Skip to main content
Log in

The role of peroxisome proliferator-activated receptor γ in blood pressure regulation

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Peroxisome proliferator-activated receptor-γ (PPARγ) is a member of the nuclear hormone receptor superfamily. It is expressed in adipocytes, immune cells, and cardiovascular cells that include cardiomyocytes, endothelial cells, and smooth muscle cells. PPARγ plays a role in regulating cellular anti-inflammatory responses and is a mediator of insulin sensitization induced by thiazolidinediones, which also can reduce elevated blood pressure both clinically and experimentally. As a result, research regarding the role of PPARγ in blood pressure homeostasis is ongoing. Recent studies have demonstrated that increases or decreases in blood pressure phenotype may be PPARγ-dependent and involve a number of different signaling pathways. Furthermore, studies using PPARγ mutant transgenic and knockout animal models provide further evidence regarding a role for endothelial-cell and vascular smooth muscle-cell PPARγ in blood pressure regulation. However, there is a need for further research regarding PPARγ- mediated mechanisms involved in maintaining physiologic control of blood pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Kliewer SA, Umesono K, Noonan DJ, et al.: Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 1992, 358:771–774.

    Article  PubMed  CAS  Google Scholar 

  2. Willson TM, Lambert MH, Kliewer SA: Peroxisome proliferator-activated receptor gamma and metabolic disease. Annu Rev Biochem 2001, 70:341–367.

    Article  PubMed  CAS  Google Scholar 

  3. Willson TM, Cobb JE, Cowan DJ, et al.: The structure-activity relationship between peroxisome proliferator-activated receptor gamma agonism and the antihyperglycemic activity of thiazolidinediones. J Med Chem 1996, 39:665–668.

    Article  PubMed  CAS  Google Scholar 

  4. Barroso I, Gurnell M, Crowley VE, et al.: Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 1999, 402:880–883.

    PubMed  CAS  Google Scholar 

  5. Diep QN, Schiffrin EL: Increased expression of peroxisome proliferator-activated receptor-alpha and -gamma in blood vessels of spontaneously hypertensive rats. Hypertension 2001, 38:249–254.

    PubMed  CAS  Google Scholar 

  6. Xiong C, Mou Y, Zhang J, et al.: Impaired expression of PPAR gamma protein contributes to the exaggerated growth of vascular smooth muscle cells in spontaneously hypertensive rats. Life Sci 2005, 77:3037–3048.

    Article  PubMed  CAS  Google Scholar 

  7. Lehmann JM, Moore LB, Smith-Oliver TA, et al.: An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem 1995, 270:12953–12956.

    Article  PubMed  CAS  Google Scholar 

  8. Vamecq J, Latruffe N: Medical significance of peroxisome proliferator-activated receptors. Lancet 1999, 354:141–148.

    Article  PubMed  CAS  Google Scholar 

  9. Gitlin N, Julie NL, Spurr CL, et al.: Two cases of severe clinical and histologic hepatotoxicity associated with troglitazone. Ann Intern Med 1998, 129:36–38.

    PubMed  CAS  Google Scholar 

  10. Dubey RK, Zhang HY, Reddy SR, et al.: Pioglitazone attenuates hypertension and inhibits growth of renal arteriolar smooth muscle in rats. Am J Physiol Regul Integr Comp Physiol 1993, 265:R726–R732.

    CAS  Google Scholar 

  11. Buchanan TA, Meehan WP, Jeng YY, et al.: Blood pressure lowering by pioglitazone. Evidence for a direct vascular effect. J Clin Invest 1995, 96:354–360.

    Article  PubMed  CAS  Google Scholar 

  12. Nolan JJ, Ludvik B, Beerdsen P, et al.: Improvement in glucose tolerance and insulin resistance in obese subjects treated with troglitazone. N Engl J Med 1994, 331:1188–1193.

    Article  PubMed  CAS  Google Scholar 

  13. Iglarz M, Touyz RM, Amiri F, et al.: Effect of peroxisome proliferator-activated receptor-alpha and -gamma activators on vascular remodeling in endothelin-dependent hypertension. Arterioscler Thromb Vasc Biol 2003, 23:45–51.

    Article  PubMed  CAS  Google Scholar 

  14. Ryan MJ, Didion SP, Mathur S, et al.: PPAR(gamma) agonist rosiglitazone improves vascular function and lowers blood pressure in hypertensive transgenic mice. Hypertension 2004, 43:661–666.

    Article  PubMed  CAS  Google Scholar 

  15. Kawasaki J, Hirano K, Nishimura J, et al.: Mechanisms of vasorelaxation induced by troglitazone, a novel antidiabetic drug, in the porcine coronary artery. Circulation 1998, 98:2446–2452.

    PubMed  CAS  Google Scholar 

  16. Sarafidis PA, Lasaridis AN: Actions of peroxisome proliferator-activated receptors-gamma agonists explaining a possible blood pressure-lowering effect. Am J Hypertens 2006, 19:646–653.

    Article  PubMed  CAS  Google Scholar 

  17. St John Sutton M, Rendell M, Dandona P, et al.: A comparison of the effects of rosiglitazone and glyburide on cardiovascular function and glycemic control in patients with type 2 diabetes. Diabetes Care 2002, 25:2058–2064.

    Article  PubMed  Google Scholar 

  18. Dormandy JA, Charbonnel B, Eckland DJ, et al.: Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 2005, 366:1279–1289.

    Article  PubMed  CAS  Google Scholar 

  19. Nesto RW, Bell D, Bonow RO, et al.: Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. October 7, 2003. Circulation 2003, 108:2941–2948.

    Article  PubMed  Google Scholar 

  20. de Gasparo M, Catt KJ, Inagami T, et al.: International Union of Pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 2000, 52:415–472.

    PubMed  Google Scholar 

  21. Benson SC, Pershadsingh HA, Ho CI, et al.: Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARgamma-modulating activity. Hypertension 2004, 43:993–1002.

    Article  PubMed  CAS  Google Scholar 

  22. Schupp M, Janke J, Clasen R, et al.: Angiotensin type 1 receptor blockers induce peroxisome proliferator-activated receptor-gamma activity. Circulation 2004, 109:2054–2057.

    Article  PubMed  CAS  Google Scholar 

  23. Sugawara A, Takeuchi K, Uruno A, et al.: Transcriptional suppression of type 1 angiotensin II receptor gene expression by peroxisome proliferator-activated receptor-gamma in vascular smooth muscle cells. Endocrinology 2001, 142:3125–3134.

    Article  PubMed  CAS  Google Scholar 

  24. Imayama I, Ichiki T, Inanaga K, et al.: Telmisartan down-regulates angiotensin II type 1 receptor through activation of peroxisome proliferator-activated receptor gamma. Cardiovasc Res 2006, 72:184–190.

    Article  PubMed  CAS  Google Scholar 

  25. Miura Y, Yamamoto N, Tsunekawa S, et al.: Replacement of valsartan and candesartan by telmisartan in hypertensive patients with type 2 diabetes: metabolic and antiatherogenic consequences. Diabetes Care 2005, 28:757–758.

    Article  PubMed  Google Scholar 

  26. Yusuf S, Teo KK, Pogue J, et al.: Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med 2008, 358:1547–1559.

    Article  PubMed  CAS  Google Scholar 

  27. Yusuf S, Teo K, Anderson C, et al.: Effects of the angiotensin-receptor blocker telmisartan on cardiovascular events in high-risk patients intolerant to angiotensin-converting enzyme inhibitors: a randomised controlled trial. Lancet 2008, 372:1174–1183.

    Article  PubMed  CAS  Google Scholar 

  28. Schopfer FJ, Lin Y, Baker PR, et al.: Nitrolinoleic acid: an endogenous peroxisome proliferator-activated receptor gamma ligand. Proc Natl Acad Sci U S A 2005, 102:2340–2345.

    Article  PubMed  CAS  Google Scholar 

  29. Hegele RA, Cao H, Frankowski C, et al.: PPARG F388L, a transactivation-deficient mutant, in familial partial lipodystrophy. Diabetes 2002, 51:3586–3590.

    Article  PubMed  CAS  Google Scholar 

  30. Agarwal AK, Garg A: A novel heterozygous mutation in peroxisome proliferator-activated receptor-gamma gene in a patient with familial partial lipodystrophy. J Clin Endocrinol Metab 2002, 87:408–411.

    Article  PubMed  CAS  Google Scholar 

  31. Ostgren CJ, Lindblad U, Melander O, et al.: Peroxisome proliferator-activated receptor-gammaPro12Ala polymorphism and the association with blood pressure in type 2 diabetes: Skaraborg Hypertension and Diabetes Project. J Hypertens 2003, 21:1657–1662.

    Article  PubMed  Google Scholar 

  32. Deeb SS, Fajas L, Nemoto M, et al.: A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet 1998, 20:284–287.

    Article  PubMed  CAS  Google Scholar 

  33. Tsai YS, Kim HJ, Takahashi N, et al.: Hypertension and abnormal fat distribution but not insulin resistance in mice with P465L PPARgamma. J Clin Invest 2004, 114:240–249.

    PubMed  CAS  Google Scholar 

  34. Beyer AM, Baumbach GL, Halabi CM, et al.: Interference with PPARgamma signaling causes cerebral vascular dysfunction, hypertrophy, and remodeling. Hypertension 2008, 51:867–871.

    Article  PubMed  CAS  Google Scholar 

  35. Freedman BD, Lee EJ, Park Y, et al.: A dominant negative peroxisome proliferator-activated receptor-gamma knockin mouse exhibits features of the metabolic syndrome. J Biol Chem 2005, 280:17118–17125.

    Article  PubMed  CAS  Google Scholar 

  36. Beyer AM, de Lange WJ, Halabi CM, et al.: Endothelium-specific interference with peroxisome proliferator activated receptor gamma causes cerebral vascular dysfunction in response to a high-fat diet. Circ Res 2008, 103:654–661.

    Article  PubMed  CAS  Google Scholar 

  37. Halabi CM, Beyer AM, de Lange WJ, et al.: Interference with PPAR gamma function in smooth muscle causes vascular dysfunction and hypertension. Cell Metab 2008, 7:215–226.

    Article  PubMed  CAS  Google Scholar 

  38. Semple RK, Meirhaeghe A, Vidal-Puig AJ, et al.: A dominant negative human peroxisome proliferator-activated receptor (PPAR) alpha is a constitutive transcriptional co repressor and inhibits signaling through all PPAR isoforms. Endocrinology 2005, 146:1871–1882.

    Article  PubMed  CAS  Google Scholar 

  39. Nicol CJ, Adachi M, Akiyama TE, et al.: PPARgamma in endothelial cells influences high fat diet-induced hypertension. Am J Hypertens 2005, 18:549–556.

    Article  PubMed  CAS  Google Scholar 

  40. Kanda T, Brown JD, Orasanu G, et al.: PPARgamma in the endothelium regulates metabolic responses to high-fat diet in mice. J Clin Invest 2009, 119:110–124.

    PubMed  CAS  Google Scholar 

  41. Wang N, Yang G, Jia Z, et al.: Vascular PPARgamma controls circadian variation in blood pressure and heart rate through Bmal1. Cell Metab 2008, 8:482–491.

    Article  PubMed  CAS  Google Scholar 

  42. Wan Y, Saghatelian A, Chong LW, et al.: Maternal PPAR gamma protects nursing neonates by suppressing the production of inflammatory milk. Genes Dev 2007, 21:1895–1908.

    Article  PubMed  CAS  Google Scholar 

  43. Wan Y, Chong LW, Evans RM: PPAR-gamma regulates osteoclastogenesis in mice. Nat Med 2007, 13:1496–1503.

    Article  PubMed  CAS  Google Scholar 

  44. Duan SZ, Ivashchenko CY, Whitesall SE, et al.: Hypotension, lipodystrophy, and insulin resistance in generalized PPARgamma-deficient mice rescued from embryonic lethality. J Clin Invest 2007, 117:812–822.

    Article  PubMed  CAS  Google Scholar 

  45. Duan SZ, Ivashchenko CY, Russell MW, et al.: Cardiomyocyte- specific knockout and agonist of peroxisome proliferator-activated receptor-gamma both induce cardiac hypertrophy in mice. Circ Res 2005, 97:372–379.

    Article  PubMed  CAS  Google Scholar 

  46. Ding G, Fu M, Qin Q, et al.: Cardiac peroxisome proliferator-activated receptor gamma is essential in protecting cardiomyocytes from oxidative damage. Cardiovasc Res 2007, 76:269–279.

    Article  PubMed  CAS  Google Scholar 

  47. Zhang J, Zhong W, Cui T, et al.: Generation of an adult smooth muscle cell-targeted Cre recombinase mouse model. Arterioscler Thromb Vasc Biol 2006, 26:e23–e24.

    PubMed  Google Scholar 

  48. Chang L, Villacorta L, Zhang J, et al.: Vascular smooth muscle cell-selective peroxisome proliferator-activated receptor-gamma deletion leads to hypotension. Circulation 2009, 119:2161–2169.

    Article  PubMed  CAS  Google Scholar 

  49. Hansmann G, de Jesus Perez VA, Alastalo TP, et al.: An antiproliferative BMP-2/PPARgamma/apoE axis in human and murine SMCs and its role in pulmonary hypertension. J Clin Invest 2008, 118:1846–1857.

    Article  PubMed  CAS  Google Scholar 

  50. Curtis AM, Cheng Y, Kapoor S, et al.: Circadian variation of blood pressure and the vascular response to asynchronous stress. Proc Natl Acad Sci U S A 2007, 104:3450–3455.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Eugene Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamblin, M., Chang, L., Zhang, J. et al. The role of peroxisome proliferator-activated receptor γ in blood pressure regulation. Current Science Inc 11, 239–245 (2009). https://doi.org/10.1007/s11906-009-0041-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-009-0041-6

Keywords

Navigation