Skip to main content
Log in

Effectiveness and Safety of Phosphodiesterase 5 Inhibitors in Patients with Cardiovascular Disease and Hypertension

  • Hypertension Management and Antihypertensive Drugs (HM Siragy and B Waeber, Section Editors)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Phosphodiesterase 5 (PDE 5) inhibitors are selective inhibitors of the enzyme PDE 5, which catalyzes the hydrolysis of cyclic guanosine monophosphate (cGMP), a potent vasodilator and nitric oxide (NO) donor, to its corresponding metabolites (monophosphates). The enzyme PDE 5 is widely distributed in the body, including the heart and blood vessels. Because of its distribution, it was hypothesized that its inhibition could lead to significant coronary vasodilation, which would benefit patients with coronary artery disease (CAD). This hypothesis led to the development of PDE 5 inhibitors with the first being sildenafil citrate. Subsequent studies with sildenafil in patients with CAD demonstrated a modest cardiovascular effect, but a potent action on penile erection in men, resulting in sildenafil becoming a first-line therapy of erectile dysfunction (ED). Subsequently, two more PDE 5 inhibitors (vardenafil and tadalafil) were developed and approved by the Food and Drug Administration (FDA) for the treatment of ED. Recent studies have shown several pleiotropic beneficial effects of PDE 5 inhibitors in patients with CAD, hypertension, heart failure, pulmonary arterial hypertension, diabetes mellitus and Raynaud’s phenomenon. Side effects and interactions of PDE 5 inhibitors with other drugs have been minimal, with the exception of their coadministration with nitrates, which could lead to severe vasodilation and hypotension and therefore, their coadministration is prohibited. All these pleiotropic cardiovascular effects of PDE 5 inhibitors and their drug interactions will be discussed in this concise review in the context of the American College of Cardiology / American Heart Association guidelines and the recent developments in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest have been highlighted as: • Of importance •• Of major importance

  1. Conti M, Jin SL. The molecular biology of cyclic nucleoside phosphodiesterases. Prog Nucleic Acid Res Mol Biol. 1999;63:1–38.

    Article  PubMed  CAS  Google Scholar 

  2. Stacey P, Rulten S, Darling A, Phillips SC. Molecular cloning and expression of human cGMP-binding cGMP-specific phosphodiesterase (PDE 5). Biochem Biophys Res Commun. 1998;247:249–54.

    Article  PubMed  CAS  Google Scholar 

  3. Sasaki T, Kotera J, Yuasa K, Omori K. Identification of human PDE 7B a cAMP-specific phosphodiesterase. Biochem Biophys Res Commun. 2000;271:575–83.

    Article  PubMed  CAS  Google Scholar 

  4. Fisher DA, Smith JF, Pillar JS, St Dennis SH, Cheng JB. Isolation and characterization of PDE 8A, a novel human cAMP-specific posphodiesterase. Biochem Biophys Res Commun. 1998;246:570–7.

    Article  PubMed  CAS  Google Scholar 

  5. Fisher DA, Smith JF, Pillar JS, St Dennis SH, Cheng JB. Isolation and characterization of PDE 9A, a novel human cGMP-specific phosphodiesterase. J Biol Chem. 1998;273:15559–64.

    Article  PubMed  CAS  Google Scholar 

  6. Soderling SH, Bayuga SJ, Beavo JA. Isolation and characterization of a dual substrate phosphodiesterase gene family: PDE 10A. Proc Natl Acad Sci U S A. 1999;96:7071–6.

    Article  PubMed  CAS  Google Scholar 

  7. Yuasa K, Kotera J, Fujishige K, et al. Isolation and characterization of two novel phosphodiesterase PDE 11A variants showing unique structure and tissue-specific expression. J Biophys Chem. 2000;275:31469–79.

    CAS  Google Scholar 

  8. Reffelman T, Kloner RA. Therapeutic potential of phosphodiesterase 5 inhibition for cardiovascular disease. Circulation. 2003;108:239–44.

    Article  Google Scholar 

  9. Senzaki H, Smith CJ, Juang CJ, et al. Cardiac phosphodiesterase 5 (cGMP-specific) modulates b-adrenergic signaling in vivo and is down-regulated in heart failure. FASEB J. 2001;15:1718–26.

    Article  PubMed  CAS  Google Scholar 

  10. Zusman RM. Therapeutic potential of phosphodiesterase 5 inhibition for cardiovascular disease. Am J Cardiol. 1999;83:1C–2C.

    Article  PubMed  CAS  Google Scholar 

  11. Wallis RM, Corbin JD, Francis SH, Ellis P. Tissue distribution of phosphodiesterase families and the effects of sildenafil on tissue cyclic nucleotides, platelet function, and contractile responses of rabecuae carnie and aortic rings in vitro. Am J Cardiol. 1999;83:3C–12C.

    Article  PubMed  CAS  Google Scholar 

  12. Fink HA, Mac Donald R, Rutks IR, et al. Sildenafil for male erectile dysfunction: a systemic review and meta-analysis. Arch Intern Med. 2002;162:1349–60.

    Article  PubMed  CAS  Google Scholar 

  13. Hellstrom WJ, Gittelman M, Karlin G, et al. Vardenafil for treatment of men with erectile dysfunction : efficacy and safety in a randomized, double-blind, placebo-controlled trial. J Androl. 2002;23:763–71.

    PubMed  CAS  Google Scholar 

  14. Brock GB, Mc Mahon CG, Chen KK, et al. Efficacy and safety of tadalafil for the treatment of erectile dysfunction: results of integrated analyses. J Urol. 2002;168:1332–6.

    Article  PubMed  CAS  Google Scholar 

  15. Cheitlin MD, Hutter AM, Brindis RG, et al. Use of sildenafil (Viagra) in patients with cardiovascular disease. J Am Coll Cardiol. 1999;33:273–82.

    Article  PubMed  CAS  Google Scholar 

  16. Mathers CD, Boerma T, Ma Fat D. Global and regional causes of death. Br Med Bull. 2009;92:7–32.

    Article  PubMed  Google Scholar 

  17. Thompson IM, Tangen CM, Goodman PJ, et al. Erectile dysfunction and subsequent cardiovascular disease. JAMA. 2005;294:2996–3002.

    Article  PubMed  CAS  Google Scholar 

  18. Billups KL, Bank AJ, Padma-Nathan H, Katz S, Williams R. Erectile dysfunction is a marker for cardiovascular disease: results of the Minority Health Institute Expert Advisory Panel. J Sex Med. 2005;2:40–50.

    Article  PubMed  Google Scholar 

  19. Kloner RA. Cardiovascular effects of the 3 phosphodiesterase-5 inhibitors approved for the treatment of erectile dysfunction. Circulation. 2004;110:3149–55.

    Article  PubMed  Google Scholar 

  20. Jamnicki-Abegg M, Weihrauch D, Chiari PC, et al. Diabetes abolishes sildenafil-induced cGMP-dependent protein kinase-1 expression and cardioprotection. J Cardiovasc Pharmacol. 2007;50:670–6.

    Article  PubMed  CAS  Google Scholar 

  21. Ockaili R, Salloum F, Hawkins J, Kukreja RC. Sildenafil (Viagra) induces powerful cardioprotective effects via opening of mitochondrial channels in rabbits. Am J Physiol Heart Circ Physiol. 2002;283:H 1263–9.

    CAS  Google Scholar 

  22. Wang X, Fisher PW, Xi L, Kukreja RC. Essential role of mitochondrial Ca2+ activated and ATP-sensitive K+ channels in sildenafil-induced late cardioprotection. J Mol Cell Cardiol. 2008;44:105–13.

    Article  PubMed  Google Scholar 

  23. Salloum FN, Abbate A, Das A, et al. Sildenafil (Viagra) attenuates ischemic cardiomyopathy and improves left ventricular function in mice. Am J Physiol Heart Circ Physiol. 2008;294:H 1398–406.

    CAS  Google Scholar 

  24. Madhani M, Hall AR, Cuello F, et al. Phospholemman Ser 69 phosphorylation contributes to sildenafil-induced cardioprotection against reperfusion injury. Am J Physiol Heart Circ Physiol. 2010;299:H 827–36.

    Article  CAS  Google Scholar 

  25. Salloum FN, Ockaili RA, Wittkamp M, Marwaha VR, Kukreja RC. Vardenafil a novel type 5 phosphodiesterase inhibitor reduces myocardial infarct size following ischemia/ reperfusion injury via opening of mitochondrial K (ATP) channels in rabbits. J Mol Cell Cardiol. 2006;40:405–11.

    Article  PubMed  CAS  Google Scholar 

  26. Sesti C, Florio V, Johnson EG, Kloner RA. The phosphodiesterase 5 inhibitor tadalafil reduces myocardial infarct size. Int J Impot Res. 2007;19:55–61.

    Article  PubMed  CAS  Google Scholar 

  27. • Schwartz BG, Levine LA, Comstock G, Stecher VJ, Kloner RA. Cardiac uses of phosphodiesterase-5 inhibitors. J Am Coll Cardiol. 2012;59:9–15. A well-written, informed, and concise review on the cardiovascular effects and uses of PDE5 inhibitors.

    Article  PubMed  CAS  Google Scholar 

  28. DeBusk RF, Pepine CJ, Glasser DB, et al. Efficacy and safety of sildenafil citrate in men with erectile dysfunction and stable coronary artery disease. Am J Cardiol. 2004;93:147–253.

    Article  PubMed  CAS  Google Scholar 

  29. Thadani U, Smith W, Nash S, et al. The effect of vardenafil, a potent highly selective phosphodiesterase-5 inhibitor for the treatment of erectile dysfunction, on the cardiovascular response to exercise in patients with coronary artery disease. J Am Coll Cardiol. 2002;40:2006–12.

    Article  PubMed  CAS  Google Scholar 

  30. Fox KM, Thadani U, Ma TS, et al. Sildenafil citrate does not reduce tolerance in men with erectile dysfunction and chronic stable angina. Eur Heart J. 2003;24:2206–12.

    Article  PubMed  CAS  Google Scholar 

  31. Herrmann H, Chang G, Klugher BD, Mahoney PD. Hemodynamic effects of sildenafil in men with severe coronary artery disease. N Engl J Med. 2000;342:1622–6.

    Article  PubMed  CAS  Google Scholar 

  32. Jackson G, Kelta M, Csanady M, et al. Hemodynamic effects of sildenafil citrate and isosorbide mononitrate in men with coronary artery disease and erectile dysfunction. J Sex med. 2005;2:407–14.

    Article  PubMed  CAS  Google Scholar 

  33. Papatsoris AG, Karantzopoulos PG. Hypertension, and antihypertensive therapy, and erectile dysfunction. Angiology. 2006;57:47–52.

    Article  PubMed  Google Scholar 

  34. Fogari R, Zoppi A. Effects of antihypertensive therapy on sexual activity in hypertensive men. Curr Hypertens Rep. 2002;4:202–10.

    Article  PubMed  Google Scholar 

  35. Grimm RH, Grandits GA, Prineas RG, et al. Long-term effects on sexual dysfunction of five antihypertensive drugs and nutritional treatment in hypertensive men and women. Treatment of Mild Hypertension Study (TOMHS). Hypertension. 1997;29:8–14.

    Article  PubMed  CAS  Google Scholar 

  36. Kloner RA, Brown M, Prisant LM, et al. Effects of sildenafil in patients with erectile dysfunction taking antihypertensive therapy. Hypertension. 2001;14:70–3.

    Article  CAS  Google Scholar 

  37. Nera A. Erectile dysfunction and cardiovascular disease: efficacy and safety of phosphodiesterase type 5 inhibitors in men with both condtions. Mayo Clin Proc. 2009;84:139–48.

    Article  Google Scholar 

  38. • Kloner RA, Mitchell M, Emmick JT. Cardiovascular effects of tadalafil in patients with common antihypertensive therapies. Am J Cardiol. 2003;91(Supp):47M–57M. A well written informed review on the interaction of the 3 PDE 5 inhibitors with antihypertensive drugs in patients with hypertension.

    Article  Google Scholar 

  39. Pickering TG, Shepherd AM, Puddey I, et al. Sildenafil citrate for erectile dysfunction in men receiving multiple antihypertensive agents. Am J Hypertens. 2004;17:1135–42.

    Article  PubMed  CAS  Google Scholar 

  40. Oliver JJ, Dear JW, Webb DJ. Clinical potential of combined organic nitrate and phosphodiesterase type 5 inhibitor in treatment resistant hypertension. Hypertension. 2010;56:62–7.

    Article  PubMed  CAS  Google Scholar 

  41. Lewis GD, Shah R, Shahzal K, et al. Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation. 2007;116:1555–62.

    Article  PubMed  CAS  Google Scholar 

  42. Hirata K, Adji A, Vlachopoulos C, et al. Effects of sildenafil on cardiac performance in patients with heart failure. Am J Cardiol. 2005;96:1436–40.

    Article  PubMed  CAS  Google Scholar 

  43. Bocchi EA, Guimaraes G, Mocelin A, et al. Sildenafil effects on exercise, neurohormonal activation, and erectile dysfunction in congestive heart failure. A double-blind, placebo-controlled, randomized study followed by prospective treatment for erectile dysfunction. Circulation. 2002;106:1097–103.

    Article  PubMed  Google Scholar 

  44. Webster LJ, Michelakis ED, Davis T, Archer SL. Use of sildenafil for safe improvement of erectile function and quality of life in men with New York Heart Association class II and III congestive heart failure. Arch Intern Med. 2004;164:514–20.

    Article  PubMed  CAS  Google Scholar 

  45. Lu Z, Xu X, Hu X, et al. Oxidative stress regulates left ventricular PDE 5 expression in the failing heart. Circulation. 2010;121:1474–83.

    Article  PubMed  CAS  Google Scholar 

  46. Chau VQ, Shalloum FN, Hoke NN, et al. Mitigation of the progression of heart failure with sildenafil involves inhibition of Rho/Rho-kinase pathway. Am J Physiol Heart Circ Physiol. 2011;300:H2272–9.

    Article  PubMed  CAS  Google Scholar 

  47. •• Bayeva M, Gheorghiade M, Ardehali H. Mitochondria as therapeutic target in heart failure. J Am Coll Cardiol. 2013;61:599–610. A very exciting review on the important role of mitochondria in the function of the heart. Their modulation with PDE 5 inhibitors to improve myocardial contractility in patients with heart failure.

    Article  PubMed  CAS  Google Scholar 

  48. Garesse R, Vallejo CG. Animal mitochondria biogenesis and function: a regulatory cross-talk between two genomes. Gene. 2001;263:1–16.

    Article  PubMed  CAS  Google Scholar 

  49. Clementi E, Nisoli E. Nitric oxide and mitochondrial biogenesis: a key to long-term regulation of cellular metabolism. Comp Biochem Physiol A Mol Integr Physiol. 2005;142:102–10.

    Article  PubMed  Google Scholar 

  50. Brown GC. Nitric oxide and mitochondria. Front Biosci. 2007;12:1024–33.

    Article  PubMed  CAS  Google Scholar 

  51. De Toni L, Strapazzon G, Gianesello L. Effects of type 5- phosphodiesterase inhibition on energy metabolism and mitochondrial biogenesis in adipose tissue ex vivo. J Endocrinol Investig. 2011;34:738–41.

    Google Scholar 

  52. Cvelich RG, Roberts SC, Brown JN. Phosphodiesterase type 5 inhibitors as adjunctive therapy in the management of systolic heart failure. Ann Pharmacother. 2011;45:1551–8.

    Article  PubMed  CAS  Google Scholar 

  53. Badesch DB, Champion HC, Gomez-Sanchez MA, et al. Diagnosis and assessment of pulmonary arterial hypertension. J Am Coll Cardiol. 2009;54(Suppl S):S55–60.

    Article  PubMed  Google Scholar 

  54. Waxman AB, Zamanian RT. Pulmonary arterial hypertension : new insights into optimal role of current and emerging prostacyclin therapies. Am J Cardiol. 2013;111 Suppl 5:1A–16A.

    Article  PubMed  CAS  Google Scholar 

  55. Vlachopoulos C, Ioakeimidis N, Rokkas K, et al. Cardiovascular effects of phosphodiesterase type 5 inhibitors. J Sex Med. 2009;6:658–74.

    Article  PubMed  CAS  Google Scholar 

  56. Rubin LJ, Badesch DB, Flemming TR, et al. Long-term treatment with sildenafil citrate in pulmonary arterial hypertension. The SUPER- 2 Study. Chest. 2011;140:1274–83.

    Article  PubMed  CAS  Google Scholar 

  57. Jing ZC, Shen JY, Wu BX, et al. Vardenafil for the treatment of pulmonary arterial hypertension. Am J Respir Crit Care Med. 2011;183:1723–9.

    Article  PubMed  CAS  Google Scholar 

  58. Galie N, Brundage BH, Ghofrani HA, et al. Tadalafil therapy in pulmonary arterial hypertension. 2009;119:2894–903.

  59. Oudiz RJ, Brundage BH, Galie N, et al. Tadalafil for the treatment of pulmonary arterial hypertension. J Am Coll Cardiol. 2012;60:768–74.

    Article  PubMed  CAS  Google Scholar 

  60. Goldstein I, Young JM, Fischer J, Vardenafil Diabetes Study Group, et al. Vardenafil, a new phosphodiesterase 5 inhibitor in the treatment of erectile dysfunction in men with diabetes: a multicenter, double-blind, placebo-controlled, fixed-dose study. Diabetes Care. 2003;26:777–83.

    Article  PubMed  CAS  Google Scholar 

  61. Phe V, Roupret M. Erectile dysfunction and diabetes: a review of the current evidence-based medicine and synthesis of the main available therapies. Diabetes Metab. 2012;38:1–13.

    Article  PubMed  CAS  Google Scholar 

  62. Angulo J, Gonzalez-Corrochano R, Cuevas P, et al. Diabetes exacerbates the functional deficiency of NO/cGMP pathway associated with erectile dysfunction in human corpus cavernosum and penile arteries. J Sex Med. 2010;7:758–68.

    Article  PubMed  CAS  Google Scholar 

  63. Deyoung L, Chung E, Kovacs JR, et al. Daily use of sildenafil improves endothelial function in men with type 2 diabetes. J Androl. 2012;33:176–80.

    Article  PubMed  CAS  Google Scholar 

  64. Schneider T, Gleissner J, Merfort F, et al. Efficacy and safety of vardenafil for the treatment of erectile dysfunction in men with the metabolic syndrome: results of a randomized, placebo- controlled trial. J Sex Med. 2011;8:2904–11.

    Article  PubMed  CAS  Google Scholar 

  65. Hatzichristou D, Gambia M, Rubio-Aurioles E, et al. Efficacy of tadalafil once daily in men with diabetes mellitus and erectile dysfunction. Diabet Med. 2008;25:138–46.

    Article  PubMed  CAS  Google Scholar 

  66. Grover-Paez F, Villegas Rivera G, Guillen Ortiz R. Sildenafil citrate diminishes microalbuminuria and the percentage of A1c in male patients with type 2 diabetes. Diabetes Res Clin Pract. 2007;78:136–40.

    Article  PubMed  CAS  Google Scholar 

  67. Silman A, Holligan S, Brennan P, Maddison P. Prevalence of symptoms of Raynaud’s phenomenon in general practice. BMJ. 1990;301:590–2.

    Article  PubMed  CAS  Google Scholar 

  68. Wigley FM. Raynaud’s phenomenon. N Engl J Med. 2002;347:1001–8.

    Article  PubMed  Google Scholar 

  69. Caglayan E, Huntgeburth M, Karasch T, et al. Phosphodiesterase type 5 inhibition is a novel therapeutic option in Raynaud’s disease. Arch Intern Med. 2006;166:231–3.

    Article  PubMed  CAS  Google Scholar 

  70. Fries R, Shariat K, von Wilmowsky H, Bohm M. Sildenafil in the treatment of Raynaud’s phenomenon resistant to vasodilatory therapy. Circulation. 2005;112:2980–5.

    PubMed  CAS  Google Scholar 

  71. Roustit M, Hellmann M, Cracowski C, et al. Sildenafil increases digital skin blood flow during all phases of local cooling in primary Raynaud’s phenomenon. Clin Pharmacol Ther. 2012;91:813–9.

    Article  PubMed  CAS  Google Scholar 

  72. Shenoy PD, Kumar S, Jha LK, et al. Efficacy of tadalafil in secondary Raynaud’s phenomenon resistant to vasodilator therapy: a double-blind randomized cross-over study. Rheumatology. 2010;49:2420–8.

    Article  PubMed  CAS  Google Scholar 

  73. Friedman EA, Harris PA, Wood AJJ, et al. The effects of tadalafil on cold-induced vasoconstriction in patients with the Raynaud’s phenomenon. Clin Pharmacol Ther. 2007;81:503–9.

    Article  PubMed  CAS  Google Scholar 

  74. De La Vega AJ, Derk CT. Phosphodiesterase-5 inhibitors for the treatment of Raynaud’s: a novel indication. Expert Opin Investig Drugs. 2009;18:23–9.

    Article  Google Scholar 

  75. Rosenkranz S, Brixius K, Halbach R, et al. Phoshodiesterase type 5 inhibitor sildenafil citrate does not potentiate the vasodilative properties of nebivolol in rat aorta. Life Sci. 2006;78:1103–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Steven G. Chrysant declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven G. Chrysant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chrysant, S.G. Effectiveness and Safety of Phosphodiesterase 5 Inhibitors in Patients with Cardiovascular Disease and Hypertension. Curr Hypertens Rep 15, 475–483 (2013). https://doi.org/10.1007/s11906-013-0377-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-013-0377-9

Keywords

Navigation