Skip to main content

Advertisement

Log in

Dopamine, the Kidney, and Hypertension

  • Hypertension: Kidney, Sodium, and Renin-Angiotensin System (R Carey and A Mimran, Section Editors)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

There is increasing evidence that the intrarenal dopaminergic system plays an important role in the regulation of blood pressure, and defects in dopamine signaling appear to be involved in the development of hypertension. Recent experimental models have definitively demonstrated that abnormalities in intrarenal dopamine production or receptor signaling can predispose to salt-sensitive hypertension and a dysregulated renin-angiotensin system. In addition, studies in both experimental animal models and in humans with salt-sensitive hypertension implicate abnormalities in dopamine receptor regulation due to receptor desensitization resulting from increased G-protein receptor kinase 4 (GRK4) activity. Functional polymorphisms that predispose to increased basal GRK4 activity both decrease dopamine receptor activity and increase angiotensin II type 1 (AT1) receptor activity and are associated with essential hypertension in a number of different human cohorts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Felder RA, Jose PA. Mechanisms of disease: the role of GRK4 in the etiology of essential hypertension and salt sensitivity. Nat Clin Pract Nephrol. 2006;2:637–50.

    Article  PubMed  CAS  Google Scholar 

  2. Zeng C, Jose PA. Dopamine receptors: important antihypertensive counterbalance against hypertensive factors. Hypertension. 57:11–7.

  3. Quinones H, Collazo R, Moe OW. The dopamine precursor L-dihydroxyphenylalanine is transported by the amino acid transporters rBAT and LAT2 in renal cortex. Am J Physiol Renal Physiol. 2004;287:F74–80.

    Article  PubMed  CAS  Google Scholar 

  4. Pinho MJ, Serrao MP, Soares-da-Silva P. High-salt intake and the renal expression of amino acid transporters in spontaneously hypertensive rats. Am J Physiol Renal. 2007;292:F1452–63.

    Article  CAS  Google Scholar 

  5. Hayashi M, Yamaji Y, Kitajima W, Saruta T. Aromatic L-amino acid decarboxylase activity along the rat nephron. Am J Physiol Renal. 1990;258:F28–33.

    CAS  Google Scholar 

  6. Bertorello A, Hokfelt T, Goldstein M, et al. Proximal tubule Na+−K+−ATPase activity is inhibited during high-salt diet: evidence for DA-mediated effect. Am J Physiol Renal. 1988;254:F795–801.

    CAS  Google Scholar 

  7. Baines AD. Effects of salt intake and renal denervation on catecholamine catabolism and excretion. Kidney Int. 1982;21:316–22.

    Article  PubMed  CAS  Google Scholar 

  8. Bacic D, Capuano P, Baum M, et al. Activation of dopamine D1-like receptors induces acute internalization of the renal Na+/phosphate cotransporter NaPi-IIa in mouse kidney and OK cells. Am J Physiol Renal Physiol. 2005;288:F740–7.

    Article  PubMed  CAS  Google Scholar 

  9. Grider JS, Ott CE, Jackson BA. Dopamine D1 receptor-dependent inhibition of NaCl transport in the rat thick ascending limb: mechanism of action. Eur J Pharmacol. 2003;473:185–90.

    Article  PubMed  CAS  Google Scholar 

  10. Schafer JA. Abnormal regulation of ENaC: syndromes of salt retention and salt wasting by the collecting duct. Am J Physiol Renal Physiol. 2002;283:F221–35.

    PubMed  CAS  Google Scholar 

  11. • Wang X, Luo Y, Escano CS, Yang Z, et al. Upregulation of renal sodium transporters in D5 dopamine receptor-deficient mice. Hypertension. 2010; 55:1431–1437. This study demonstrates the important role of normal dopamine signaling in the kidney to regulate expression of sodium transport mechanisms at numerous nephron segments.

    Article  PubMed  CAS  Google Scholar 

  12. • Zeng C, Jose PA. Dopamine receptors: important antihypertensive counterbalance against hypertensive factors. Hypertension. 2011;57:11–7. This is an up-to-date review of the role of dopamine receptors in the regulation of blood pressure.

    Article  PubMed  CAS  Google Scholar 

  13. Zeng C, Sanada H, Watanabe H, et al. Functional genomics of the dopaminergic system in hypertension. Physiol Genom. 2004;19:233–46.

    Article  CAS  Google Scholar 

  14. Needleman P, Turk J, Jakschik BA, et al. Arachidonic acid metabolism. Ann Rev Biochem. 1986;55:69–102.

    Article  PubMed  CAS  Google Scholar 

  15. Horton R, Bughi S, Jost-Vu E, et al. Effect of dopamine on renal blood flow, prostaglandins, renin and electrolyte excretion in normal and hypertensive humans. Am J Hypertens. 1990;3:108S–11S.

    PubMed  CAS  Google Scholar 

  16. Huo TL, Grenader A, Blandina P, et al. Prostaglandin E2 production in rat IMCD cells. II. Possible role for locally formed dopamine. Am J Physiol. 1991;261:F655–62.

    PubMed  CAS  Google Scholar 

  17. Yao B, Harris RC. MZ: Intrarenal dopamine attenuates deoxycorticosterone acetate/high salt-induced blood pressure elevation in part through activation of a medullary cyclooxygenase 2 pathway. Hypertension. 2009;54:1077–83.

    Article  PubMed  CAS  Google Scholar 

  18. Harris RC. An update on cyclooxygenase-2 expression and metabolites in the kidney. Curr Opin Nephrol Hypertens. 2008;17:64–9.

    Article  PubMed  CAS  Google Scholar 

  19. Kurtz A, Della Bruna R, Pratz J, et al. Rat juxtaglomerular cells are endowed with DA-1 dopamine receptors mediating renin release. J Cardiovasc Pharm. 1988;12:658–63.

    Article  CAS  Google Scholar 

  20. Antonipillai I, Broers MI, Lang D. Evidence that specific dopamine-1 receptor activation is involved in dopamine-induced renin release. Hypertension. 1989;13:463–8.

    PubMed  CAS  Google Scholar 

  21. Yamaguchi I, Yao L, Sanada H, et al. Dopamine D1A receptors and renin release in rat juxtaglomerular cells. Hypertension. 1997;29:962–8.

    PubMed  CAS  Google Scholar 

  22. Zhang MZ, Yao B, Fang X, et al. Intrarenal dopaminergic system regulates renin expression. Hypertension. 2009;53:564–70.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang MZ, Yao B, Harris RC. Cross talk between the intrarenal dopaminergic and cyclooxygenase-2 systems. Am J Physiol Renal Physiol. 2005;288:F840–5.

    Article  PubMed  CAS  Google Scholar 

  24. Chen CJ, Apparsundaram S, Lokhandwala MF. Intrarenally produced angiotensin II opposes the natriuretic action of the dopamine-1 receptor agonist fenoldopam in rats. J Pharmacol Exp Ther. 1991;256:486–91.

    PubMed  CAS  Google Scholar 

  25. Gesek FA, Schoolwerth AC. Hormone responses of proximal Na(+)-H+ exchanger in spontaneously hypertensive rats. Am J Physiol. 1991;261:F526–36.

    PubMed  CAS  Google Scholar 

  26. Cheng HF, Becker BN, Harris RC. Dopamine decreases expression of type-1 angiotensin II receptors in renal proximal tubule. J Clin Invest. 1996;97:2745–52.

    Article  PubMed  CAS  Google Scholar 

  27. Aperia A, Holtback U, et al. Activation/deactivation of renal Na+, K(+)-ATPase: a final common pathway for regulation of natriuresis. FASEB J. 1994;8:436–9.

    PubMed  CAS  Google Scholar 

  28. Zeng C, Liu Y, Wang Z, et al. Activation of D3 dopamine receptor decreases angiotensin II type 1 receptor expression in rat renal proximal tubule cells. Circ Res. 2006;99:494–500.

    Article  PubMed  CAS  Google Scholar 

  29. Zeng C, Yang Z, Wang Z, et al. Interaction of angiotensin II type 1 and D5 dopamine receptors in renal proximal tubule cells. Hypertension. 2005;45:804–10.

    Article  PubMed  CAS  Google Scholar 

  30. Stegbauer J, Coffman TM. New insights into angiotensin receptor actions: from blood pressure to aging. Curr Opin Nephrol Hypertens. 2011;20:84–8.

    Article  PubMed  CAS  Google Scholar 

  31. •• Zhang MZ, Yao B, Wang S, et al. Intrarenal dopamine deficiency leads to hypertension and decreased longevity in mice. J Clin Invest. 2011;121:2845–54. This paper describes a mouse model with deficiency of local renal dopamine deficiciency.

    Article  PubMed  CAS  Google Scholar 

  32. Salomone LJ, Howell NL, McGrath HE, et al. Intrarenal dopamine D1-like receptor stimulation induces natriuresis via an angiotensin type-2 receptor mechanism. Hypertension. 2007;49:155–61.

    Article  PubMed  CAS  Google Scholar 

  33. Benigni A, Corna D, Zoja C, et al. Disruption of the Ang II type 1 receptor promotes longevity in mice. J Clin Invest. 2009;119:524–30.

    Article  PubMed  CAS  Google Scholar 

  34. Yasunari K, Kohno M, Kano H, et al. Dopamine as a novel antioxidative agent for rat vascular smooth muscle cells through dopamine D(1)-like receptors. Circulation. 2000;101:2302–8.

    PubMed  CAS  Google Scholar 

  35. Yang Z, Asico LD, Yu P, et al. D5 dopamine receptor regulation of reactive oxygen species production, NADPH oxidase, and blood pressure. Am J Physiol Regul Integr Comp Physiol. 2006;290:R96–R104.

    Article  PubMed  CAS  Google Scholar 

  36. Armando I, Wang X, Villar VA, et al. Reactive oxygen species-dependent hypertension in dopamine D2 receptor-deficient mice. Hypertension. 2007;49:672–8.

    Article  PubMed  CAS  Google Scholar 

  37. Yang Z, Asico LD, Yu P, et al. D5 dopamine receptor regulation of reactive oxygen species production, NADPH oxidase, and blood pressure. Am J Physiol Regul Integr Comp Physiol. 2006;290:R96–R104.

    Article  PubMed  CAS  Google Scholar 

  38. Helkamaa T, Mannisto PT, Rauhala P, et al. Resistance to salt-induced hypertension in catechol-O-methyltransferase-gene-disrupted mice. J Hypertens. 2003;21:2365–74.

    Article  PubMed  CAS  Google Scholar 

  39. Sidhu A, Kumar U, Uh M, Patel S. Diminished expression of renal dopamine D1A receptors in the kidney inner medulla of the spontaneously hypertensive rat. J Hypertens. 1998;16:601–8.

    Article  PubMed  CAS  Google Scholar 

  40. •• Asico L, Zhang X, Jiang J, et al. lack of renal dopamine D5 receptors promotes hypertension. JASN. 2011;22:82–9. This study used kidneys transplanted from D5−/− mice into wild-type mice to demonstrate the importance of intrarenal dopaminergic signaling in blood pressure control.

    PubMed  CAS  Google Scholar 

  41. Shikuma R, Yoshimura M, Kambara S, et al. Dopaminergic modulation of salt sensitivity in patients with essential hypertension. Life Sci. 1986;38:915–21.

    Article  PubMed  CAS  Google Scholar 

  42. Jose PA, Soares-da-Silva P, Eisner GM, et al. Dopamine and G protein-coupled receptor kinase 4 in the kidney: role in blood pressure regulation. Biochim Biophys Acta. 2010;1802:1259–67.

    PubMed  CAS  Google Scholar 

  43. Zeng C, Wang D, Asico LD, et al. Aberrant D1 and D3 dopamine receptor transregulation in hypertension. Hypertension. 2004;43:654–60.

    Article  PubMed  CAS  Google Scholar 

  44. Jose PA, Eisner GM, Felder RA. Dopaminergic defect in hypertension. Pediatr Nephrol. 1993;7:859–64.

    Article  PubMed  CAS  Google Scholar 

  45. Felder RA, Sanada H, Xu J, et al. G protein-coupled receptor kinase 4 gene variants in human essential hypertension. Proc Natl Acad Sci USA. 2002;99:3872–7.

    Article  PubMed  CAS  Google Scholar 

  46. Premont RT, Macrae AD, Aparicio SA, et al. The GRK4 subfamily of G protein-coupled receptor kinases. Alternative splicing, gene organization, and sequence conservation. J Biol Chem. 1999;274:29381–9.

    Article  PubMed  CAS  Google Scholar 

  47. Nishi A, Eklof AC, Bertorello AM, et al. Dopamine regulation of renal Na+, K(+)-ATPase activity is lacking in Dahl salt-sensitive rats. Hypertension. 1993;21:767–71.

    PubMed  CAS  Google Scholar 

  48. Hussain T, Lokhandwala MF. Renal dopamine DA1 receptor coupling with G(S) and G(q/11) proteins in spontaneously hypertensive rats. Am J Physiol Renal. 1997;272:F339–46.

    CAS  Google Scholar 

  49. Debska-Slizien A, Ho P, Drangova R, et al. Endogenous dopamine regulates phosphate reabsorption but not NaK-ATPase in spontaneously hypertensive rat kidneys. JASN. 1994;5:1125–32.

    PubMed  CAS  Google Scholar 

  50. Sanada H, Jose PA, Hazen-Martin D, et al. Dopamine-1 receptor coupling defect in renal proximal tubule cells in hypertension. Hypertension. 1999;33:1036–42.

    PubMed  CAS  Google Scholar 

  51. Gildea JJ, Shah I, Weiss R, et al. HK-2 human renal proximal tubule cells as a model for G protein-coupled receptor kinase type 4-mediated dopamine 1 receptor uncoupling. Hypertension. 2010;56:505–11.

    Article  PubMed  CAS  Google Scholar 

  52. Villar VA, Jones JE, Armando I, et al. G protein-coupled receptor kinase 4 (GRK4) regulates the phosphorylation and function of the dopamine D3 receptor, J. Biol Chem. 2009;284:21425–34.

    Article  CAS  Google Scholar 

  53. Sanada H, Yatabe J, Midorikawa S, et al. Amelioration of genetic hypertension by suppression of renal G protein-coupled receptor kinase type 4 expression. Hypertension. 2006;47:1131–9.

    Article  PubMed  CAS  Google Scholar 

  54. Allayee H, de Bruin TW, Michelle Dominguez K, et al. Genome scan for blood pressure in Dutch dyslipidemic families reveals linkage to a locus on chromosome 4p. Hypertension. 2001;38:773–8.

    Article  PubMed  CAS  Google Scholar 

  55. Chen W, Li S, Srinivasan SR, et al. Autosomal genome scan for loci linked to blood pressure levels and trends since childhood: the Bogalusa Heart Study. Hypertension. 2005;45:954–9.

    Article  PubMed  CAS  Google Scholar 

  56. Lohmueller KE, Wong LJ, Mauney MM, et al. Patterns of genetic variation in the hypertension candidate gene GRK4: ethnic variation and haplotype structure. Ann Hum Genet. 2006;70:27–41.

    Article  PubMed  CAS  Google Scholar 

  57. Bengra C, Mifflin TE, Khripin Y, et al. Genotyping of essential hypertension single-nucleotide polymorphisms by a homogeneous PCR method with universal energy transfer primers. Clin Chem. 2002;48:2131–40.

    PubMed  CAS  Google Scholar 

  58. Speirs HJ, Katyk K, Kumar NN, et al. Association of G-protein-coupled receptor kinase 4 haplotypes, but not HSD3B1 or PTP1B polymorphisms, with essential hypertension. J Hypertens. 2004;22:931–6.

    Article  PubMed  CAS  Google Scholar 

  59. Zhu H, Lu Y, Wang X, et al. The G protein-coupled receptor kinase 4 gene affects blood pressure in young normotensive twins. Am J Hypertens. 2006;19:61–6.

    Article  PubMed  CAS  Google Scholar 

  60. Sanada H, Yatabe J, Midorikawa S, et al. Single-nucleotide polymorphisms for diagnosis of salt-sensitive hypertension. Clin Chem. 2006;52:352–60.

    Article  PubMed  CAS  Google Scholar 

  61. Williams SM, Ritchie MD, Phillips 3rd JA, et al. Multilocus analysis of hypertension: a hierarchical approach. Hum Hered. 2004;57:28–38.

    Article  PubMed  Google Scholar 

  62. Bhatnagar V, O’Connor DT, Brophy VH, et al. G-protein-coupled receptor kinase 4 polymorphisms and blood pressure response to metoprolol among African Americans: sex-specificity and interactions. Am J Hypertens. 2009;22:332–8.

    Article  PubMed  CAS  Google Scholar 

  63. Martinez Cantarin MP, Ertel A, Deloach S, et al. Variants in genes involved in functional pathways associated with hypertension in African Americans. Clin Transl Sci. 2010;3:279–86.

    Article  PubMed  Google Scholar 

  64. Rana BK, Insel PA, Payne SH, et al. Population-based sample reveals gene-gender interactions in blood pressure in White Americans. Hypertension. 2007;49:96–106.

    Article  PubMed  CAS  Google Scholar 

  65. Staessen JA, Kuznetsova T, Zhang H, et al. Blood pressure and renal sodium handling in relation to genetic variation in the DRD1 promoter and GRK4. Hypertension. 2008;51:1643–50.

    Article  PubMed  CAS  Google Scholar 

  66. Harrison M, Maresso K, Broeckel U. Genetic determinants of hypertension: an update. Curr Hypertens Rep. 2008;10:488–95.

    Article  PubMed  CAS  Google Scholar 

  67. Newton-Cheh C, Johnson T, Gateva V, et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41:666–76.

    Article  PubMed  CAS  Google Scholar 

  68. Levy D, Ehret GB, Rice K, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41:677–87.

    Article  PubMed  CAS  Google Scholar 

  69. Adeyemo A, Gerry N, Chen G, et al. A genome-wide association study of hypertension and blood pressure in African Americans. PLoS Genetics. 2009;5:e1000564.

    Article  PubMed  Google Scholar 

  70. Wang Y, O’Connell JR, McArdle PF, et al. Whole-genome association study identifies STK39 as a hypertension susceptibility gene. Proc Natl Acad Sci USA. 2009;106:226–31.

    Article  PubMed  CAS  Google Scholar 

  71. Cho YS, Go MJ, Kim YJ, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet. 2009;41:527–34.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

These studies were supported in part by grants from the National Institutes of Health (DK62794, DK51265) and funds from the Veterans Administration.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond C. Harris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, R.C., Zhang, MZ. Dopamine, the Kidney, and Hypertension. Curr Hypertens Rep 14, 138–143 (2012). https://doi.org/10.1007/s11906-012-0253-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-012-0253-z

Keywords

Navigation