Skip to main content

PPARs and Their Emerging Role in Vascular Biology, Inflammation and Atherosclerosis

  • Chapter
  • First Online:
Diabetes and Cardiovascular Disease

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 634 Accesses

Abstract

Peroxisome proliferator-activated receptors (PPARs) are powerful, ligand-activated, steroid hormone DNA-binding receptors that determine transcriptional programs related to energy balance and related pathways. Three major isotypes exist: PPAR-γ, PPAR-α, and PPAR-β/δ. PPAR-γ is predominant in adipose tissue promoting insulin sensitivity and weight gain. Also, its presence in the renal tissue promotes water retention. In contrast, PPAR-α receptors are widely present in tissues with high oxidation capacity, stimulating energy burn and decreasing fat storage. PPAR-β/δ is evenly distributed among most tissues where it increases glucose metabolism, decreases lipid accumulation and limits inflammation. Synthetic ligands of PPAR receptors have been widely used as therapeutic agents in diabetes and dyslipidemias. Thiazolidinediones are strong activators of PPAR-γ, while ARBs are weak activators of the same receptor. Fibrates and more recently Omega-3 Fatty Acids are known to activate PPAR-α. Theoretically, PPAR synthetic agonists could have vascular benefits via lowering glucose, raising HDL and decreasing inflammation. Synthetic ligands of PPAR-γ have been shown to decrease surrogate markers of atherosclerosis and inflammation (i.e., foam cell formation, endothelin-1 or CRP levels), this must be gauged against any potential toxicity or adverse event such as weight gain and edema. PPAR-α synthetic ligands potentially limit the inflammatory cytokine induction of adhesion molecules in endothelial cells and NF-kB activation in T-lymphocytes. However, data and clinical trials supporting PPAR agonists have been subjects of controversy. Nonetheless, advancing science will continue to return to PPARs given the centrality of their involvement in metabolism, inflammation and atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kliewer SA, Lehmann JM, Willson TM. Orphan nuclear receptors: shifting endocrinology into reverse. Science. 1999;284:757–60.

    Article  CAS  PubMed  Google Scholar 

  2. Willson TM, Brown PJ, Sternbach DD, Henke BR. The PPARs: from orphan receptors to drug discovery. J Med Chem. 2000;43:527–50.

    Article  CAS  PubMed  Google Scholar 

  3. Moller DE. New drug targets for type 2 diabetes and the metabolic syndrome. Nature. 2001;414:821–7.

    Article  CAS  PubMed  Google Scholar 

  4. Plutzky J. PPARs as therapeutic targets: reverse cardiology? Science. 2003;302:406–7.

    Article  CAS  PubMed  Google Scholar 

  5. Varga T, Czimmerer Z, Nagy L. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim Biophys Acta. 2011;1812:1007–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Spiegelman BM. PPAR-gamma: adipogenic regulator and thiazolidinedione receptors. Perspect Diabetes. Thromb Haemost. 1999;82(suppl 1):8–13.

    Google Scholar 

  7. Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, et al. PPAR γ is required for the differentiation of adipose tissue in vivo and in vitro Brigham and women’s hospital. Mol Cell. 1999;4:611–7.

    Article  CAS  PubMed  Google Scholar 

  8. Belmonte N, Vernochet C, Dani C. PPAR gamma is required for placental, cardiac, and adipose tissue development. Medicine/Sciences. Diabetologia. 1993;36(11):1175.

    Google Scholar 

  9. Kubota N, Terauchi Y, Miki H, Tamemoto H, Yamauchi T, Komeda K, et al. PPARγ mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol Cell. 1999;4(4):597–609.

    Article  CAS  PubMed  Google Scholar 

  10. Schoonjans K, Auwerx J. Thiazolidinediones: an update. Lancet. 2000;355:1008–10.

    Article  CAS  PubMed  Google Scholar 

  11. Holman RR, Retnakaran R, Farmer A, Stevens R. PROactive study. Lancet. 2006;367:25–6.

    Article  CAS  PubMed  Google Scholar 

  12. Dormandy JA, Charbonnel B, Eckland DJA, Erdmann E, Massi-Benedetti M, Moules IK, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive study (PROspective pioglitAzone clinical trial in macroVascular events): a randomised controlled trial. Lancet. 2005;366(9493):1279–89.

