Skip to main content
Log in

Genetic determinants of hypertension: An update

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Hypertension represents a global public health burden. In addition to the rarer Mendelian forms of hypertension, classic genetic studies have documented a significant heritable component to the most common form, essential hypertension (EH). Extensive efforts are under way to elucidate the genetic basis of this disease. Recently, a new form of Mendelian hypertension has been identified, pharmacogenetic association studies in hypertensive patients have identified novel gene-by-drug interactions, and the first genome-wide association studies of EH have been published. New findings in consomic and congenic rat models also offer new clues to the genetic architecture of this complex phenotype. In this review, the authors summarize and evaluate the most recent findings related to hypertension gene identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Hajjar I, Kotchen TA: Trends in prevalence, awareness, treatment, and control of hypertension in the United States, 1988–2000 [see comment]. JAMA 2003, 290:199–206.

    Article  PubMed  Google Scholar 

  2. Kearney PM, Whelton M, Reynolds K, et al.: Worldwide prevalence of hypertension: a systematic review [see comment]. J Hypertens 2004, 22:11–19.

    Article  PubMed  CAS  Google Scholar 

  3. Kannel WB: Elevated systolic blood pressure as a cardiovascular risk factor. Am J Cardiol 2000, 85:251–255.

    Article  PubMed  CAS  Google Scholar 

  4. Mosterd A, D’Agostino RB, Silbershatz H, et al.: Trends in the prevalence of hypertension, antihypertensive therapy, and left ventricular hypertrophy from 1950 to 1989 [see comment]. N Engl J Med 1999, 340:1221–1227.

    Article  PubMed  CAS  Google Scholar 

  5. Abney M, McPeek MS, Ober C: Broad and narrow heritabilities of quantitative traits in a founder population. Am J Hum Genet 2001, 68:1302–1307.

    Article  PubMed  CAS  Google Scholar 

  6. Gu C, Borecki I, Gagnon J, et al.: Familial resemblance for resting blood pressure with particular reference to racial differences: preliminary analyses from the HERITAGE Family Study. Hum Biol 1998, 70:77–90.

    PubMed  CAS  Google Scholar 

  7. Jee SH, Suh I, Won SY, et al.: Familial correlation and heritability for cardiovascular risk factors. Yonsei Med J 2002, 43:160–164.

    PubMed  Google Scholar 

  8. Knuiman MW, Divitini ML, Welborn TA, et al.: Familial correlations, cohabitation effects, and heritability for cardiovascular risk factors. Ann Epidemiol 1996, 6:188–194.

    Article  PubMed  CAS  Google Scholar 

  9. Hansson JH, Nelson-Williams C, Suzuki H, et al.: Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome [see comment]. Nat Genet 1995, 11:76–82.

    Article  PubMed  CAS  Google Scholar 

  10. Hansson JH, Schild L, Lu Y, et al.: A de novo missense mutation of the beta subunit of the epithelial sodium channel causes hypertension and Liddle syndrome, identifying a proline-rich segment critical for regulation of channel activity. Proc Natl Acad Sci U S A 1995, 92:11495–11499.

    Article  PubMed  CAS  Google Scholar 

  11. Lifton RP, Dluhy RG, Powers M, et al.: A chimaeric 11 beta-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 1992, 355:262–265.

    Article  PubMed  CAS  Google Scholar 

  12. Mune T, Rogerson FM, Nikkila H, et al.: Human hypertension caused by mutations in the kidney isozyme of 11 beta-hydroxysteroid dehydrogenase. Nat Genet 1995, 10:394–399.

    Article  PubMed  CAS  Google Scholar 

  13. Shimkets RA, Warnock DG, Bositis CM, et al.: Liddle’s syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell 1994, 79:407–414.

    Article  PubMed  CAS  Google Scholar 

  14. Tamura H, Schild L, Enomoto N, et al.: Liddle disease caused by a missense mutation of beta subunit of the epithelial sodium channel gene. J Clin Invest 1996, 97:1780–1784.

    Article  PubMed  CAS  Google Scholar 

  15. Lifton RP, Dluhy RG, Powers M, et al.: Hereditary hypertension caused by chimaeric gene duplications and ectopic expression of aldosterone synthase. Nat Genet 1992, 2:66–74.

    Article  PubMed  CAS  Google Scholar 

  16. Geller DS, Zhang JJ, Wisgerhof MV, et al.: A novel form of human Mendelian hypertension featuring non-glucocorticoid remediable aldosteronism. J Clin Endocrinol Metab 2008, 93:3117–3123.

    Article  PubMed  CAS  Google Scholar 

  17. Kato N, Julier C: Linkage mapping for hypertension susceptibility genes. Curr Hypertens Rep 1999, 1:15–24.

    Article  PubMed  CAS  Google Scholar 

  18. Tobin MD, Tomaszewski M, Braund PS, et al.: Common variants in genes underlying monogenic hypertension and hypotension and blood pressure in the general population. Hypertension 2008, 51:1658–1664.

    Article  PubMed  CAS  Google Scholar 

  19. Cheung VG, Spielman RS, Ewens KG, et al.: Mapping determinants of human gene expression by regional and genome-wide association. Nature 2005, 437:1365–1369.

    Article  PubMed  CAS  Google Scholar 

  20. Kohara K, Tabara Y, Nakura J, et al.: Identification of hypertension-susceptibility genes and pathways by a systemic multiple candidate gene approach: the millennium genome project for hypertension. Hypertens Res 2008, 31:203–212.

    Article  PubMed  CAS  Google Scholar 

  21. Lynch AI, Boerwinkle E, Davis BR, et al.: Pharmacogenetic association of the NPPA T2238C genetic variant with cardiovascular disease outcomes in patients with hypertension. JAMA 2008, 299:296–307.

    Article  PubMed  CAS  Google Scholar 

  22. Bhatnagar V, O’Connor DT, Schork NJ, et al.: Angiotensin-converting enzyme gene polymorphism predicts the time-course of blood pressure response to angiotensin converting enzyme inhibition in the AASK trial. J Hypertens 2007, 25:2082–2092.

    PubMed  CAS  Google Scholar 

  23. Fan X, Wang Y, Sun K, et al.: Polymorphisms of ACE2 gene are associated with essential hypertension and antihypertensive effects of Captopril in women. Clin Pharmacol Ther 2007, 82:187–196.

    Article  PubMed  CAS  Google Scholar 

  24. Kardia SL, Sun YV, Hamon SC, et al.: Interactions between the adducin 2 gene and antihypertensive drug therapies in determining blood pressure in people with hypertension. BMC Med Gen 2007, 8:61.

    Article  CAS  Google Scholar 

  25. Yatsu K, Mizuki N, Hirawa N, et al.: High-resolution mapping for essential hypertension using microsatellite markers. Hypertension 2007, 49:446–452.

    Article  PubMed  CAS  Google Scholar 

  26. Wellcome Trust Case-Control Consortium: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007, 447:661–678.

    Article  CAS  Google Scholar 

  27. Ehret GB, Morrison AC, O’Connor AA, et al.: Replication of the Wellcome Trust genome-wide association study of essential hypertension: the Family Blood Pressure Program. Eur J Hum Genet 2008 (Epub ahead of print).

  28. Levy D, Larson MG, Benjamin EJ, et al.: Framingham Heart Study 100K Project: genome-wide associations for blood pressure and arterial stiffness. BMC Med Genet 2007, 8(Suppl 1):S3.

    Article  PubMed  CAS  Google Scholar 

  29. Dahl LK, Heine M, Tassinari L: Role of genetic factors in susceptibility to experimental hypertension due to chronic excess salt ingestion. Nature 1962, 194:480–482.

    Article  PubMed  CAS  Google Scholar 

  30. Okamoto K, Tabei R, Fukushima M, et al.: Further observations of the development of a strain of spontaneously hypertensive rats. Jpn Circ J 1966, 30:703–716.

    PubMed  CAS  Google Scholar 

  31. Rapp JP: Genetic analysis of inherited hypertension in the rat. Physiol Rev 2000, 80:135–172.

    PubMed  CAS  Google Scholar 

  32. McBride MW, Graham D, Delles C, et al.: Functional genomics in hypertension. Curr Opin Nephrol Hypertens 2006, 15:145–151.

    PubMed  CAS  Google Scholar 

  33. Kwitek AE, Gullings-Handley J, Yu J, et al.: High-density rat radiation hybrid maps containing over 24,000 SSLPs, genes, and ESTs provide a direct link to the rat genome sequence. Genome Res 2004, 14:750–757.

    Article  PubMed  CAS  Google Scholar 

  34. Steen RG, Kwitek-Black AE, Glenn C, et al.: A high-density integrated genetic linkage and radiation hybrid map of the laboratory rat. Genome Res 1999, 9:AP1–AP8, insert.

    PubMed  CAS  Google Scholar 

  35. Lee SJ, Liu J, Qi N, et al.: Use of a panel of congenic strains to evaluate differentially expressed genes as candidate genes for blood pressure quantitative trait loci. Hypertens Res 2003, 26:75–87.

    Article  PubMed  CAS  Google Scholar 

  36. Cowley AW Jr, Liang M, Roman RJ, et al.: Consomic rat model systems for physiological genomics. Acta Physiol Scand 2004, 181:585–592.

    Article  PubMed  CAS  Google Scholar 

  37. Moreno C, Kaldunski ML, Wang T, et al.: Multiple blood pressure loci on rat chromosome 13 attenuate development of hypertension in the Dahl S hypertensive rat. Physiol Genomics 2007, 31:228–235.

    Article  PubMed  CAS  Google Scholar 

  38. Cowley AW Jr, Roman RJ, Kaldunski ML, et al.: Brown Norway chromosome 13 confers protection from high salt to consomic Dahl S rat. Hypertension 2001, 37(2 Part 2):456–461.

    Google Scholar 

  39. Cowley AW Jr: The genetic dissection of essential hypertension. Nat Rev Gen 2006, 7:829–840.

    Article  CAS  Google Scholar 

  40. Clemitson JR, Dixon RJ, Haines S, et al.: Genetic dissection of a blood pressure quantitative trait locus on rat chromosome 1 and gene expression analysis identifies SPON1 as a novel candidate hypertension gene. Circ Res 2007, 100:992–999.

    Article  PubMed  CAS  Google Scholar 

  41. Graham D, McBride MW, Gaasenbeek M, et al.: Candidate genes that determine response to salt in the stroke-prone spontaneously hypertensive rat: congenic analysis. Hypertension 2007, 50:1134–1141.

    Article  PubMed  CAS  Google Scholar 

  42. Lee NH, Haas BJ, Letwin NE, et al.: Cross-talk of expression quantitative trait loci within 2 interacting blood pressure quantitative trait loci. Hypertension 2007, 50:1126–1133.

    Article  PubMed  CAS  Google Scholar 

  43. Angeli F, Verdecchia P, Gattobigio R, et al.: White-coat hypertension in adults. Blood Press Monit 2005, 10:301–305.

    Article  PubMed  Google Scholar 

  44. Papadopoulos DP, Makris TK: Masked hypertension definition, impact, outcomes: a critical review. J Clin Hypertens (Greenwich) 2007, 9:956–963.

    Article  Google Scholar 

  45. Verdecchia P, Angeli F, Gattobigio R, et al.: The clinical significance of white-coat and masked hypertension. Blood Press Monit 2007, 12:387–389.

    Article  PubMed  Google Scholar 

  46. Wheeler DA, Srinivasan M, Egholm M, et al.: The complete genome of an individual by massively parallel DNA sequencing. Nature 2008, 452:872–876.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Broeckel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrison, M., Maresso, K. & Broeckel, U. Genetic determinants of hypertension: An update. Current Science Inc 10, 488–495 (2008). https://doi.org/10.1007/s11906-008-0091-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-008-0091-1

Keywords

Navigation