Skip to main content

Advertisement

Log in

Everything you ever wanted to know about phosphodiesterase 5 inhibitors and the heart (but never dared ask): How do they work?

  • Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Introduction

Phosphodiesterase 5 inhibitors (PDE5i) were developed while investigating novel treatments for coronary artery disease, but their andrological side effects shifted their indication toward the management of erectile dysfunction. Although PDE5i are now also indicated for pulmonary arterial hypertension and there are mounting preclinical and clinical evidences about their potentially beneficial cardiac effects, their use remains controversial and the involved mechanisms remain unclear.

Materials and methods

This review aimed to analyze the effects of PDE5i administration in various animal and humans models of cardiovascular diseases.

Results

Animal studies have shown that PDE5i have protective effects in several models of cardiac disease. In humans, some studies showed that PDE5i improves microvascular and endothelial dysfunction and exerts positive effects in different samples of cardiovascular (CV) impairment. In contrast, other studies found no benefit (and no harm) in heart failure with preserved ejection fraction. The discrepancies in these findings are likely related to the fact that the mechanisms targeted by PDE5i in human disease are still poorly understood and the target population not yet identified. The mechanisms of actions herein reviewed suggest that hypertrophy, microvascular impairment, and inflammation, should be variably present for PDE5i to work. All these conditions frequently coexist in diabetes. A gender responsiveness has also been recently proposed.

Conclusions

Continuous PDE5 inhibition may exert cardioprotective effects, improving endothelial function and counteracting cardiac remodeling in some but not all conditions. A better patient selection could help to clarify the controversies on PDE5i use for CV disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Katsuki S, Arnold W, Mittal C, Murad F (1977) Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine. J Cycl Nucleotide Res 3(1):23–35

    CAS  Google Scholar 

  2. Bian K, Doursout MF, Murad F (2008) Vascular system: role of nitric oxide in cardiovascular diseases. J Clin Hypertens (Greenwich) 10(4):304–310

    Article  CAS  Google Scholar 

  3. Sobel RE, Reynolds RF (2008) Integrating evidence from multiple sources to evaluate post-approval safety: an example of sildenafil citrate and cardiovascular events. Curr Med Res Opin 24(7):1861–1868

    Article  PubMed  Google Scholar 

  4. Kass DA (2012) Cardiac role of cyclic-GMP hydrolyzing phosphodiesterase type 5: from experimental models to clinical trials. Curr Heart Fail Rep 9(3):192–199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Caretta N, Ferlin A, Palego PF, Foresta C (2005) Erectile dysfunction in aging men: testosterone role in therapeutic protocols. J Endocrinol Investig 28(11 Suppl):108–111

    CAS  Google Scholar 

  6. Isidori AM, Giannetta E, Pozza C, Bonifacio V, Isidori A (2005) Androgens, cardiovascular disease and osteoporosis. J Endocrinol Investig 28(10 Suppl):73–79

    CAS  Google Scholar 

  7. Takimoto E (2012) Cyclic GMP-dependent signaling in cardiac myocytes. Circ J 76(8):1819–1825

    Article  PubMed  CAS  Google Scholar 

  8. Das A, Durrant D, Salloum FN, Xi L, Kukreja RC (2014) PDE5 inhibitors as therapeutics for heart disease, diabetes and cancer. Pharmacol Ther 147:12–21

    Article  PubMed  CAS  Google Scholar 

  9. Takimoto E, Champion HC, Li M et al (2005) Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med 11(2):214–222

    Article  PubMed  CAS  Google Scholar 

  10. Takimoto E, Champion HC, Belardi D et al (2005) cGMP catabolism by phosphodiesterase 5A regulates cardiac adrenergic stimulation by NOS3-dependent mechanism. Circ Res 96(1):100–109

    Article  PubMed  CAS  Google Scholar 

  11. Zhang M, Koitabashi N, Nagayama T et al (2008) Expression, activity, and pro-hypertrophic effects of PDE5A in cardiac myocytes. Cell Signal 20(12):2231–2236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Vandeput F, Krall J, Ockaili R et al (2009) cGMP-hydrolytic activity and its inhibition by sildenafil in normal and failing human and mouse myocardium. J Pharmacol Exp Ther 330(3):884–891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Bruzziches R, Francomano D, Gareri P, Lenzi A, Aversa A (2013) An update on pharmacological treatment of erectile dysfunction with phosphodiesterase type 5 inhibitors. Expert Opin Pharmacother 14(10):1333–1344

    Article  PubMed  CAS  Google Scholar 

  14. Morales A, Gingell C, Collins M, Wicker PA, Osterloh IH (1998) Clinical safety of oral sildenafil citrate (VIAGRA) in the treatment of erectile dysfunction. Int J Impot Res 10(2):69–73

    Article  PubMed  CAS  Google Scholar 

  15. Pomara G, Morelli G, Pomara S et al (2004) Cardiovascular parameter changes in patients with erectile dysfunction using pde-5 inhibitors: a study with sildenafil and vardenafil. J Androl 25(4):625–629

    Article  PubMed  CAS  Google Scholar 

  16. Webb DJ, Muirhead GJ, Wulff M, Sutton JA, Levi R, Dinsmore WW (2000) Sildenafil citrate potentiates the hypotensive effects of nitric oxide donor drugs in male patients with stable angina. J Am Coll Cardiol 36(1):25–31

    Article  PubMed  CAS  Google Scholar 

  17. Jannini EA, McMahon C, Chen J, Aversa A, Perelman M (2011) The controversial role of phosphodiesterase type 5 inhibitors in the treatment of premature ejaculation. J Sex Med 8(8):2135–2143

    Article  PubMed  Google Scholar 

  18. Borer J, Armstrong P (2003) Proceedings of the 99th meeting of the food and drug administration cardiovascular and renal drugs advisory committee. May 29th and 30th, 2003. Circulation ; 107(23): p e9052

  19. Hellstrom WJ, Gittelman M, Karlin G et al (2003) Sustained efficacy and tolerability of vardenafil, a highly potent selective phosphodiesterase type 5 inhibitor, in men with erectile dysfunction: results of a randomized, double-blind, 26-week placebo-controlled pivotal trial. Urology 61(4 Suppl):8–14

    Article  PubMed  Google Scholar 

  20. Sanford M (2013) Avanafil: a review of its use in patients with erectile dysfunction. Drugs Aging 30(10):853–862

    Article  PubMed  CAS  Google Scholar 

  21. Piot C, Croisille P, Staat P et al (2008) Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med 359(5):473–481

    Article  PubMed  CAS  Google Scholar 

  22. Gruber HE, Hoffer ME, McAllister DR et al (1989) Increased adenosine concentration in blood from ischemic myocardium by AICA riboside. effects on flow, granulocytes, and injury. Circulation 80(5):1400–1411

    Article  PubMed  CAS  Google Scholar 

  23. Mullane K (1993) Acadesine: the prototype adenosine regulating agent for reducing myocardial ischaemic injury. Cardiovasc Res 27(1):43–47

    Article  PubMed  CAS  Google Scholar 

  24. Kukreja R, Salloum F, Xi L (2007) Anti-ischemic effects of sildenafil, vardenafil and tadalafil in heart. Int J Impot Res 19(2):226–227

    Article  PubMed  CAS  Google Scholar 

  25. Ockaili R, Salloum F, Hawkins J, Kukreja RC (2002) Sildenafil (Viagra) induces powerful cardioprotective effect via opening of mitochondrial K(ATP) channels in rabbits. Am J Physiol Heart Circ Physiol 283(3):H1263–H1269

    Article  PubMed  CAS  Google Scholar 

  26. Kukreja RC, Salloum FN, Das A, Koka S, Ockaili RA, Xi L (2011) Emerging new uses of phosphodiesterase-5 inhibitors in cardiovascular diseases. Exp Clin Cardiol 16(4):e30–e35

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Shakir SA, Wilton LV, Boshier A, Layton D, Heeley E (2001) Cardiovascular events in users of sildenafil: results from first phase of prescription event monitoring in England. BMJ 322(7287):651–652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Salloum FN, Abbate A, Das A et al (2008) Sildenafil (Viagra) attenuates ischemic cardiomyopathy and improves left ventricular function in mice. Am J Physiol Heart Circ Physiol 294(3):H1398–H1406

    Article  PubMed  CAS  Google Scholar 

  29. Chau VQ, Salloum FN, Hoke NN, Abbate A, Kukreja RC (2011) Mitigation of the progression of heart failure with sildenafil involves inhibition of RhoA/Rho-kinase pathway. Am J Physiol Heart Circ Physiol 300(6):H2272–H2279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Guazzi M, Vicenzi M, Arena R (2012) Phosphodiesterase 5 inhibition with sildenafil reverses exercise oscillatory breathing in chronic heart failure: a long-term cardiopulmonary exercise testing placebo-controlled study. Eur J Heart Fail 14(1):82–90

    Article  PubMed  CAS  Google Scholar 

  31. Fox KM, Thadani U, Ma PT et al (2003) Sildenafil citrate does not reduce exercise tolerance in men with erectile dysfunction and chronic stable angina. Eur Heart J 24(24):2206–2212

    Article  PubMed  CAS  Google Scholar 

  32. Silver B, McCarthy S, Lu M et al (2009) Sildenafil treatment of subacute ischemic stroke: a safety study at 25-mg daily for 2 weeks. J Stroke Cerebrovasc Dis 18(5):381–383

    Article  PubMed  Google Scholar 

  33. Cakmak HA, Ikitimur B, Karadag B, Ongen Z (2012) An unusual adverse effect of sildenafil citrate: acute myocardial infarction in a nitrate-free patient. BMJ Case Rep. doi:10.1136/bcr-2012-006504

    Google Scholar 

  34. Hayat S, Al-Mutairy M, Zubaid M, Suresh C (2007) Acute myocardial infarction following sildenafil intake in a nitrate-free patient without previous history of coronary artery disease. Med Princ Pract 16(3):234–236

    Article  PubMed  CAS  Google Scholar 

  35. Andersen MJ, Ersboll M, Axelsson A et al (2013) Sildenafil and diastolic dysfunction after acute myocardial infarction in patients with preserved ejection fraction: the sildenafil and diastolic dysfunction after acute myocardial infarction (SIDAMI) trial. Circulation 127(11):1200–1208

    Article  PubMed  CAS  Google Scholar 

  36. Schwartz BG, Levine LA, Comstock G, Stecher VJ, Kloner RA (2012) Cardiac uses of phosphodiesterase-5 inhibitors. J Am Coll Cardiol 59(1):9–15

    Article  PubMed  CAS  Google Scholar 

  37. Guazzi M (2008) Sildenafil and phosphodiesterase-5 inhibitors for heart failure. Curr Heart Fail Rep 5(2):110–114

    Article  PubMed  CAS  Google Scholar 

  38. Fischler M, Maggiorini M, Dorschner L et al (2009) Dexamethasone but not tadalafil improves exercise capacity in adults prone to high-altitude pulmonary edema. Am J Respir Crit Care Med 180(4):346–352

    Article  PubMed  CAS  Google Scholar 

  39. Hsu AR, Barnholt KE, Grundmann NK, Lin JH, McCallum SW, Friedlander AL (2006) Sildenafil improves cardiac output and exercise performance during acute hypoxia, but not normoxia. J Appl Physiol 100(6):2031–2040

    Article  PubMed  CAS  Google Scholar 

  40. Zheng YG, Ma H, Hu EC, Liu G, Chen G, Xiong CM (2014) Oral targeted therapies in the treatment of pulmonary arterial hypertension: a meta-analysis of clinical trials. Pulm Pharmacol Ther 29(2):241–249

    Article  PubMed  CAS  Google Scholar 

  41. Guazzi M, Samaja M, Arena R, Vicenzi M, Guazzi MD (2007) Long-term use of sildenafil in the therapeutic management of heart failure. J Am Coll Cardiol 50(22):2136–2144

    Article  PubMed  CAS  Google Scholar 

  42. Guazzi M, Myers J, Peberdy MA, Bensimhon D, Chase P, Arena R (2010) Ventilatory efficiency and dyspnea on exertion improvements are related to reduced pulmonary pressure in heart failure patients receiving Sildenafil. Int J Cardiol 144(3):410–412

    Article  PubMed  Google Scholar 

  43. Guazzi M, Arena R, Pinkstaff S, Guazzi MD (2009) Six months of Sildenafil therapy improves heart rate recovery in patients with heart failure. Int J Cardiol 136(3):341–343

    Article  PubMed  Google Scholar 

  44. Guazzi M, Vicenzi M, Arena R, Guazzi MD (2011) Pulmonary hypertension in heart failure with preserved ejection fraction: a target of phosphodiesterase-5 inhibition in a 1-year study. Circulation 124(2):164–174

    Article  PubMed  CAS  Google Scholar 

  45. Lewis GD, Lachmann J, Camuso J et al (2007) Sildenafil improves exercise hemodynamics and oxygen uptake in patients with systolic heart failure. Circulation 115(1):59–66

    Article  PubMed  CAS  Google Scholar 

  46. Lewis GD, Semigran MJ (2004) Type 5 phosphodiesterase inhibition in heart failure and pulmonary hypertension. Curr Heart Fail Rep 1(4):183–189

    Article  PubMed  Google Scholar 

  47. Behling A, Rohde LE, Colombo FC, Goldraich LA, Stein R, Clausell N (2008) Effects of 5′-phosphodiesterase four-week long inhibition with sildenafil in patients with chronic heart failure: a double-blind, placebo-controlled clinical trial. J Card Fail 14(3):189–197

    Article  PubMed  CAS  Google Scholar 

  48. Bocchi EA, Guimaraes G, Mocelin A, Bacal F, Bellotti G, Ramires JF (2002) Sildenafil effects on exercise, neurohormonal activation, and erectile dysfunction in congestive heart failure: a double-blind, placebo-controlled, randomized study followed by a prospective treatment for erectile dysfunction. Circulation 106(9):1097–1103

    Article  PubMed  Google Scholar 

  49. Webster LJ, Michelakis ED, Davis T, Archer SL (2004) Use of sildenafil for safe improvement of erectile function and quality of life in men with New York Heart Association classes II and III congestive heart failure: a prospective, placebo-controlled, double-blind crossover trial. Arch Intern Med 164(5):514–520

    Article  PubMed  CAS  Google Scholar 

  50. Cooper TJ, Guazzi M, Al-Mohammad A et al (2013) Sildenafil in Heart failure (SilHF). An investigator-initiated multinational randomized controlled clinical trial: rationale and design. Eur J Heart Fail 15(1):119–122

    Article  PubMed  CAS  Google Scholar 

  51. Zhuang XD, Long M, Li F, Hu X, Liao XX, Du ZM (2014) PDE5 inhibitor sildenafil in the treatment of heart failure: a meta-analysis of randomized controlled trials. Int J Cardiol 172(3):581–587

    Article  PubMed  Google Scholar 

  52. Redfield MM, Chen HH, Borlaug BA et al (2013) Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 309(12):1268–1277

    Article  PubMed  CAS  Google Scholar 

  53. Borlaug BA, Lewis GD, McNulty SE et al (2015) Effects of Sildenafil on Ventricular and Vascular Function in Heart Failure With Preserved Ejection Fraction. Circ Heart Fail 8(3):533–541

    Article  PubMed  CAS  Google Scholar 

  54. Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA (2006) Controversies in ventricular remodelling. Lancet 367(9507):356–367

    Article  PubMed  Google Scholar 

  55. Lindman BR, Zajarias A, Madrazo JA et al (2012) Effects of phosphodiesterase type 5 inhibition on systemic and pulmonary hemodynamics and ventricular function in patients with severe symptomatic aortic stenosis. Circulation 125(19):2353–2362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Giannetta E, Isidori AM, Galea N et al (2012) Chronic Inhibition of cGMP phosphodiesterase 5A improves diabetic cardiomyopathy: a randomized, controlled clinical trial using magnetic resonance imaging with myocardial tagging. Circulation 125(19):2323–2333

    Article  PubMed  CAS  Google Scholar 

  57. Giannetta E, Feola T, Gianfrilli D et al (2014) Is chronic inhibition of phosphodiesterase type 5 cardioprotective and safe? A meta-analysis of randomized controlled trials. BMC Med 12(1):185

    Article  PubMed  PubMed Central  Google Scholar 

  58. Santi D, Giannetta E, Isidori AM, Vitale C, Aversa A, Simoni M (2014) Therapy of endocrine disease: effects of chronic use of phosphodiesterase inhibitors on endothelial markers in type 2 diabetes mellitus: a meta-analysis. Eur J Endocrinol 172(3):R103–R114

    Article  PubMed  CAS  Google Scholar 

  59. Goldberg DJ, French B, Szwast AL et al (2012) Impact of sildenafil on echocardiographic indices of myocardial performance after the Fontan operation. Pediatr Cardiol 33(5):689–696

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fisher PW, Salloum F, Das A, Hyder H, Kukreja RC (2005) Phosphodiesterase-5 inhibition with sildenafil attenuates cardiomyocyte apoptosis and left ventricular dysfunction in a chronic model of doxorubicin cardiotoxicity. Circulation 111(13):1601–1610

    Article  PubMed  CAS  Google Scholar 

  61. Adamo CM, Dai DF, Percival JM et al (2010) Sildenafil reverses cardiac dysfunction in the mdx mouse model of Duchenne muscular dystrophy. Proc Natl Acad Sci USA 107(44):19079–19083

    Article  PubMed  PubMed Central  Google Scholar 

  62. Rosano GM, Aversa A, Vitale C, Fabbri A, Fini M, Spera G (2005) Chronic treatment with tadalafil improves endothelial function in men with increased cardiovascular risk. Eur Urol 47(2):214–220

    Article  PubMed  CAS  Google Scholar 

  63. Venneri MA, Giannetta E, Panio G et al (2015) Chronic Inhibition of PDE5 Limits Pro-Inflammatory Monocyte-Macrophage Polarization in Streptozotocin-Induced Diabetic Mice. PLoS One 10(5):e0126580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Isidori AM, Cornacchione M, Barbagallo F et al (2015) Inhibition of type 5 phosphodiesterase counteracts beta2-adrenergic signalling in beating cardiomyocytes. Cardiovasc Res 106:408–420

    Article  PubMed  Google Scholar 

  65. Sasaki H, Nagayama T, Blanton RM et al (2014) PDE5 inhibitor efficacy is estrogen dependent in female heart disease. J Clin Investig 124(6):2464–2471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Das A, Xi L, Kukreja RC (2008) Protein kinase G-dependent cardioprotective mechanism of phosphodiesterase-5 inhibition involves phosphorylation of ERK and GSK3beta. J Biol Chem 283(43):29572–29585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Das A, Xi L, Kukreja RC (2005) Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis. Essential role of nitric oxide signaling. J Biol Chem 280(13):12944–12955

    Article  PubMed  CAS  Google Scholar 

  68. Das A, Smolenski A, Lohmann SM, Kukreja RC (2006) Cyclic GMP-dependent protein kinase Ialpha attenuates necrosis and apoptosis following ischemia/reoxygenation in adult cardiomyocyte. J Biol Chem 281(50):38644–38652

    Article  PubMed  CAS  Google Scholar 

  69. Salloum F, Yin C, Xi L, Kukreja RC (2003) Sildenafil induces delayed preconditioning through inducible nitric oxide synthase-dependent pathway in mouse heart. Circ Res 92(6):595–597

    Article  PubMed  CAS  Google Scholar 

  70. Nagy O, Hajnal A, Parratt JR, Vegh A (2004) Sildenafil (Viagra) reduces arrhythmia severity during ischaemia 24 h after oral administration in dogs. Br J Pharmacol 141(4):549–551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Madhani M, Hall AR, Cuello F et al (2010) Phospholemman Ser69 phosphorylation contributes to sildenafil-induced cardioprotection against reperfusion injury. Am J Physiol Heart Circ Physiol 299(3):H827–H836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Milano G, Bianciardi P, Rochemont V et al (2011) Phosphodiesterase-5 inhibition mimics intermittent reoxygenation and improves cardioprotection in the hypoxic myocardium. PLoS One 6(11):e27910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Salloum FN, Chau VQ, Hoke NN et al (2009) Phosphodiesterase-5 inhibitor, tadalafil, protects against myocardial ischemia/reperfusion through protein-kinase g-dependent generation of hydrogen sulfide. Circulation 120(11 Suppl):S31–S36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Ahmad N, Wang Y, Ali AK, Ashraf M (2009) Long-acting phosphodiesterase-5 inhibitor, tadalafil, induces sustained cardioprotection against lethal ischemic injury. Am J Physiol Heart Circ Physiol 297(1):H387–H391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Salloum FN, Chau VQ, Hoke NN, Kukreja RC (2014) Tadalafil prevents acute heart failure with reduced ejection fraction in mice. Cardiovasc Drugs Ther 28(6):493–500

    Article  PubMed  CAS  Google Scholar 

  76. Jamnicki-Abegg M, Weihrauch D, Chiari PC et al (2007) Diabetes abolishes sildenafil-induced cGMP-dependent protein kinase-I expression and cardioprotection. J Cardiovasc Pharmacol 50(6):670–676

    Article  PubMed  CAS  Google Scholar 

  77. Traverse JH, Chen YJ, Du R, Bache RJ (2000) Cyclic nucleotide phosphodiesterase type 5 activity limits blood flow to hypoperfused myocardium during exercise. Circulation 102(24):2997–3002

    Article  PubMed  CAS  Google Scholar 

  78. Rosanio S, Ye Y, Atar S et al (2006) Enhanced cardioprotection against ischemia-reperfusion injury with combining sildenafil with low-dose atorvastatin. Cardiovasc Drugs Ther 20(1):27–36

    Article  PubMed  CAS  Google Scholar 

  79. Wang X, Fisher PW, Xi L, Kukreja RC (2008) Essential role of mitochondrial Ca2+-activated and ATP-sensitive K+ channels in sildenafil-induced late cardioprotection. J Mol Cell Cardiol 44(1):105–113

    Article  PubMed  CAS  Google Scholar 

  80. Hoke NN, Salloum FN, Kass DA, Das A, Kukreja RC (2012) Preconditioning by phosphodiesterase-5 inhibition improves therapeutic efficacy of adipose-derived stem cells following myocardial infarction in mice. Stem Cells 30(2):326–335

    Article  PubMed  CAS  Google Scholar 

  81. Hattori T, Shimokawa H, Higashi M et al (2004) Long-term inhibition of Rho-kinase suppresses left ventricular remodeling after myocardial infarction in mice. Circulation 109(18):2234–2239

    Article  PubMed  CAS  Google Scholar 

  82. Denardo SJ, Wen X, Handberg EM et al (2011) Effect of phosphodiesterase type 5 inhibition on microvascular coronary dysfunction in women: a Women’s Ischemia Syndrome Evaluation (WISE) ancillary study. Clin Cardiol 34(8):483–487

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lee DI, Vahebi S, Tocchetti CG et al (2010) PDE5A suppression of acute beta-adrenergic activation requires modulation of myocyte beta-3 signaling coupled to PKG-mediated troponin I phosphorylation. Basic Res Cardiol 105(3):337–347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Borlaug BA, Melenovsky V, Marhin T, Fitzgerald P, Kass DA (2005) Sildenafil inhibits beta-adrenergic-stimulated cardiac contractility in humans. Circulation 112(17):2642–2649

    Article  PubMed  CAS  Google Scholar 

  85. Bishu K, Hamdani N, Mohammed SF et al (2011) Sildenafil and B-type natriuretic peptide acutely phosphorylate titin and improve diastolic distensibility in vivo. Circulation 124(25):2882–2891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Kruger M, Kotter S, Grutzner A et al (2009) Protein kinase G modulates human myocardial passive stiffness by phosphorylation of the titin springs. Circ Res 104(1):87–94

    Article  PubMed  CAS  Google Scholar 

  87. Nagendran J, Archer SL, Soliman D et al (2007) Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation 116(3):238–248

    Article  PubMed  CAS  Google Scholar 

  88. Schafer S, Ellinghaus P, Janssen W et al (2009) Chronic inhibition of phosphodiesterase 5 does not prevent pressure-overload-induced right-ventricular remodelling. Cardiovasc Res 82(1):30–39

    Article  PubMed  CAS  Google Scholar 

  89. Shan X, Quaile MP, Monk JK, French B, Cappola TP, Margulies KB (2012) Differential expression of PDE5 in failing and nonfailing human myocardium. Circ Heart Fail 5(1):79–86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Takimoto E, Koitabashi N, Hsu S et al (2009) Regulator of G protein signaling 2 mediates cardiac compensation to pressure overload and antihypertrophic effects of PDE5 inhibition in mice. J Clin Investig 119(2):408–420

    PubMed  PubMed Central  CAS  Google Scholar 

  91. Westermann D, Becher PM, Lindner D et al (2012) Selective PDE5A inhibition with sildenafil rescues left ventricular dysfunction, inflammatory immune response and cardiac remodeling in angiotensin II-induced heart failure in vivo. Basic Res Cardiol 107(6):308

    Article  PubMed  CAS  Google Scholar 

  92. Nishida M, Watanabe K, Sato Y et al (2010) Phosphorylation of TRPC6 channels at Thr69 is required for anti-hypertrophic effects of phosphodiesterase 5 inhibition. J Biol Chem 285(17):13244–13253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Kim KH, Kim YJ, Ohn JH et al (2012) Long-term effects of sildenafil in a rat model of chronic mitral regurgitation: benefits of ventricular remodeling and exercise capacity. Circulation 125(11):1390–1401

    Article  PubMed  CAS  Google Scholar 

  94. Guazzi M, Vicenzi M, Arena R, Guazzi MD (2011) PDE5 inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure: results of a 1-year, prospective, randomized, placebo-controlled study. Circ Heart Fail 4(1):8–17

    Article  PubMed  CAS  Google Scholar 

  95. Hirata K, Adji A, Vlachopoulos C, O’Rourke MF (2005) Effect of sildenafil on cardiac performance in patients with heart failure. Am J Cardiol 96(10):1436–1440

    Article  PubMed  CAS  Google Scholar 

  96. Guazzi M, Tumminello G, Di MF, Fiorentini C, Guazzi MD (2004) The effects of phosphodiesterase-5 inhibition with sildenafil on pulmonary hemodynamics and diffusion capacity, exercise ventilatory efficiency, and oxygen uptake kinetics in chronic heart failure. J Am Coll Cardiol 44(12):2339–2348

    Article  PubMed  CAS  Google Scholar 

  97. Al-Hesayen A, Floras JS, Parker JD (2006) The effects of intravenous sildenafil on hemodynamics and cardiac sympathetic activity in chronic human heart failure. Eur J Heart Fail 8(8):864–868

    Article  PubMed  CAS  Google Scholar 

  98. Kaye DM, Lefkovits J, Jennings GL, Bergin P, Broughton A, Esler MD (1995) Adverse consequences of high sympathetic nervous activity in the failing human heart. J Am Coll Cardiol 26(5):1257–1263

    Article  PubMed  CAS  Google Scholar 

  99. Gong W, Yan M, Chen J, Chaugai S, Chen C, Wang D (2014) Chronic inhibition of cyclic guanosine monophosphate-specific phosphodiesterase 5 prevented cardiac fibrosis through inhibition of transforming growth factor beta-induced Smad signaling. Front Med 8(4)):445–455

    Article  PubMed  Google Scholar 

  100. Kukreja RC, Salloum F, Das A et al (2005) Pharmacological preconditioning with sildenafil: basic mechanisms and clinical implications. Vascul Pharmacol 42(5–6):219–232

    Article  PubMed  CAS  Google Scholar 

  101. Halcox JP, Nour KR, Zalos G et al (2002) The effect of sildenafil on human vascular function, platelet activation, and myocardial ischemia. J Am Coll Cardiol 40(7):1232–1240

    Article  PubMed  CAS  Google Scholar 

  102. Corbin J, Rannels S, Neal D et al (2003) Sildenafil citrate does not affect cardiac contractility in human or dog heart. Curr Med Res Opin 19(8):747–752

    Article  PubMed  CAS  Google Scholar 

  103. Ghofrani HA, Voswinckel R, Reichenberger F et al (2004) Differences in hemodynamic and oxygenation responses to three different phosphodiesterase-5 inhibitors in patients with pulmonary arterial hypertension: a randomized prospective study. J Am Coll Cardiol 44(7):1488–1496

    PubMed  CAS  Google Scholar 

  104. Wilkins MR, Paul GA, Strange JW et al (2005) Sildenafil versus Endothelin Receptor Antagonist for Pulmonary Hypertension (SERAPH) study. Am J Respir Crit Care Med 171(11):1292–1297

    Article  PubMed  Google Scholar 

  105. Bhatia S, Frantz RP, Severson CJ, Durst LA, McGoon MD (2003) Immediate and long-term hemodynamic and clinical effects of sildenafil in patients with pulmonary arterial hypertension receiving vasodilator therapy. Mayo Clin Proc 78(10):1207–1213

    Article  PubMed  CAS  Google Scholar 

  106. Schulze-Neick I, Hartenstein P, Li J et al (2003) Intravenous sildenafil is a potent pulmonary vasodilator in children with congenital heart disease. Circulation 108(Suppl 1):II167–II173

    PubMed  Google Scholar 

  107. Galie N, Ghofrani HA, Torbicki A et al (2005) Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med 353(20):2148–2157

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This review was designed in the context of EnGioI Club (Italian Society of Endocrinology—SIE). The authors wish to thank the Italian Society of Endocrinology (SIE), Prof. A. Peri, and Prof. L. Bartalena for supporting the initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Giannetta.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interest.

Ethical approval

This article is a review of literature and does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No informed consent is available.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pofi, R., Gianfrilli, D., Badagliacca, R. et al. Everything you ever wanted to know about phosphodiesterase 5 inhibitors and the heart (but never dared ask): How do they work?. J Endocrinol Invest 39, 131–142 (2016). https://doi.org/10.1007/s40618-015-0339-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-015-0339-y

Keywords

Navigation