    Article  CAS  PubMed  Google Scholar 

  13. Kernan WN, Viscoli CM, Furie KL, Young LH, Inzucchi SE, Gorman M, et al. Pioglitazone after ischemic stroke or transient ischemic attack. N Engl J Med. 2016;374(14):1321–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Young LH, Viscoli CM, Curtis JP, Inzucchi SE, Schwartz GG, Lovejoy AM, et al. Cardiac outcomes after ischemic stroke or transient ischemic attack effects of pioglitazone in patients with insulin resistance without diabetes mellitus. Circulation. 2017;135(20):1882–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Orasanu G, Plutzky J. The pathologic continuum of diabetic vascular disease. J Am Coll Cardiol. 2009;53:S35–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. He H, Yang D, Ma L, Luo Z, Ma S, Feng X, et al. Telmisartan prevents weight gain and obesity through activation of peroxisome proliferator-activated receptor-δ-dependent pathways. Hypertension. 2010;55(4):869–79.

    Article  CAS  PubMed  Google Scholar 

  17. Lebovitz HE. Thiazolidinediones: the forgotten diabetes medications. Curr Diab Rep. 2019;19:151.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ristow M, Müller-Wieland D, Pfeiffer A, Krone W, Kahn CR. Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N Engl J Med. 1998;339(14):953–9.

    Article  CAS  PubMed  Google Scholar 

  19. Barroso I, Gurnell M, Crowley VEF, Agostini M, Schwabe JW, Soos MA, et al. Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature. 1999;402(6764):880–3.

    Article  CAS  PubMed  Google Scholar 

  20. Torra IP, Gervois P, Staels B. Peroxisome proliferator-activated receptor alpha in metabolic disease, inflammation, atherosclerosis and aging. Curr Opin Lipidol. 1999;10:151–9.

    Article  CAS  Google Scholar 

  21. Grygiel-Górniak B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications—a review. Nutr J. 2014;13(1):17.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Auwerx J, Schoonjans K, Fruchart JC, Staels B. Regulation of triglyceride metabolism by PPARs: fibrates and thiazolidinediones have distinct effects. J Atheroscler Thromb. 1996;3:81–9.

    Article  CAS  PubMed  Google Scholar 

  23. Forman BM, Chen J, Evans RM. The peroxisome proliferator-activated receptors: ligands and activators. Ann N Y Acad Sci. 1996;804:266–75.

    Article  CAS  PubMed  Google Scholar 

  24. Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E, Fruchart JC. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation. 1998;98(19):2088–93.

    Article  CAS  PubMed  Google Scholar 

  25. Cattley RC, DeLuca J, Elcombe C, Fenner-Crisp P, Lake BG, Marsman DS, et al. Do peroxisome proliferating compounds pose a hepatocarcinogenic hazard to humans? Regul Toxicol Pharmacol. 1998;27(1 pt 2):47–60.

    Article  CAS  PubMed  Google Scholar 

  26. Lee SS, Pineau T, Drago J, Lee EJ, Owens JW, Kroetz DL, et al. Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol Cell Biol. 1995;15(6):3012–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Peters JM, Hennuyer N, Staels B, Fruchart JC, Fievet C, Gonzalez FJ, et al. Alterations in lipoprotein metabolism in peroxisome proliferator—activated receptor α-deficient mice. J Biol Chem. 1997;272(43):27307–12.

    Article  CAS  PubMed  Google Scholar 

  28. Rubins HB, Robins SJ, Collins D, Fye CL, Anderson JW, Elam MB, et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol. N Engl J Med. 1999;341(6):410–8.

    Article  CAS  PubMed  Google Scholar 

  29. NCT03071692. Pemafibrate to Reduce Cardiovascular OutcoMes by Reducing Triglycerides IN patiENtsWithdiabeTes (PROMINENT). Atherosclerosis. 1993;103(2):159–69. https://clinicaltrials.gov/show/NCT03071692.

  30. Pradhan AD, Paynter NP, Everett BM, Glynn RJ, Amarenco P, Elam M, et al. Rationale and design of the pemafibrate to reduce cardiovascular outcomes by reducing triglycerides in patients with diabetes (PROMINENT) study. Am Heart J. 2018;206:80–93.

    Article  CAS  PubMed  Google Scholar 

  31. Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med. 2019;380(1):11–22.

    Article  CAS  PubMed  Google Scholar 

  32. AstraZeneca. Update on phase III STRENGTH trial for Epanova in mixed dyslipidaemia. 13 Jan 2020.

    Google Scholar 

  33. EUCTR2014-001069-28-IT. A long-term outcomes study to assess STatin Residual Risk Reduction with EpaNova in HiGh Cardiovascular Risk PatienTs with Hypertriglyceridemia (STRENGTH). 2014. https://trialsearch.who.int/Trial2.aspx?TrialID=EUCTR2014-001069-28-IT.

  34. AstraZeneca. Outcomes Study to Assess STatin Residual Risk Reduction WithEpaNova in HiGh CV Risk PatienTs With Hypertriglyceridemia (STRENGTH). US National Institutes of Health. 2020.

    Google Scholar 

  35. Tan NS, Michalik L, Noy N, Yasmin R, Pacot C, Heim M, et al. Critical roles of PPARβ/δ in keratinocyte response to inflammation. Genes Dev. 2001;15(24):3263–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee CH, Chawla A, Urbiztondo N, Liao D, Boisvert WA, Evans RM. Transcriptional repression of atherogenic inflammation: modulation by PPARδ. Science. 2003;302(5644):453–7.

    Article  CAS  PubMed  Google Scholar 

  37. Plutzky J. Peroxisome proliferator-activated receptors as therapeutic targets in inflammation. J Am Coll Cardiol. 2003;42:1764–6.

    Article  PubMed  Google Scholar 

  38. Ziouzenkova O, Asatryan L, Sahady D, Orasanu G, Perrey S, Cutak B, et al. Dual roles for lipolysis and oxidation in peroxisome proliferation-activator receptor responses to electronegative low density lipoprotein. J Biol Chem. 2003;278(41):39874–81.

    Article  CAS  PubMed  Google Scholar 

  39. Ziouzenkova O, Perrey S, Asatryan L, Hwang J, MacNaul KL, Moller DE, et al. Lipolysis of triglyceride-rich lipoproteins generates PPAR ligands: evidence for an antiinflammatory role for lipoprotein lipase. Proc Natl Acad Sci U S A. 2003;100(5):2730–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hsueh WA, Jackson S, Law RE. Control of vascular cell proliferation and migration by PPAR-γ: a new approach to the macrovascular complications of diabetes. Diabetes Care. 2001;24:392–7.

    Article  CAS  PubMed  Google Scholar 

  41. Beckman J, Raji A, Plutzky J. Peroxisome proliferator activated receptor gamma and its activation in the treatment of insulin resistance and atherosclerosis: issues and opportunities. Curr Opin Cardiol. 2003;18:479–85.

    Article  PubMed  Google Scholar 

  42. Tontonoz P, Nagy L, et al. PPAR gamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell. 2002;93:241–52.

    Article  Google Scholar 

  43. Chinetti G, Lestavel S, Remaley A, Neve B, Torra I, Minnich A, et al. PPAR alpha and PPAR gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABC-1 pathway. Circulation. 2000;102(18).

    Google Scholar 

  44. Chawla A, Lee CH, Barak Y, He W, Rosenfeld J, Liao D, et al. PPARδ is a very low-density lipoprotein sensor in macrophages. Proc Natl Acad Sci U S A. 2003;100(3):1268–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Moore KJ, Rosen ED, Fitzgerald ML, Randow F, Andersson LP, Altshuler D, et al. The role of PPAR-γ in macrophage differentiation and cholesterol uptake. Nat Med. 2001;7(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  46. Liang CP, Han S, Okamoto H, Carnemolla R, Tabas I, Accili D, et al. Increased CD36 protein as a response to defective insulin signaling in macrophages. J Clin Investig. 2004;113(5):764–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature. 1998;391(6662):79–82.

    Article  CAS  PubMed  Google Scholar 

  48. Marx N, Sukhova GK, Collins T, Libby P, Plutzky J. PPARα activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation. 1999;99(24):3125–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Iglarz M, Touyz RM, Amiri F, Lavoie MF, Diep QN, Schiffrin EL. Effect of peroxisome proliferator-activated receptor-α and -γ activators on vascular remodeling in endothelin-dependent hypertension. Arterioscler Thromb Vasc Biol. 2003;23(1):45–51.

    Article  CAS  PubMed  Google Scholar 

  50. Schiffrin EL, Amiri F, Benkirane K, Iglarz M, Diep QN. Peroxisome proliferator-activated receptors: vascular and cardiac effects in hypertension. Hypertension. 2003;42:664–8.

    Article  CAS  PubMed  Google Scholar 

  51. Parulkar AA, Pendergrass ML, Granda-Ayala R, Lee TR, Fonseca VA. Nonhypoglycemic effects of thiazolidinediones. Ann Intern Med. 2001;134:61–71.

    Article  CAS  PubMed  Google Scholar 

  52. Marx N, Kehrle B, Kohlhammer K, Grüb M, Koenig W, Hombach V, et al. PPAR activators as antiinflammatory mediators in human T lymphocytes: implications for atherosclerosis and transplantation-associated arteriosclerosis. Circ Res. 2002;90(6):703–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jackson SM, Parhami F, Xi XP, Berliner JA, Hsueh WA, Law RE, et al. Peroxisome proliferator-activated receptor activators target human endothelial cells to inhibit leukocyte-endothelial cell interaction. Arterioscler Thromb Vasc Biol. 1999;19(9):2094–104.

    Article  CAS  PubMed  Google Scholar 

  54. Pasceri V, Wu HD, Willerson JT, Yeh ETH. Modulation of vascular inflammation in vitro and in vivo by peroxisome proliferator-activated receptor-γ activators. Circulation. 2000;101(3):235–8.

    Article  CAS  PubMed  Google Scholar 

  55. Marx N, Bourcier T, Sukhova GK, Libby P, Plutzky J. PPARγ activation in human endothelial cells increases plasminogen activator inhibitor type-1 expression: PPARγ as a potential mediator in vascular disease. Arterioscler Thromb Vasc Biol. 1999;19(3):546–51.

    Article  CAS  PubMed  Google Scholar 

  56. Xin X, Yang S, Kowalski J, Gerritsen ME. Peroxisome proliferator-activated receptor γ ligands are potent inhibitors of angiogenesis in vitro and in vivo. J Biol Chem. 1999;274(13):9116–21.

    Article  CAS  PubMed  Google Scholar 

  57. Ihara H, Urano T, Takada A, Loskutoff DJ. Induction of plasminogen activator inhibitor-1 (PAI-1) gene expression in adipocytes by thiazolidinediones. FASEB J. 2001;15(7):1233–5.

    Article  CAS  PubMed  Google Scholar 

  58. Kato K, Satoh H, Endo Y, Yamada D, Midorikawa S, Sato W, et al. Thiazolidinediones down-regulate plasminogen activator inhibitor type 1 expression in human vascular endothelial cells: a possible role for PPARγ in endothelial function. Biochem Biophys Res Commun. 1999;258(2):431–5.

    Article  CAS  PubMed  Google Scholar 

  59. Marx N, Schönbeck U, Lazar MA, Libby P, Plutzky J. Peroxisome proliferator-activated receptor gamma activators inhibit gene expression and migration in human vascular smooth muscle cells. Circ Res. 1998;83(11):1097–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Haffner SM, Greenberg AS, Weston WM, Chen H, Williams K, Freed MI. Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation. 2002;106(6).

    Google Scholar 

  61. Marx N, Froehlich J, Siam L, Ittner J, Wierse G, Schmidt A, et al. Antidiabetic PPARγ-activator rosiglitazone reduces MMP-9 serum levels in type 2 diabetic patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 2003;23(2):283–8.

    Article  CAS  PubMed  Google Scholar 

  62. Minamikawa J, Tanaka S, Yamauchi M, Inoue D, Koshiyama H. Potent inhibitory effect of troglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab. 1998;83(5):1818–20.

    Article  CAS  PubMed  Google Scholar 

  63. Koshiyama H, Shimono D, Kuwamura N, Minamikawa J, Nakamura Y. RAPID COMMUNICATION: inhibitory effect of pioglitazone on carotid Arterial Wall thickness in type 2 diabetes. J Clin Endocrinol Metabol. 2001;86(7):3452–6.

    Article  CAS  Google Scholar 

  64. Buchanan TA, Xiang AH, Peters RK, Kjos SL, Marroquin A, Goico J, et al. Preservation of pancreatic beta-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk Hispanic women. Diabetes. 2002;51(9):2796–803.

    Article  CAS  PubMed  Google Scholar 

  65. Sethi S, Ziouzenkova O, Ni H, Wagner DD, Plutzky J, Mayadas TN. Oxidized omega-3 fatty acids in fish oil inhibit leukocyte-endothelial interactions through activation of PPARα. Blood. 2002;100(4):1340–6.

    Article  CAS  PubMed  Google Scholar 

  66. Marx N, Mackman N, Schönbeck U, Yilmaz N, Hombach V, Libby P, et al. PPARα activators inhibit tissue factor expression and activity in human monocytes. Circulation. 2001;103(2):213–9.

    Article  CAS  PubMed  Google Scholar 

  67. Neve BP, Corseaux D, Chinetti G, Zawadzki C, Fruchart JC, Duriez P, et al. PPARα agonists inhibit tissue factor expression in human monocytes and macrophages. Circulation. 2001;103(2):207–12.

    Article  CAS  PubMed  Google Scholar 

  68. Staels B, Koenig W, Habib A, Merval R, Lebret M, Torra IP, et al. Activation of human aortic smooth-muscle cells is inhibited by PPARα but not by PPARγ activators. Nature. 1998;393(6687):790–3.

    Article  CAS  PubMed  Google Scholar 

  69. Kleemann R, Gervois PP, Verschuren L, Staels B, Princen HMG, Kooistra T. Fibrates down-regulate IL-1-stimulated C-reactive protein gene expression in hepatocytes by reducing nuclear p50-NFκB-C/EBP-β complex formation. Blood. 2003;101(2):545–51.

    Article  CAS  PubMed  Google Scholar 

  70. Kleemann R, Verschuren L, de Rooij BJ, Lindeman J, de Maat MM, Szalai AJ, et al. Evidence for anti-inflammatory activity of statins and PPARα activators in human C-reactive protein transgenic mice in vivo and in cultured human hepatocytes in vitro. Blood. 2004;103(11):4188–94.

    Article  CAS  PubMed  Google Scholar 

  71. Nagy L, Tontonoz P, Alvarez JGA, Chen H, Evans RM. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARγ. Cell. 1998;93(2):229–40.

    Article  CAS  PubMed  Google Scholar 

  72. Kliewer SA, Lenhard JM, Willson TM, Patel I, Morris DC, Lehmann JM. A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell. 1995;83(5):813–9.

    Article  CAS  PubMed  Google Scholar 

  73. Rossi A, Kapahi P, Natoli G, Takahashi T, Chen Y, Karin M, et al. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IκB kinase. Nature. 2000;403(6765):103–8.

    Article  CAS  PubMed  Google Scholar 

  74. Bell-Parikh LC, Ide T, Lawson JA, McNamara P, Reilly M, FitzGerald GA. Biosynthesis of 15-deoxy-Δ12,14-PGJ2 and the ligation of PPARγ. J Clin Investig. 2003;112(6):945–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Straus DS, Pascual G, Li M, Welch JS, Ricote M, Hsiang CH, et al. 15-Deoxy-Δ12,14-prostaglandin J2 inhibits multiple steps in the NF-κB signaling pathway. Proc Natl Acad Sci U S A. 2000;97(9):4844–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Huang JT, Welch JS, Ricote M, Binder CJ, Willson TM, Kelly C, et al. Interleukin-4-dependent production of PPAR-γ ligands in macrophages by 12/15-lipoxygenase. Nature. 1999;400(6742):378–82.

    Article  CAS  PubMed  Google Scholar 

  77. Delerive P, Furman C, Teissier E, Fruchart JC, Duriez P, Staels B. Oxidized phospholipids activate PPARα in a phospholipase A2-dependent manner. FEBS Lett. 2000;471(1):34–8.

    Article  CAS  PubMed  Google Scholar 

  78. Delerive P, Furman C, Teissier E, Fruchart JC, Duriez P, Staels B. Oxidized phospholipids activate PPARα in a phospholipase A2-dependent manner. Atherosclerosis. 2000;151(1).

    Google Scholar 

  79. Devchand PR, Keller H, Peters JM, Vazquez M, Gonzalez FJ, Wahli W. The PPARα-leukotriene B4 pathway to inflammation control. Nature. 1996;384(6604):39–43.

    Article  CAS  PubMed  Google Scholar 

  80. Keller H, Dreyer C, Medin J, Mahfoudi A, Ozato K, Wahli W. Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers. Proc Natl Acad Sci U S A. 1993;90(6):2160–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Forman BM, Tontonoz P, Chen J, et al. 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell. 2002;83:803–12.

    Article  Google Scholar 

  82. Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS, et al. Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ. Proc Natl Acad Sci U S A. 1997;94(9):4318–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. McIntyre TM, Pontsler AV, Silva AR, St. Hilaire A, Xu Y, Hinshaw JC, et al. From the cover: identification of an intracellular receptor for lysophosphatidic acid (LPA): LPA is a transcellular PPARgamma agonist. Proc Natl Acad Sci U S A. 2003;100(1):131–6.

    Article  CAS  PubMed  Google Scholar 

  84. Fu J, Gaetani S, Oveisi F, lo Verme J, Serrano A, de Fonseca FR, et al. Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-α. Nature. 2003;425(6953):90–3.

    Article  CAS  PubMed  Google Scholar 

  85. Welch JS, Ricote M, Akiyama TE, Gonzalez FJ, Glass CK. PPARγ and PPARδ negatively regulate specific subsets of lipopolysaccharide and IFN-γ target genes in macrophages. Proc Natl Acad Sci U S A. 2003;100(11):6712–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lee CH, Olson P, Evans RM. Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology. 2003;144:2201–7.

    Article  CAS  PubMed  Google Scholar 

  87. Shulman GI. Cellular mechanisms of insulin resistance. J Clin Investig. 2000;106:171–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kim JK, Fillmore JJ, Chen Y, Yu C, Moore IK, Pypaert M, et al. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proc Natl Acad Sci U S A. 2001;98(13):7522–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ferreira LDMCB, Pulawa LK, Jensen DR, Eckel RH. Overexpressing human lipoprotein lipase in mouse skeletal muscle is associated with insulin resistance. Diabetes. 2001;50(5):1064–8.

    Article  CAS  PubMed  Google Scholar 

  90. Jump DB. The biochemistry of n-3 polyunsaturated fatty acids. J Biol Chem. 2002;277:8755–8.

    Article  CAS  PubMed  Google Scholar 

  91. Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation. 2002;106:2747–57.

    Article  PubMed  Google Scholar 

  92. Hegarty BD, Furler SM, Ye J, Cooney GJ, Kraegen EW. The role of intramuscular lipid in insulin resistance. Acta Physiol Scand. 2003;178(4):373–83.

    Article  CAS  PubMed  Google Scholar 

  93. Hokanson JE. Functional variants in the lipoprotein lipase gene and risk of cardiovascular disease. Curr Opin Lipidol. 1999;10:393–400.

    Article  CAS  PubMed  Google Scholar 

  94. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004;350(7):664–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Erol E, Kumar LS, Cline GW, Shulman GI, Kelly DP, Binas B. Liver fatty acid binding protein is required for high rates of hepatic fatty acid oxidation but not for the action of PPARalpha in fasting mice. FASEB J. 2004;18(2):347–9.

    Article  CAS  PubMed  Google Scholar 

  96. Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003;300(5622):1140–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Plutzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balda, J., Papafilippaki, A., Johnstone, M., Plutzky, J. (2023). PPARs and Their Emerging Role in Vascular Biology, Inflammation and Atherosclerosis. In: Johnstone, M., Veves, A. (eds) Diabetes and Cardiovascular Disease. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-031-13177-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13177-6_4

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-13176-9

  • Online ISBN: 978-3-031-13177-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics