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–78.

    Google Scholar 

  7. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science. 2007;316:1331–6.

    Article  PubMed  CAS  Google Scholar 

  8. Levy D, Larson MG, Benjamin EJ, Newton-Cheh C, Wang TJ, Hwang SJ, et al. Framingham Heart Study 100K Project: genome-wide associations for blood pressure and arterial stiffness. BMC Med Genet. 2007;8(1):S3.

    Article  PubMed  Google Scholar 

  9. Kato N, Miyata T, Tabara Y, Katsuya T, Yanai K, Hanada H, et al. High-density association study and nomination of susceptibility genes for hypertension in the Japanese National Project. Hum Mol Genet. 2008;17:617–27.

    Article  PubMed  CAS  Google Scholar 

  10. Sabatti C, Service SK, Hartikainen AL, Pouta A, Ripatti S, Brodsky J, et al. Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat Genet. 2009;41:35–46.

    Article  PubMed  CAS  Google Scholar 

  11. Wang Y, O'Connell JR, McArdle PF, Wade JB, Dorff SE, Shah SJ, et al. From the Cover: Whole-genome association study identifies STK39 as a hypertension susceptibility gene. Proc Natl Acad Sci U S A. 2009;106:226–31.

    Article  PubMed  CAS  Google Scholar 

  12. Harrap SB. Where are all the blood-pressure genes? Lancet. 2003;361:2149–51.

    Article  PubMed  CAS  Google Scholar 

  13. Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41:666–76.

    Article  PubMed  CAS  Google Scholar 

  14. Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41:677–87.

    Article  PubMed  CAS  Google Scholar 

  15. •• Kato N, Takeuchi F, Tabara Y, Kelly TN, Go MJ, Sim X, et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat Genet. 2011;43:531–8. This is the first, largest meta-analysis of genome-wide association studies of blood pressure among East Asians. This study identified five novel genetic variants associated with blood pressure in East Asians and also provided evidence of East Asian-specific blood pressure association at ALDH2.

    Article  PubMed  CAS  Google Scholar 

  16. •• Wain LV, Verwoert GC, O'Reilly PF, Shi G, Johnson T, Johnson AD, et al. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nat Genet. 2011;43:1005–11. This study is the second meta-analysis conducted by the International Consortium of Blood Pressure (ICBP). This study idenified four new genomic loci associated with pulse pressure and one locus associated with both pulse pressure and mean arterial pressure.

    Article  PubMed  CAS  Google Scholar 

  17. Abriel H, Loffing J, Rebhun JF, Pratt JH, Schild L, Horisberger JD, et al. Defective regulation of the epithelial Na+ channel by Nedd4 in Liddle's syndrome. J Clin Invest. 1999;103:667–73.

    Article  PubMed  CAS  Google Scholar 

  18. Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Lifton RP. Bartter's syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nat Genet. 1996;13:183–8.

    Article  PubMed  CAS  Google Scholar 

  19. Simon DB, Bindra RS, Mansfield TA, Nelson-Williams C, Mendonca E, Stone R, et al. Mutations in the chloride channel gene, CLCNKB, cause Bartter's syndrome type III. Nat Genet. 1997;17:171–8.

    Article  PubMed  CAS  Google Scholar 

  20. Birkenhager R, Otto E, Schurmann MJ, Vollmer M, Ruf EM, Maier-Lutz I, et al. Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nat Genet. 2001;29:310–4.

    Article  PubMed  CAS  Google Scholar 

  21. Geller DS, Rodriguez-Soriano J, Vallo Boado A, Schifter S, Bayer M, Chang SS, et al. Mutations in the mineralocorticoid receptor gene cause autosomal dominant pseudohypoaldosteronism type I. Nat Genet. 1998;19:279–81.

    Article  PubMed  CAS  Google Scholar 

  22. Sartorato P, Lapeyraque AL, Armanini D, Kuhnle U, Khaldi Y, Salomon R, et al. Different inactivating mutations of the mineralocorticoid receptor in fourteen families affected by type I pseudohypoaldosteronism. J Clin Endocrinol Metab. 2003;88:2508–17.

    Article  PubMed  CAS  Google Scholar 

  23. Viemann M, Peter M, Lopez-Siguero JP, Simic-Schleicher G, Sippell WG. Evidence for genetic heterogeneity of pseudohypoaldosteronism type 1: identification of a novel mutation in the human mineralocorticoid receptor in one sporadic case and no mutations in two autosomal dominant kindreds. J Clin Endocrinol Metab. 2001;86:2056–9.

    Article  PubMed  CAS  Google Scholar 

  24. Lifton RP. Molecular genetics of human blood pressure variation. Science. 1996;272:676–80.

    Article  PubMed  CAS  Google Scholar 

  25. Simonetti GD, Mohaupt MG, Bianchetti MG. Monogenic forms of hypertension. Eur J Pediatr. 2012;171:1433–9.

    Article  PubMed  CAS  Google Scholar 

  26. Toka HR, Luft FC. Monogenic forms of human hypertension. Semin Nephrol. 2002;22:81–8.

    Article  PubMed  CAS  Google Scholar 

  27. Luft FC. Mendelian forms of human hypertension and mechanisms of disease. Clin Med Res. 2003;1:291–300.

    Article  PubMed  CAS  Google Scholar 

  28. Garovic VD, Hilliard AA, Turner ST. Monogenic forms of low-renin hypertension. Nat Clin Pract Nephrol. 2006;2:624–30.

    Article  PubMed  CAS  Google Scholar 

  29. Martinez-Aguayo A, Fardella C. Genetics of hypertensive syndrome. Horm Res. 2009;71:253–9.

    Article  PubMed  CAS  Google Scholar 

  30. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461:747–53.

    Article  PubMed  CAS  Google Scholar 

  31. Marteau JB, Zaiou M, Siest G, Visvikis-Siest S. Genetic determinants of blood pressure regulation. J Hypertens. 2005;23:2127–43.

    Article  PubMed  CAS  Google Scholar 

  32. Cheng LS, Livshits G, Carmelli D, Wahrendorf J, Brunner D. Segregation analysis reveals a major gene effect controlling systolic blood pressure and BMI in an Israeli population. Hum Biol. 1998;70:59–75.

    PubMed  CAS  Google Scholar 

  33. Perusse L, Moll PP, Sing CF. Evidence that a single gene with gender- and age-dependent effects influences systolic blood pressure determination in a population-based sample. Am J Hum Genet. 1991;49:94–105.

    PubMed  CAS  Google Scholar 

  34. Levy D, DeStefano AL, Larson MG, O'Donnell CJ, Lifton RP, Gavras H, et al. Evidence for a gene influencing blood pressure on chromosome 17. Genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the framingham heart study. Hypertension. 2000;36:477–83.

    Article  PubMed  CAS  Google Scholar 

  35. van Rijn MJ, Schut AF, Aulchenko YS, Deinum J, Sayed-Tabatabaei FA, Yazdanpanah M, et al. Heritability of blood pressure traits and the genetic contribution to blood pressure variance explained by four blood-pressure-related genes. J Hypertens. 2007;25:565–70.

    Article  PubMed  Google Scholar 

  36. Gu D, Rice T, Wang S, Yang W, Gu C, Chen CS, et al. Heritability of blood pressure responses to dietary sodium and potassium intake in a Chinese population. Hypertension. 2007;50:116–22.

    Article  PubMed  CAS  Google Scholar 

  37. Hottenga JJ, Whitfield JB, de Geus EJ, Boomsma DI, Martin NG. Heritability and stability of resting blood pressure in Australian twins. Twin Res Hum Genet. 2006;9:205–9.

    Article  PubMed  Google Scholar 

  38. Kupper N, Willemsen G, Riese H, Posthuma D, Boomsma DI, de Geus EJ. Heritability of daytime ambulatory blood pressure in an extended twin design. Hypertension. 2005;45:80–5.

    Article  PubMed  CAS  Google Scholar 

  39. Hottenga JJ, Boomsma DI, Kupper N, Posthuma D, Snieder H, Willemsen G, et al. Heritability and stability of resting blood pressure. Twin Res Hum Genet. 2005;8:499–508.

    Article  PubMed  Google Scholar 

  40. Bochud M, Bovet P, Elston RC, Paccaud F, Falconnet C, Maillard M, et al. High heritability of ambulatory blood pressure in families of East African descent. Hypertension. 2005;45:445–50.

    Article  PubMed  CAS  Google Scholar 

  41. Fava C, Burri P, Almgren P, Groop L, Hulthen UL, Melander O. Heritability of ambulatory and office blood pressure phenotypes in Swedish families. J Hypertens. 2004;22:1717–21.

    Article  PubMed  CAS  Google Scholar 

  42. Fagard R, Brguljan J, Staessen J, Thijs L, Derom C, Thomis M, et al. Heritability of conventional and ambulatory blood pressures. A study in twins. Hypertension. 1995;26:919–24.

    Article  PubMed  CAS  Google Scholar 

  43. Rotimi CN, Cooper RS, Cao G, Ogunbiyi O, Ladipo M, Owoaje E, et al. Maximum-likelihood generalized heritability estimate for blood pressure in Nigerian families. Hypertension. 1999;33:874–8.

    Article  PubMed  CAS  Google Scholar 

  44. Adeyemo AA, Omotade OO, Rotimi CN, Luke AH, Tayo BO, Cooper RS. Heritability of blood pressure in Nigerian families. J Hypertens. 2002;20:859–63.

    Article  PubMed  CAS  Google Scholar 

  45. Hsueh WC, Mitchell BD, Schneider JL, Wagner MJ, Bell CJ, Nanthakumar E, et al. QTL influencing blood pressure maps to the region of PPH1 on chromosome 2q31-34 in Old Order Amish. Circulation. 2000;101:2810–6.

    Article  PubMed  CAS  Google Scholar 

  46. Morrison AC, Cooper R, Hunt S, Lewis CE, Luke A, Mosley TH, et al. Genome scan for hypertension in nonobese African Americans: the National Heart, Lung, and Blood Institute Family Blood Pressure Program. Am J Hypertens. 2004;17:834–8.

    PubMed  CAS  Google Scholar 

  47. Koivukoski L, Fisher SA, Kanninen T, Lewis CM, von Wowern F, Hunt S, et al. Meta-analysis of genome-wide scans for hypertension and blood pressure in Caucasians shows evidence of susceptibility regions on chromosomes 2 and 3. Hum Mol Genet. 2004;13:2325–32.

    Article  PubMed  CAS  Google Scholar 

  48. Rice T, Cooper RS, Wu X, Bouchard C, Rankinen T, Rao DC, et al. Meta-analysis of genome-wide scans for blood pressure in African American and Nigerian samples. The National Heart, Lung, and Blood Institute GeneLink Project. Am J Hypertens. 2006;19:270–4.

    Article  PubMed  Google Scholar 

  49. Mocci E, Concas MP, Fanciulli M, Pirastu N, Adamo M, Cabras V, et al. Microsatellites and SNPs linkage analysis in a Sardinian genetic isolate confirms several essential hypertension loci previously identified in different populations. BMC Med Genet. 2009;10:81.

    Article  PubMed  Google Scholar 

  50. Simino J, Shi G, Kume R, Schwander K, Province MA, Gu CC, et al. Five blood pressure loci identified by an updated genome-wide linkage scan: meta-analysis of the Family Blood Pressure Program. Am J Hypertens. 2011;24:347–54.

    Article  PubMed  Google Scholar 

  51. Harrap SB, Wong ZY, Stebbing M, Lamantia A, Bahlo M. Blood pressure QTLs identified by genome-wide linkage analysis and dependence on associated phenotypes. Physiol Genomics. 2002;8:99–105.

    PubMed  CAS  Google Scholar 

  52. Hoffmann K, Planitz C, Ruschendorf F, Muller-Myhsok B, Stassen HH, Lucke B, et al. A novel locus for arterial hypertension on chromosome 1p36 maps to a metabolic syndrome trait cluster in the Sorbs, a Slavic population isolate in Germany. J Hypertens. 2009;27:983–90.

    Article  PubMed  CAS  Google Scholar 

  53. Puppala S, Coletta DK, Schneider J, Hu SL, Farook VS, Dyer TD, et al. Genome-wide linkage screen for systolic blood pressure in the Veterans Administration Genetic Epidemiology Study (VAGES) of Mexican-Americans and confirmation of a major susceptibility locus on chromosome 6q14.1. Hum Hered. 2011;71:1–10.

    Article  PubMed  Google Scholar 

  54. Yu W, Gwinn M, Clyne M, Yesupriya A, Khoury MJ. A navigator for human genome epidemiology. Nat Genet. 2008;40:124–5.

    Article  PubMed  CAS  Google Scholar 

  55. • Johnson AD, Newton-Cheh C, Chasman DI, Ehret GB, Johnson T, Rose L, et al. Association of hypertension drug target genes with blood pressure and hypertension in 86,588 individuals. Hypertension. 2011;57:903–10. This large-scale study indicates that candidate genes, with clinical and physiological relevance by virtue of their role as antihypertensive drug targets, harbor true blood pressure related variants. The variants on the genes ADRB1 and AGT even reached the genome-wide significance. Thus, the author suggested that revisiting genome-wide association studies from the perspective of biological and clinical knowledge might be useful for discovery and validation of new genetic associations.

    Article  PubMed  CAS  Google Scholar 

  56. Takeuchi F, Yamamoto K, Katsuya T, Sugiyama T, Nabika T, Ohnaka K, et al. Reevaluation of the association of seven candidate genes with blood pressure and hypertension: a replication study and meta-analysis with a larger sample size. Hypertens Res. 2012;35:825–31.

    Article  PubMed  CAS  Google Scholar 

  57. • Ganesh SK, Tragante V, Guo W, Guo Y, Lanktree MB, Smith EN, et al. Loci influencing blood pressure identified using a cardiovascular gene-centric array. Hum Mol Genet. 2013;22:1663–78. This is a large association study using a cardiovasuclar gene-centric array, examing ~50,000 single-nucleotide polymorphisms from ~2,100 candidate genes for cardiovascular phenotypes in 127, 505 individuals of European ancestry. It identified two novel loci associated with blood pressure. This study highlights the potential of candidiate gene studies in identifying genetic factors for complex disease by the use of strigent methodologies.

    Article  PubMed  CAS  Google Scholar 

  58. Johnson T, Gaunt TR, Newhouse SJ, Padmanabhan S, Tomaszewski M, Kumari M, et al. Blood pressure loci identified with a gene-centric array. Am J Hum Genet. 2011;89:688–700.

    Article  PubMed  CAS  Google Scholar 

  59. Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, et al. Genomewide association analysis of coronary artery disease. N Engl J Med. 2007;357:443–53.

    Article  PubMed  CAS  Google Scholar 

  60. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316:889–94.

    Article  PubMed  CAS  Google Scholar 

  61. Hiura Y, Tabara Y, Kokubo Y, Okamura T, Miki T, Tomoike H, et al. A genome-wide association study of hypertension-related phenotypes in a Japanese population. Circ J. 2010;74:2353–9.

    Article  PubMed  Google Scholar 

  62. Padmanabhan S, Melander O, Johnson T, Di Blasio AM, Lee WK, Gentilini D, et al. Genome-wide association study of blood pressure extremes identifies variant near UMOD associated with hypertension. PLoS Genet. 2010;6:e1001177.

    Article  PubMed  Google Scholar 

  63. Salvi E, Kutalik Z, Glorioso N, Benaglio P, Frau F, Kuznetsova T, et al. Genomewide association study using a high-density single nucleotide polymorphism array and case-control design identifies a novel essential hypertension susceptibility locus in the promoter region of endothelial NO synthase. Hypertension. 2012;59:248–55.

    Article  PubMed  CAS  Google Scholar 

  64. White PC. Disorders of aldosterone biosynthesis and action. N Engl J Med. 1994;331:250–8.

    Article  PubMed  CAS  Google Scholar 

  65. Qian X, Lu Z, Tan M, Liu H, Lu D. A meta-analysis of association between C677T polymorphism in the methylenetetrahydrofolate reductase gene and hypertension. Eur J Hum Genet. 2007;15:1239–45.

    Article  PubMed  CAS  Google Scholar 

  66. Monteith GR, Kable EP, Kuo TH, Roufogalis BD. Elevated plasma membrane and sarcoplasmic reticulum Ca2+ pump mRNA levels in cultured aortic smooth muscle cells from spontaneously hypertensive rats. Biochem Biophys Res Commun. 1997;230:344–6.

    Article  PubMed  CAS  Google Scholar 

  67. Wang X, Chua HX, Chen P, Ong RT, Sim X, Zhang W, et al. Comparing methods for performing trans-ethnic meta-analysis of genome-wide association studies. Hum Mol Genet. 2013;22:2303–11.

    Article  PubMed  CAS  Google Scholar 

  68. Morris AP. Transethnic meta-analysis of genomewide association studies. Genet Epidemiol. 2011;35:809–22.

    Article  PubMed  Google Scholar 

  69. Franceschini N, van Rooij FJ, Prins BP, Feitosa MF, Karakas M, Eckfeldt JH, et al. Discovery and fine mapping of serum protein loci through transethnic meta-analysis. Am J Hum Genet. 2012;91:744–53.

    Article  PubMed  CAS  Google Scholar 

  70. Murcray CE, Lewinger JP, Gauderman WJ. Gene-environment interaction in genome-wide association studies. Am J Epidemiol. 2009;169:219–26.

    Article  PubMed  Google Scholar 

  71. Bloom JS, Ehrenreich IM, Loo WT, Lite TL, Kruglyak L. Finding the sources of missing heritability in a yeast cross. Nature. 2013;494:234–7.

    Article  PubMed  CAS  Google Scholar 

  72. Murcray CE, Lewinger JP, Conti DV, Thomas DC, Gauderman WJ. Sample size requirements to detect gene-environment interactions in genome-wide association studies. Genet Epidemiol. 2011;35:201–10.

    Article  PubMed  Google Scholar 

  73. Baccarelli A, Rienstra M, Benjamin EJ. Cardiovascular epigenetics: basic concepts and results from animal and human studies. Circ Cardiovasc Genet. 2010;3:567–73.

    Article  PubMed  CAS  Google Scholar 

  74. Cowley Jr AW, Nadeau JH, Baccarelli A, Berecek K, Fornage M, Gibbons GH, et al. Report of the National Heart, Lung, and Blood Institute Working Group on epigenetics and hypertension. Hypertension. 2012;59:899–905.

    Article  PubMed  CAS  Google Scholar 

  75. Millis RM. Epigenetics and hypertension. Curr Hypertens Rep. 2011;13:21–8.

    Article  PubMed  CAS  Google Scholar 

  76. Friso S, Pizzolo F, Choi SW, Guarini P, Castagna A, Ravagnani V, et al. Epigenetic control of 11 beta-hydroxysteroid dehydrogenase 2 gene promoter is related to human hypertension. Atherosclerosis. 2008;199:323–7.

    Article  PubMed  CAS  Google Scholar 

  77. Smolarek I, Wyszko E, Barciszewska AM, Nowak S, Gawronska I, Jablecka A, et al. Global DNA methylation changes in blood of patients with essential hypertension. Med Sci Monit. 2010;16:CR149–55.

    PubMed  CAS  Google Scholar 

  78. Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet. 2005;37:161–5.

    Article  PubMed  CAS  Google Scholar 

  79. Cohen JC, Kiss RS, Pertsemlidis A, Marcel YL, McPherson R, Hobbs HH. Multiple rare alleles contribute to low plasma levels of HDL cholesterol. Science. 2004;305:869–72.

    Article  PubMed  CAS  Google Scholar 

  80. Cohen JC, Pertsemlidis A, Fahmi S, Esmail S, Vega GL, Grundy SM, et al. Multiple rare variants in NPC1L1 associated with reduced sterol absorption and plasma low-density lipoprotein levels. Proc Natl Acad Sci U S A. 2006;103:1810–5.

    Article  PubMed  CAS  Google Scholar 

  81. Ji W, Foo JN, O'Roak BJ, Zhao H, Larson MG, Simon DB, et al. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet. 2008;40:592–9.

    Article  PubMed  CAS  Google Scholar 

  82. Rao F, Wen G, Gayen JR, Das M, Vaingankar SM, Rana BK, et al. Catecholamine release-inhibitory peptide catestatin (chromogranin A(352-372)): naturally occurring amino acid variant Gly364Ser causes profound changes in human autonomic activity and alters risk for hypertension. Circulation. 2007;115:2271–81.

    Article  PubMed  CAS  Google Scholar 

  83. Metzker ML. Sequencing technologies - the next generation. Nat Rev Genet. 2010;11:31–46.

    Article  PubMed  CAS  Google Scholar 

  84. Tennessen JA, Bigham AW, O'Connor TD, Fu W, Kenny EE, Gravel S, et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science. 2012;337:64–9.

    Article  PubMed  CAS  Google Scholar 

  85. Mailman MD, Feolo M, Jin Y, Kimura M, Tryka K, Bagoutdinov R, et al. The NCBI dbGaP database of genotypes and phenotypes. Nat Genet. 2007;39:1181–6.

    Article  PubMed  CAS  Google Scholar 

  86. Delles C, Padmanabhan S. Genetics and hypertension: is it time to change my practice? Can J Cardiol. 2012;28:296–304.

    Article  PubMed  Google Scholar 

  87. Kathiresan S, Melander O, Guiducci C, Surti A, Burtt NP, Rieder MJ, et al. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet. 2008;40:189–97.

    Article  PubMed  CAS  Google Scholar 

  88. Law MR, Wald NJ, Rudnicka AR. Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and meta-analysis. BMJ. 2003;326:1423.

    Article  PubMed  CAS  Google Scholar 

  89. Sanseau P, Agarwal P, Barnes MR, Pastinen T, Richards JB, Cardon LR, et al. Use of genome-wide association studies for drug repositioning. Nat Biotechnol. 2012;30:317–20.

    Article  PubMed  CAS  Google Scholar 

  90. •• Fava C, Sjogren M, Montagnana M, Danese E, Almgren P, Engstrom G, et al. Prediction of blood pressure changes over time and incidence of hypertension by a genetic risk score in Swedes. Hypertension. 2013;61:319–26. This study longitudinally confirmed the role of the genetic variants identified by genome-wide association studies in blood pressure changes and hypertension incidence over time. This type of study is very necessary to validate blood pressure-related genetic variants identified by cross-sectional studies and to assess the hypertension prediction value of these variants.

    Article  PubMed  CAS  Google Scholar 

  91. Konoshita T. Do genetic variants of the Renin-Angiotensin system predict blood pressure response to Renin-Angiotensin system-blocking drugs?: a systematic review of pharmacogenomics in the Renin-Angiotensin system. Curr Hypertens Rep. 2011;13:356–61.

    Article  PubMed  CAS  Google Scholar 

  92. Liu J, Liu ZQ, Yu BN, Xu FH, Mo W, Zhou G, et al. Beta1-Adrenergic receptor polymorphisms influence the response to metoprolol monotherapy in patients with essential hypertension. Clin Pharmacol Ther. 2006;80:23–32.

    Article  PubMed  CAS  Google Scholar 

  93. Johnson JA, Zineh I, Puckett BJ, McGorray SP, Yarandi HN, Pauly DF. Beta 1-adrenergic receptor polymorphisms and antihypertensive response to metoprolol. Clin Pharmacol Ther. 2003;74:44–52.

    Article  PubMed  CAS  Google Scholar 

  94. Vandell AG, Lobmeyer MT, Gawronski BE, Langaee TY, Gong Y, Gums JG, et al. G protein receptor kinase 4 polymorphisms: beta-blocker pharmacogenetics and treatment-related outcomes in hypertension. Hypertension. 2012;60:957–64.

    Article  PubMed  CAS  Google Scholar 

  95. Manunta P, Lavery G, Lanzani C, Braund PS, Simonini M, Bodycote C, et al. Physiological interaction between alpha-adducin and WNK1-NEDD4L pathways on sodium-related blood pressure regulation. Hypertension. 2008;52:366–72.

    Article  PubMed  CAS  Google Scholar 

  96. Turner ST, Bailey KR, Fridley BL, Chapman AB, Schwartz GL, Chai HS, et al. Genomic association analysis suggests chromosome 12 locus influencing antihypertensive response to thiazide diuretic. Hypertension. 2008;52:359–65.

    Article  PubMed  CAS  Google Scholar 

  97. Johnson JA, Boerwinkle E, Zineh I, Chapman AB, Bailey K, Cooper-DeHoff RM, et al. Pharmacogenomics of antihypertensive drugs: rationale and design of the Pharmacogenomic Evaluation of Antihypertensive Responses (PEAR) study. Am Heart J. 2009;157:442–9.

    Article  PubMed  CAS  Google Scholar 

  98. Johnson JA. Ethnic differences in cardiovascular drug response: potential contribution of pharmacogenetics. Circulation. 2008;118:1383–93.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants (R01HL087263 and R01HL090682) from the National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD.

Compliance with Ethics Guidelines

Conflict of Interest

Qi Zhao, Tanika N. Kelly, Changwei Li, and Jiang He declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Q., Kelly, T.N., Li, C. et al. Progress and Future Aspects in Genetics of Human Hypertension. Curr Hypertens Rep 15, 676–686 (2013). https://doi.org/10.1007/s11906-013-0388-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-013-0388-6

Keywords

Navigation