Skip to main content
  • 4303 Accesses

Abstract

Blood pressure genetics has been instrumental in understanding the pathways that regulate blood pressure and induce hypertension. Two types of approaches have been used with great success: First, studies of hypertensive families in which monogenic blood pressure elevation can be explained by mutations in one of a dozen genes identified so far. Unfortunately, the relevance of these rare familial variants is limited when predicting primary hypertension in the general population. Second, association meta-analyses based on genome-wide genotyping using large sample sizes that have so far yielded about around 60 common genetic variants predicting blood pressure with a small, but reproducible, impact on blood pressure in the general population. This chapter summarizes the current findings based on genome-wide association studies and outlines the conclusions that can be drawn when considering the variants identified in aggregate and gives an outlook of the challenges ahead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BP:

Blood pressure

DBP:

Diastolic blood pressure

GWAS:

Genome-wide association studies

ICBP:

International Consortium for Blood Pressure GWAS

MAF:

Minor allele frequency

SBP:

Systolic blood pressure

SNP:

Single nucleotide polymorphism

TOD:

Target organ damage

References

  1. Miall WE, Oldham PD. The hereditary factor in arterial blood-pressure. Br Med J. 1963;1(5323):75–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. McKusick V. Genetics and the nature of essential hypertension. Circulation. 1960;22(5):857.

    Article  Google Scholar 

  3. Kizer JR, Arnett DK, Bella JN, Paranicas M, Rao DC, Province MA, et al. Differences in left ventricular structure between black and white hypertensive adults: the hypertension genetic epidemiology network study. Hypertension. 2004;43(6):1182–8.

    Article  CAS  PubMed  Google Scholar 

  4. Levy D, Larson MG, Vasan RS, Kannel WB, Ho KK. The progression from hypertension to congestive heart failure. JAMA. 1996;275(20):1557–62.

    Article  CAS  PubMed  Google Scholar 

  5. Levy D, Salomon M, D’Agostino RB, Belanger AJ, Kannel WB. Prognostic implications of baseline electrocardiographic features and their serial changes in subjects with left ventricular hypertrophy. Circulation. 1994;90(4):1786–93.

    Article  CAS  PubMed  Google Scholar 

  6. Polak JF, Pencina MJ, Pencina KM, O’Donnell CJ, Wolf PA, D’Agostino Sr RB. Carotid-wall intima-media thickness and cardiovascular events. N Engl J Med. 2011;365(3):213–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Coresh J, Wei GL, McQuillan G, Brancati FL, Levey AS, Jones C, et al. Prevalence of high blood pressure and elevated serum creatinine level in the United States: findings from the third national health and nutrition examination survey (1988–1994). Arch Intern Med. 2001;161(9):1207–16.

    Article  CAS  PubMed  Google Scholar 

  8. Hsu CY, McCulloch CE, Darbinian J, Go AS, Iribarren C. Elevated blood pressure and risk of end-stage renal disease in subjects without baseline kidney disease. Arch Intern Med. 2005;165(8):923–8.

    Article  PubMed  Google Scholar 

  9. Staessen JA, Fagard R, Thijs L, Celis H, Arabidze GG, Birkenhager WH, et al. Randomised double-blind comparison of placebo and active treatment for older patients with isolated systolic hypertension. The Systolic Hypertension in Europe (Syst-Eur) Trial Investigators. Lancet. 1997;350(9080):757–64.

    Article  CAS  PubMed  Google Scholar 

  10. International Consortium for Blood Pressure Genome-Wide Association S, Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478(7367):103–9.

    Article  Google Scholar 

  11. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective SC. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360(9349):1903–13.

    Article  PubMed  Google Scholar 

  12. Taylor BC, Wilt TJ, Welch HG. Impact of diastolic and systolic blood pressure on mortality: implications for the definition of “normal”. J Gen Intern Med. 2011;26(7):685–90.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55(13):1318–27.

    Article  PubMed  Google Scholar 

  14. Doumas M, Papademetriou V, Faselis C, Kokkinos P. Gender differences in hypertension: myths and reality. Curr Hypertens Rep. 2013;15(4):321–30.

    Article  PubMed  Google Scholar 

  15. Shihab HM, Meoni LA, Chu AY, Wang NY, Ford DE, Liang KY, et al. Body mass index and risk of incident hypertension over the life course: the Johns Hopkins Precursors Study. Circulation. 2012;126(25):2983–9.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Vasan RS, Beiser A, Seshadri S, Larson MG, Kannel WB, D’Agostino RB, et al. Residual lifetime risk for developing hypertension in middle-aged women and men: the Framingham Heart Study. JAMA. 2002;287(8):1003–10.

    Article  PubMed  Google Scholar 

  17. Levy D, DeStefano AL, Larson MG, O’Donnell CJ, Lifton RP, Gavras H, et al. Evidence for a gene influencing blood pressure on chromosome 17. Genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the Framingham Heart Study. Hypertension. 2000;36(4):477–83.

    Article  CAS  PubMed  Google Scholar 

  18. Pilia G, Chen WM, Scuteri A, Orru M, Albai G, Dei M, et al. Heritability of cardiovascular and personality traits in 6,148 Sardinians. PLoS Genet. 2006;2(8):e132.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Tobin MD, Raleigh SM, Newhouse S, Braund P, Bodycote C, Ogleby J, et al. Association of WNK1 gene polymorphisms and haplotypes with ambulatory blood pressure in the general population. Circulation. 2005;112(22):3423–9.

    Article  CAS  PubMed  Google Scholar 

  20. van Rijn MJ, Schut AF, Aulchenko YS, Deinum J, Sayed-Tabatabaei FA, Yazdanpanah M, et al. Heritability of blood pressure traits and the genetic contribution to blood pressure variance explained by four blood-pressure-related genes. J Hypertens. 2007;25(3):565–70.

    Article  PubMed  Google Scholar 

  21. Genomes Project C, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65.

    Article  Google Scholar 

  22. Zanchetti A. Platt versus Pickering: an episode in recent medical history. By J. D. Swales, editor. An essay review. Med Hist. 1986;30(1):94–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Fox ER, Young JH, Li Y, Dreisbach AW, Keating BJ, Musani SK, et al. Association of genetic variation with systolic and diastolic blood pressure among African Americans: the Candidate Gene Association Resource Study. Hum Mol Genet. 2011;20(11):2273–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Kato N, Takeuchi F, Tabara Y, Kelly TN, Go MJ, Sim X, et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat Genet. 2011;43(6):531–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41(6):677–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41(6):666–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell. 2001;104(4):545–56.

    Article  CAS  PubMed  Google Scholar 

  28. Ehret GB, Caulfield MJ. Genes for blood pressure: an opportunity to understand hypertension. Eur Heart J. 2013;34(13):951–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Reich DE, Lander ES. On the allelic spectrum of human disease. Trends Genet TIG. 2001;17(9):502–10.

    Article  CAS  Google Scholar 

  30. Chakravarti A. Population genetics–making sense out of sequence. Nat Genet. 1999;21(1 Suppl):56–60.

    Article  CAS  PubMed  Google Scholar 

  31. Gaziano JM. Fifth phase of the epidemiologic transition: the age of obesity and inactivity. JAMA. 2010;303(3):275–6.

    Article  CAS  PubMed  Google Scholar 

  32. O’Keefe Jr JH, Cordain L. Cardiovascular disease resulting from a diet and lifestyle at odds with our Paleolithic genome: how to become a 21st-century hunter-gatherer. Mayo Clin Proc. 2004;79(1):101–8.

    Article  PubMed  Google Scholar 

  33. Altshuler D, Daly MJ, Lander ES. Genetic mapping in human disease. Science. 2008;322(5903):881–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science. 1998;280(5366):1077–82.

    Article  CAS  PubMed  Google Scholar 

  35. Edwards AO, Ritter 3rd R, Abel KJ, Manning A, Panhuysen C, Farrer LA. Complement factor H polymorphism and age-related macular degeneration. Science. 2005;308(5720):421–4.

    Article  CAS  PubMed  Google Scholar 

  36. Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, et al. Complement factor H variant increases the risk of age-related macular degeneration. Science. 2005;308(5720):419–21.

    Article  CAS  PubMed  Google Scholar 

  37. Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, et al. Complement factor H polymorphism in age-related macular degeneration. Science. 2005;308(5720):385–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Johnson AD, Newton-Cheh C, Chasman DI, Ehret GB, Johnson T, Rose L, et al. Association of hypertension drug target genes with blood pressure and hypertension in 86,588 individuals. Hypertension. 2011;57(5):903–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Ganesh SK, Chasman DI, Larson MG, Guo X, Verwoert G, Bis JC, et al. Effects of long-term averaging of quantitative blood pressure traits on the detection of genetic associations. Am J Hum Genet. 2014;95(1):49–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Wain LV, Verwoert GC, O’Reilly PF, Shi G, Johnson T, Johnson AD, et al. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nat Genet. 2011;43(10):1005–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Wang Y, O’Connell JR, McArdle PF, Wade JB, Dorff SE, Shah SJ, et al. From the cover: whole-genome association study identifies STK39 as a hypertension susceptibility gene. Proc Natl Acad Sci U S A. 2009;106(1):226–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Tragante V, Barnes MR, Ganesh SK, Lanktree MB, Guo W, Franceschini N, et al. Gene-centric meta-analysis in 87,736 individuals of European ancestry identifies multiple blood-pressure-related loci. Am J Hum Genet. 2014;94(3):349–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Simino J, Shi G, Bis JC, Chasman DI, Ehret GB, Gu X, et al. Gene-age interactions in blood pressure regulation: a large-scale investigation with the CHARGE, Global BPgen, and ICBP Consortia. Am J Hum Genet. 2014;95(1):24–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Johnson T, Gaunt TR, Newhouse SJ, Padmanabhan S, Tomaszewski M, Kumari M, et al. Blood pressure loci identified with a gene-centric array. Am J Hum Genet. 2011;89(6):688–700.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Franceschini N, Fox E, Zhang Z, Edwards TL, Nalls MA, Sung YJ, et al. Genome-wide association analysis of blood-pressure traits in African-ancestry individuals reveals common associated genes in African and non-African populations. Am J Hum Genet. 2013;93(3):545–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Padmanabhan S, Melander O, Johnson T, Di Blasio AM, Lee WK, Gentilini D, et al. Genome-wide association study of blood pressure extremes identifies variant near UMOD associated with hypertension. PLoS Genet. 2010;6(10):e1001177.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Global Lipids Genetics C, Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45(11):1274–83.

    Article  Google Scholar 

  48. Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet. 2014;46(11):1173–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Johnson AD. Single-nucleotide polymorphism bioinformatics: a comprehensive review of resources. Circ Cardiovasc Genet. 2009;2(5):530–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Consortium EP. A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol. 2011;9(4):e1001046.

    Article  Google Scholar 

  51. Chasman DI, Giulianini F. Cell-specific enrichment metrics for overlap of signals from GWAS with DNase hypersensitive sites. 2013.

    Google Scholar 

  52. Morrison AC, Bis JC, Hwang SJ, Ehret GB, Lumley T, Rice K, et al. Sequence analysis of six blood pressure candidate regions in 4,178 individuals: the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) targeted sequencing study. PLoS One. 2014;9(10):e109155.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg B. Ehret MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ehret, G.B. (2015). Blood Pressure Genomics. In: Jagadeesh, G., Balakumar, P., Maung-U, K. (eds) Pathophysiology and Pharmacotherapy of Cardiovascular Disease. Adis, Cham. https://doi.org/10.1007/978-3-319-15961-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15961-4_32

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-15960-7

  • Online ISBN: 978-3-319-15961-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics