Skip to main content
Log in

Failure of the nonselective β-blocker propranolol to affect lipoprotein lipase gene expression in the rat

  • Published:
Lipids

Abstract

Treatment with β-blockers has been reported to be associated with the development of hypertriglyceridemia. The etiology, even the existence, of this phenomenon is controlverisal. The purpose of our study was to examine whether the nonselective β-blocker propranolol causes hypertriglyceridemia in the rat and whether its action is mediated by the modulation of lipoprotein lipase (LPL) messenger RNA (mRNA) accumulation or activity. LPL activity was assayed in fresh tissue by incubation with tritiated triglycerides. LPL mRNA was quantified in total RNA by slot-blot analysis using a mouse LPL complementary DNA probe. We have conducted three series of experiments in unanaesthetized rats in order to study the effects of different single doses of propranolol (1.5 to 6 mg i.p.) and different durations of treatment (15 min to 4 wk). We measured triglyceride and cholesterol levels in plasma as well as the LPL activity and mRNA levels in the heart and adipose tissue before and after propranolol administration. In these experiments we did not find any significant decrease in either the activity or the amount of mRNA of lipoprotein lipase nor was there any change in plasma lipids following treatment. Our results lead us to the conclusion that the nonselective β-blocker propranolol affects neither the activity nor, the mRNA level of LPL in the rat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cRNA:

complementary RNA

LPL:

lipoprotein lipase

mRNA:

messenger RNA

TG:

triglycerides

References

  1. Taskinen, M.-R. (1987) Lipoprotein Lipase in Hypertriglyceridemias, in Lipoprotein Lipase (Borensztajn, J., ed.) pp. 201–228, Evener Publishers, Chicago.

    Google Scholar 

  2. Lloyd-Mostyn, R.H., Lefevre, D., Lord, P.S., Doig, E., and Krikler, D.M. (1971) The Effect of Beta-Adrenergic Blocking Agents on Serum Lipids, Atherosclerosis 14, 283–287.

    Article  PubMed  CAS  Google Scholar 

  3. Bradford, M.M. (1976) A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  4. Iverius, P.H., and östlund-Lindqvist, A.M. (1986) Preparation, Characterization, and Measurement of Lipoprotein Lipase, in Methods in Enzymology (Albers, J.J., and Segrest, J.P., eds.) Vol. 129, pp. 691–704, Academic Press, Orlando.

    Google Scholar 

  5. Chomczynski, P., and Sacchi, N. (1987) Single-Step Method of RNA Isolation by Acid Guanidium Thiocyanate-Phenol-Chloroform Extraction, Anal. Biochem. 162, 156–159.

    Article  PubMed  CAS  Google Scholar 

  6. Semenkovich, C.F., Chen, S.W., Wims, M., Luo, C.C., Li, W.H., and Chan, L. (1989) Lipoprotein Lipase and Hepatic Lipase mRNA Tissue Specific Expression, Developmental Regulation, and Evolution, J. Lipid Res. 30, 423–431.

    PubMed  CAS  Google Scholar 

  7. Leren, P., Helgeland, A., Holme, I., Foss, P.O., Hjermann, I., and Lund-Larsen, P.G. (1980) Effect of Propranolol and Prazosin on Blood Lipids, The Lancet 2, 4–6.

    Article  CAS  Google Scholar 

  8. Day, J.L., Metcalfe, J., and Simpson, C.N. (1982) Adrenergic Mechanisms in Control of Plasma Lipid Concentrations, Br. Med. J. 284, 1145–1148.

    Article  CAS  Google Scholar 

  9. Goto, Y. (1984) Effects of Alpha-and Beta-Blocker Antihypertensive Therapy on Blood Lipids: A Multicenter Trial, Am. J. Med. 76, 72–78.

    Article  PubMed  CAS  Google Scholar 

  10. Ponti, G.B., Carnovali, M., Banderali, G., and Missaglia, A. (1983) Effects of Labetalol on the Lipid Metabolism in Hypertensive Patients, Curr. Ther. Res. 33, 466–471.

    Google Scholar 

  11. Tanaka, N., Sakaguchi, S., Oshige, K., Niimura, T., and Kanehisa, T. (1976) Effect of Chronic Administration of Propranolol on Lipoprotein Composition, Metabolism 25, 1071–1075.

    Article  PubMed  CAS  Google Scholar 

  12. Jansen, H., and Baggen, G.A. (1987) Effects of Doxazosin and Propranolol Administration on Lipoprotein Lipases in Cholesterol-Fed Rats, J. Cardiovasc. Pharmacol. 10 (Suppl. 9), S16-S20.

    PubMed  CAS  Google Scholar 

  13. Dall'Aglio, E., Chang, H., and Reaven, G. (1984) Disparate Effects of Prazosin and Propranol on Lipid Metabolism in a Rat Model. Am. J. Med. 76, 85–88.

    Article  PubMed  Google Scholar 

  14. Krone, W., Müller-Wieland, D., and Greten, H. (1983) Regulation of Cholesterol Synthesis by Catecholamines in Human Mononuclear Leucocytes: Roles of Alpha-1, Alpha-2, Beta-1 and Beta-2 Adrenoreceptors, Arteriosclerosis 3, 492a.

    Google Scholar 

  15. Krone, W., Müller-Wieland, D., Nagele, H., Behnke, B., and Greten, H. (1987) Effects of Calcium Antagonists and Adrenergic Antihypertensive Drugs on Plasma Lipids and Cellular Cholesterol Metabolism, J. Cardiovasc. Pharmacol. 10, S199-S202.

    Article  PubMed  CAS  Google Scholar 

  16. Pinter, H.J., and Pattee, C.J. (1967) Effect of β-Adrenergic Blockade on Resting and Stimulated Fat Mobilization, J. Clin. Endocrinol. Metab. 27, 1441–1450.

    Article  PubMed  CAS  Google Scholar 

  17. Fager, G., Berglund, G., Bondjers, G., Elmfeldt, D., Lager, I., Olofsson, S.O., Smith, U., and Wiklund, O. (1985) Effects of Anti-Hypertensive Therapy on Serum Lipoproteins. Treatment with Metoprolol, Propranolol and Hydrochlorothiazide, Artery 11, 283–296.

    Google Scholar 

  18. Ferrara, L.A., Marotta, T., Rubba, P., De Simone, B., Soro, S., and Mancini, M. (1986) Effects of Alpha-Adrenergic and Beta-Adrenergic Receptor Blockade on Lipid Metabolism, Am. J. Med. 80, 104–108.

    Article  PubMed  CAS  Google Scholar 

  19. Waal-Manning, H.G. (1976) Metabolic Effects of β-Adrenoreceptor Blockers, Drugs 11, 121–126.

    Article  PubMed  Google Scholar 

  20. Barboriak, J.J., and Friedberg, H.D. (1973) Propranolol and Hypertriglyceridemia, Atherosclerosis 17, 31–35.

    Article  PubMed  CAS  Google Scholar 

  21. Hulsmänn, W.C., and Dubelaar, M.L. (1986) Lipoprotein Lipases and Stress Hormones: Studies with Glucocorticoids and Cholera Toxin. Biochim. Biophys. Acta. 875, 69–75.

    PubMed  Google Scholar 

  22. Ball, K.L., Speake, B.K., and Robinson, D.S. (1986) Effects of Adrenaline on the Turnover of Lipoprotein Lipase in Rat Adipose Tissue. Biochim. Biophys. Acta 877, 399–405.

    PubMed  CAS  Google Scholar 

  23. Ashby, P., Bennett, D.P., Spencer, I.M., and Robinson, D.S. (1978) Post-Translational Regulation of Lipoprotein Lipase Activity in Adipose Tissue, Biochem. J. 176, 865–872.

    PubMed  CAS  Google Scholar 

  24. Palmer, W.K., and Kane, T.A. (1983) Hormone-Stimulated Lipolysis in Cardiac Myocytes, Biochem. J. 216, 241–243.

    PubMed  CAS  Google Scholar 

  25. Friedman, G., Chajek-Shaul, T., Stein, O., Noe, L., Etienne, J., and Stein, Y. (1986) β-Adrenergic Stimulation Enhances Translocation, Processing and Synthesis of Lipoprotein Lipase in Rat Heart Cells, Biochim. Biophys. Acta 877, 112–120.

    PubMed  CAS  Google Scholar 

  26. Robinson, D.S., Parkin, S.M., Speake, B.K., and Little, J.A. (1983) Hormonal Control of Rat Adipose Tissue Lipoprotein Lipase Activity, in The Adipocyte and Obesity: Cellular and Molecular Mechanisms (Angel, A., Hollenberg, C. H., and Roncari, D. A. K., eds.), pp. 127–136, Raven, New York.

    Google Scholar 

  27. Miller, W.C., Gorski, J., Oscai, L.B., and Palmer, W.K. (1989) Epinephrine Activation of Heparin-Nonreleasable Lipoprotein Lipase in Three Skeletal Muscle Fiber Types of the Rat, Biochem. Biophys. Res. Commun. 164, 615–619.

    Article  PubMed  CAS  Google Scholar 

  28. Carneheim, C., Nedergaard, J., and Cannon, B. (1984) β-Adrenergic Stimulation of Lipoprotein Lipase in Rat Brown Adipose Tissue During Acclimation to Cold, Am. J. Physiology 246, E327-E333.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. K. Berthold.

About this article

Cite this article

Gouni-Berthold, I., Oka, K., Berthold, H.K. et al. Failure of the nonselective β-blocker propranolol to affect lipoprotein lipase gene expression in the rat. Lipids 32, 943–947 (1997). https://doi.org/10.1007/s11745-997-0121-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11745-997-0121-1

Keywords

Navigation