Skip to main content

Role Renin Angiotensin System in Hypertension

  • Chapter
  • First Online:
The Renin Angiotensin System in Cardiovascular Disease

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 24))

  • 460 Accesses

Abstract

Hypertension, which affects more than one billion people, is the major modifiable risk factor for cardiovascular disease death. Although the pathophysiology of hypertension is not entirely understood, disruption of the renin angiotensin system (RAS), which includes the systemic and brain RAS, has been identified as one of the key causes of numerous forms of hypertension. As a result, developing a solid understanding of the fundamental science of RAS and the underlying processes of the signalling pathways associated with RAS may aid in the development of new therapeutic targets for the treatment of patients with cardiovascular and renal illnesses. Four kinds of angiotensin II receptors (AT1RAT4R) have been found, with AT1R playing an essential function in vasoconstriction and receiving the most attention. It has been discovered in numerous areas of the brain, and its distribution is closely related to that of angiotensin-like immunoreactivity in nerve terminals. The impact of AT1R includes the activation of various media and signalling pathways, the most prominent of which are the AT1R/JAK/STAT and Ras/Raf/MAPK pathways. Furthermore, the impact of ATR1 is linked to the regulation of the nuclear factor light-chain enhancer of activated B cells (NFB) and cyclic AMP response element-binding (CREB) pathways. Their action mechanisms are associated with proinflammatory and sympathetic excitatory effects. At1R is involved in nearly every type of hypertension, including spontaneous hypertension, obesity-induced hypertension, renovascular hypertension, diabetic hypertension, L-NAME-induced hypertension, stress-induced hypertension, and angiotensin II-induced hypertension. Acute and chronic central AT1R inhibition are the two forms of central AT1R blockade. The latter is possible by chemical blockage or genetic modification. This chapter study aimed to emphasize the prevalence, functions, interactions, and modulation methods of central AT1R to treat a variety of clinical disorders. The discovery of angiotensin-derived peptides and the creation of AT2R agonists may give a more comprehensive understanding of RAS and innovative treatment methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim HS, Krege JH, Kluckman KD, Hagaman JR, Hodgin JB, Best CF, Jennette JC, Coffman TM, Maeda N, Smithies O (1995) Genetic control of blood pressure and the angiotensinogen locus. Proc Natl Acad Sci USA 92:2735–2739

    Article  CAS  Google Scholar 

  2. Tanimoto K, Sugiyama F, Goto Y, Ishida J, Takimoto E, Yagami K, Fukamizu A, Murakami K (1994) Angiotensinogen-deficient mice with hypotension. J Biol Chem 269:31334–31337

    Article  CAS  Google Scholar 

  3. Fukamizu A, Sugimura K, Takimoto E, Sugiyama F, Seo MS, Takahashi S, Hatae T, Kajiwara N, Yagami K, Murakami K (1993) Chimeric renin-angiotensin system demonstrates sustained increase in blood pressure of transgenic mice carrying both human renin and human angiotensinogen genes. J Biol Chem 268:11617–11621

    Article  CAS  Google Scholar 

  4. Merrill DC, Thompson MW, Carney CL, Granwehr BP, Schlager G, Robillard JE, Sigmund CD (1996) Chronic hypertension and altered baroreflex responses in transgenic mice containing the human renin and human angiotensinogen genes. J Clin Invest 97:1047–1055. https://doi.org/10.1172/JCI118497

    Article  CAS  Google Scholar 

  5. Sugiyama F, Haraoka S, Watanabe T, Shiota N, Taniguchi K, Ueno Y, Tanimoto K, Murakami K, Fukamizu A, Yagami K (1997) Acceleration of atherosclerotic lesions in transgenic mice with hypertension by the activated renin-angiotensin system. Lab Invest 76:835–842

    CAS  Google Scholar 

  6. Wu C, Xu Y, Lu H, Howatt DA, Balakrishnan A, Moorleghen JJ, Vander Kooi CW, Cassis LA, Wang JA, Daugherty A (2015) Cys18-Cys137 disulfide bond in mouse angiotensinogen does not affect AngII-dependent functions in vivo. Hypertension 65:800–805. https://doi.org/10.1161/HYPERTENSIONAHA.115.05166

    Article  CAS  Google Scholar 

  7. Lu H, Wu C, Howatt DA, Balakrishnan A, Moorleghen JJ, Chen X, Zhao M, Graham MJ, Mullick AE, Crooke RM, Feldman DL, Cassis LA, Vander Kooi CW, Daugherty A (2016) Angiotensinogen exerts effects independent of angiotensin II. Arterioscler Thromb Vasc Biol 36:256–265. https://doi.org/10.1161/ATVBAHA.115.306740

    Article  CAS  Google Scholar 

  8. Stanton A (2003) Potential of renin inhibition in cardiovascular disease. J Renin Angiotensin Aldosterone Syst 4:6–10. https://doi.org/10.3317/jraas.2003.008

    Article  CAS  Google Scholar 

  9. Wood JM, Maibaum J, Rahuel J et al (2003) Structure-based design of aliskiren, a novel orally effective renin inhibitor. Biochem Biophys Res Commun 308:698–705

    Article  CAS  Google Scholar 

  10. Lu H, Rateri DL, Feldman DL, Charnigo RJ Jr, Fukamizu A, Ishida J, Oesterling EG, Cassis LA, Daugherty A (2008) Renin inhibition reduces hypercholesterolemia-induced atherosclerosis in mice. J Clin Invest 118:984–993. https://doi.org/10.1172/JCI32970

    Article  CAS  Google Scholar 

  11. Nussberger J, Aubert JF, Bouzourene K, Pellegrin M, Hayoz D, Mazzolai L (2008) Renin inhibition by aliskiren prevents atherosclerosis progression: comparison with irbesartan, atenolol, and amlodipine. Hypertension 51:1306–1311. https://doi.org/10.1161/HYPERTENSIONAHA.108.110932

    Article  CAS  Google Scholar 

  12. Imanishi T, Tsujioka H, Ikejima H, Kuroi A, Takarada S, Kitabata H, Tanimoto T, Muragaki Y, Mochizuki S, Goto M, Yoshida K, Akasaka T (2008) Renin inhibitor aliskiren improves impaired nitric oxide bioavailability and protects against atherosclerotic changes. Hypertension 52:563–572. https://doi.org/10.1161/HYPERTENSIONAHA.108.111120

    Article  CAS  Google Scholar 

  13. Kühnast S, van der Hoorn JW, van den Hoek AM, Havekes LM, Liau G, Jukema JW, Princen HM (2012) Aliskiren inhibits atherosclerosis development and improves plaque stability in APOE*3Leiden.CETP transgenic mice with or without treatment with atorvastatin. J Hypertens 30:107–116. https://doi.org/10.1097/HJH.0b013e32834ddd8e

  14. Angeli F, Reboldi G, Poltronieri C, Angeli E, De Filippo V, Crocetti A, Bartolini C, D’Ambrosio C, Verdecchia P (2014) Efficacy and safety profile of aliskiren: practical implications for clinicians. Curr Drug Saf 9:106–117

    Article  CAS  Google Scholar 

  15. Sen S, Sabırlı S, Ozyiğit T, Uresin Y (2013) Aliskiren: review of efficacy and safety data with focus on past and recent clinical trials. Ther Adv Chronic Dis 4:232–241. https://doi.org/10.1177/2040622313495288

    Article  CAS  Google Scholar 

  16. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, Leon MB, Liu M, Mauri L, Negoita M, Cohen SA, Oparil S, Rocha-Singh K, Townsend RR, Bakris GL (2014) SYMPLICITY HTN-3 investigators. A controlled trial of renal denervation for resistant hypertension. N Engl J Med 370:1393–1401. https://doi.org/10.1056/NEJMoa1402670

  17. Böhm M, Mahfoud F, Ukena C, Hoppe UC, Narkiewicz K, Negoita M, Ruilope L, Schlaich MP, Schmieder RE, Whitbourn R, Williams B, Zeymer U, Zirlik A, Mancia G (2015) GSR Investigators. First report of the Global SYMPLICITY Registry on the effect of renal artery denervation in patients with uncontrolled hypertension. Hypertension 65:766–774. https://doi.org/10.1161/HYPERTENSIONAHA.114.05010

  18. Azizi M (2017) Catheter-based renal denervation for treatment of hypertension. Lancet 390:2124–2126. https://doi.org/10.1016/S0140-6736(17)32293-6

    Article  Google Scholar 

  19. Mahfoud F, Bakris G, Bhatt DL, Esler M, Ewen S, Fahy M, Kandzari D, Kario K, Mancia G, Weber M, Böhm M (2017) Reduced blood pressure-lowering effect of catheter-based renal denervation in patients with isolated systolic hypertension: data from SYMPLICITY HTN-3 and the global SYMPLICITY Registry. Eur Heart J 38:93–100. https://doi.org/10.1093/eurheartj/ehw325

    Article  CAS  Google Scholar 

  20. Uzuka H, Matsumoto Y, Nishimiya K et al (2017) Renal denervation suppresses coronary hyperconstricting responses after drug-eluting stent implantation in pigs in vivo through the kidney-brain-heart axis. Arterioscler Thromb Vasc Biol 37:1869–1880. https://doi.org/10.1161/ATVBAHA.117.309777

    Article  CAS  Google Scholar 

  21. Daugherty A, Manning MW, Cassis LA (2000) Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Invest 105:1605–1612. https://doi.org/10.1172/JCI7818

    Article  CAS  Google Scholar 

  22. Lu H, Howatt DA, Balakrishnan A, Moorleghen JJ, Rateri DL, Cassis LA, Daugherty A (2015) Subcutaneous angiotensin II infusion using osmotic pumps induces aortic aneurysms in mice. JoVE 103:e53191

    Google Scholar 

  23. Schlüter KD, Wenzel S (2008) Angiotensin II: a hormone involved in and contributing to pro-hypertrophic cardiac networks and target of anti-hypertrophic cross-talks. Pharmacol Ther 119:311–325. https://doi.org/10.1016/j.pharmthera.2008.05.010

    Article  CAS  Google Scholar 

  24. Tham YK, Bernardo BC, Ooi JY, Weeks KL, McMullen JR (2015) Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol 89:1401–1438. https://doi.org/10.1007/s00204-015-1477-x

    Article  CAS  Google Scholar 

  25. Seizer P, Ungern-Sternberg SN, Schönberger T, Borst O, Münzer P, Schmidt EM, Mack AF, Heinzmann D, Chatterjee M, Langer H, Malešević M, Lang F, Gawaz M, Fischer G, May AE (2015) Extracellular cyclophilin A activates platelets via EMMPRIN (CD147) and PI3K/Akt signaling, which promotes platelet adhesion and thrombus formation in vitro and in vivo. Arterioscler Thromb Vasc Biol 35:655–663. https://doi.org/10.1161/ATVBAHA.114.305112

    Article  CAS  Google Scholar 

  26. Niriayo YL, Ibrahim S, Kassa TD, Asgedom SW, Atey TM, Gidey K, Demoz GT, Kahsay D (2019) Practice and predictors of self-care behaviors among ambulatory patients with hypertension in Ethiopia. PLoS ONE 14:e0218947

    Article  CAS  Google Scholar 

  27. Agbor LN, Nair AR, Wu J, Lu KT, Davis DR, Keen HL, Quelle FW, McCormick JA, Singer JD, Sigmund CD (2019) Conditional deletion of smooth muscle Cullin‑3 causes severe progressive hypertension. JCI Insight 5:e129793

    Google Scholar 

  28. Chen A, Huang BS, Wang HW, Ahmad M, Leenen FH (2014) Knockdown of mineralocorticoid or angiotensin II type 1 receptor gene expression in the paraventricular nucleus prevents angiotensin II hypertension in rats. J Physiol 592:3523–3536

    Article  CAS  Google Scholar 

  29. Schaeffer C, Izzi C, Vettori A, Pasqualetto E, Cittaro D, Lazarevic D, Caridi G, Gnutti B, Mazza C, Jovine L et al (2019) Autosomal dominant tubulointerstitial kidney disease with adult onset due to a novel renin mutation mapping in the mature protein. Sci Rep 9:11601

    Article  Google Scholar 

  30. Wannberg J, Isaksson R, Bremberg U, Backlund M, Sävmarker J, Hallberg M, Larhed M (2018) A convenient transesterification method for synthesis of AT2 receptor ligands with improved stability in human liver microsomes. Bioorg Med Chem Lett 28:519–522

    Article  CAS  Google Scholar 

  31. Kemp BA, Howell NL, Keller SR, Gildea JJ, Shao W, Navar LG, Carey RM (2019) Defective renal angiotensin III and AT2 receptor signaling in prehypertensive spontaneously hypertensive rats. J Am Heart Assoc 8:e012016

    Article  Google Scholar 

  32. Assersen KB, Sumners C, Steckelings UM (2020) The renin-angiotensin system in hypertension, a constantly renewing classic: focus on the angiotensin AT2-receptor. Can J Cardiol 36:683–693

    Article  Google Scholar 

  33. Siragy HM (2009) The potential role of the angiotensin subtype 2 receptor in cardiovascular protection. Curr Hypertens Rep 11:260–262

    Article  CAS  Google Scholar 

  34. Oparil S, Acelajado MC, Bakris GL, Berlowitz DR, Cífková R, Dominiczak AF et al (2018) Hypertension. Nat Rev Disease Primers 4:18014. https://doi.org/10.1038/nrdp.2018.14

    Article  Google Scholar 

  35. Byrd JB, Turcu AF, Auchus RJ (2018) Primary aldosteronism. Circulation 138(8):823–835. https://doi.org/10.1161/CIRCULATIONAHA

    Article  CAS  Google Scholar 

  36. de Kloet AD, Steckelings UM, Sumners C (2017) Protective angiotensin type 2 receptors in the brain and hypertension. Curr Hypertens Rep 19:46

    Article  Google Scholar 

  37. Jackson L, Eldahshan W, Fagan SC, Ergul A (2018) Within the brain: the renin angiotensin system. Int J Mol Sci 19:876

    Article  Google Scholar 

  38. Chrysant SG (2012) The role of angiotensin II receptors in stroke protection. Curr Hypertens Rep 14:202–208

    Article  CAS  Google Scholar 

  39. Bender SB, McGraw AP, Jaffe IZ, Sowers JR (2013) Mineralocorticoid receptor-mediated vascular insulin resistance: an early contributor to diabetes-related vascular disease? Diabetes 62:313–319

    Article  CAS  Google Scholar 

  40. Malik RA, Schofield IJ, Izzard A, Austin C, Bermann G, Heagerty AM (2005) Effects of angiotensin type‑1 receptor antagonism on small artery function in patients with type 2 diabetes mellitus. Hypertension 45:264–269

    Google Scholar 

  41. Tabony AM, Yoshida T, Galvez S, Higashi Y, Sukhanov S, Chandrasekar B, Mitch WE, Delafontaine P (2011) Angiotensin II upregulates protein phosphatase 2Cα and inhibits AMP-activated protein kinase signaling and energy balance leading to skeletal muscle wasting. Hypertension 58:643–649

    Article  CAS  Google Scholar 

  42. Van Linthout S, Spillmann F, Lorenz M, Meloni M, Jacobs F, Egorova M, Stangl V, De Geest B, Schultheiss HP, Tschöpe C (2009) Vascular-protective effects of high-density lipoprotein include the downregulation of the angiotensin II type 1 receptor. Hypertension 53:682–687

    Article  Google Scholar 

  43. Akishita M, Horiuchi M, Yamada H, Zhang L, Shirakami G, Tamura K, Ouchi Y, Dzau VJ (2000) Inflammation influences vascular remodeling through AT2 receptor expression and signaling. Physiol Genomics 2:13–20

    Article  CAS  Google Scholar 

  44. Kamo T, Akazawa H, Komuro I (2015) Pleiotropic effects of angiotensin II receptor signaling in cardiovascular homeostasis and aging. Int Heart J 56:249–254

    Google Scholar 

  45. Hannan RE, Davis EA, Widdop RE (2003) Functional role of angiotensin II AT2 receptor in modulation of AT1 receptor-mediated contraction in rat uterine artery: involvement of bradykinin and nitric oxide. Br J Pharmacol 140:987–995

    Article  CAS  Google Scholar 

  46. Lee JH, Xia S, Ragolia L (2008) Upregulation of AT2 receptor and iNOS impairs angiotensin II-induced contraction without endothelium influence in young normotensive diabetic rats. Am J Physiol Regul Integr Comp Physiol 295:R144–R154

    Article  CAS  Google Scholar 

  47. Averill DB, Diz DI (2000) Angiotensin peptides and baroreflex control of sympathetic outflow: pathways and mechanisms of the medulla oblongata. Brain Res Bull 51:119–128

    Article  CAS  Google Scholar 

  48. Han NL, Sim MK (1998) Hypothalamic angiotensin receptor subtypes in normotensive and hypertensive rats. Am J Physiol 275:H703–H709

    CAS  Google Scholar 

  49. Lu D, Sumners C, Raizada MK (1994) Regulation of angiotensin II type 1 receptor mRNA in neuronal cultures of normotensive and spontaneously hypertensive rat brains by phorbol esters and forskolin. J Neurochem 62:2079–2084

    Article  CAS  Google Scholar 

  50. Phillips MI, Kimura B (1986) Converting enzyme inhibitors and brain angiotensin. J Cardiovasc Pharmacol 8(Suppl 10):S82–S90

    CAS  Google Scholar 

  51. Gyurko R, Wielbo D, Phillips MI (1993) Antisense inhibition of AT1 receptor mRNA and angiotensinogen mRNA in the brain of spontaneously hypertensive rats reduces hypertension of neurogenic origin. Regul Pept 49:167–174

    Article  CAS  Google Scholar 

  52. Sun C, Du J, Sumners C, Raizada MK (2003) PI3-kinase inhibitors abolish the enhanced chronotropic effects of angiotensin II in spontaneously hypertensive rat brain neurons. J Neurophysiol 90:3155–3160

    Article  CAS  Google Scholar 

  53. Perfumi M, Sajia A, Costa G, Massi M, Polidori C (1988) Vasopressin release induced by intracranial injection of eledoisin is mediated by central angiotensin II. Pharmacol Res Commun 20:811–826

    Article  CAS  Google Scholar 

  54. Sumners C, Fleegal MA, Zhu M (2002) Angiotensin AT1 receptor signalling pathways in neurons. Clin Exp Pharmacol Physiol 29:483–490

    Article  CAS  Google Scholar 

  55. Lu D, Raizada MK (1995) Delivery of angiotensin II type 1 receptor antisense inhibits angiotensin action in neurons from hypertensive rat brain. Proc Natl Acad Sci USA 92:2914–2918

    Article  CAS  Google Scholar 

  56. Lu D, Yang H, Lenox RH, Raizada MK (1998) Regulation of angiotensin II-induced neuromodulation by MARCKS in brain neurons. J Cell Biol 142:217–227

    Article  CAS  Google Scholar 

  57. Yang H, Raizada MK (1999) Role of phosphatidylinositol 3‑kinase in angiotensin II regulation of norepinephrine neuromodulation in brain neurons of the spontaneously hypertensive rat. J Neurosci 19:2413–2423

    Google Scholar 

  58. Seyedabadi M, Goodchild AK, Pilowsky PM (2001) Differential role of kinases in brain stem of hypertensive and normotensive rats. Hypertension 38:1087–1092

    Article  CAS  Google Scholar 

  59. Wang YK, Yu Q, Tan X, Wu ZT, Zhang RW, Yang YH, Yuan WJ, Hu QK, Wang WZ (2016) Centrally acting drug moxonidine decreases reactive oxygen species via inactivation of the phosphoinositide-3 kinase signaling in the rostral ventrolateral medulla in hypertensive rats. J Hypert 34:993–1004

    Article  CAS  Google Scholar 

  60. Kulkarni S, O’Farrell I, Erasi M, Kochar MS (1998) Stress and hypertension. WMJ 97:34–38

    CAS  Google Scholar 

  61. Epstein OI, Martyushev AV, Kudryashova DR, Markel AL, Sergeeva SA, Shtark MB (2003) Hypotensive effect of potentiated antibodies to angiotensin II and AT1 receptors. Bull Exp Biol Med 135(Suppl 7):S62–S64

    Article  Google Scholar 

  62. Hanff E, Ruben S, Kreuzer M, Bollenbach A, Kayacelebi AA, Das AM, von Versen-Hoynck F, von Kaisenberg C, Haffner D, Ückert S, Tsikas D (2019) Development and validation of GC-MS methods for the comprehensive analysis of amino acids in plasma and urine and applications to the HELLP syndrome and pediatric kidney transplantation: evidence of altered methylation, transamidination, and arginase activity. Amino Acids 51:529–547

    Article  CAS  Google Scholar 

  63. Łuszczki JJ, Jaskólska A, Dworzański W, Zółkowska D (2011) 7-Nitroindazole, but not NG-nitro-L-arginine, enhances the anticonvulsant activity of pregabalin in the mouse maximal electroshock-induced seizure model. Pharmacol Rep 63:169–175

    Article  Google Scholar 

  64. Miguel‑Carrasco JL, Mate A, Monserrat MT, Arias JL, Aramburu O, Vázquez CM (2008) The role of inflammatory markers in the cardioprotective effect of L‑carnitine in L‑NAME‑induced hypertension. Am J Hypertens 21:1231–1237

    Google Scholar 

  65. Carey RM (2017) AT2 receptors: potential therapeutic targets for hypertension. Am J Hypertens 30:339–347

    CAS  Google Scholar 

  66. Savoia C, Ebrahimian T, He Y, Gratton JP, Schiffrin EL, Touyz RM (2006) Angiotensin II/AT2 receptor-induced vasodilation in stroke-prone spontaneously hypertensive rats involves nitric oxide and cGMP-dependent protein kinase. J Hypertens 24:2417–2422

    Article  CAS  Google Scholar 

  67. Cosentino F, Savoia C, De Paolis P, Francia P, Russo A, Maffei A, Venturelli V, Schiavoni M, Lembo G, Volpe M (2005) Angiotensin II type 2 receptors contribute to vascular responses in spontaneously hypertensive rats treated with angiotensin II type 1 receptor antagonists. Am J Hypertens 18:493–499

    Article  CAS  Google Scholar 

  68. Kucan M, Mrsic-Pelcic J, Vitezic D (2018) Antihypertensive drugs in croatia: what changes the drug usage patterns? Clin Ther 40:1159–1169

    Article  Google Scholar 

  69. Yang H, Bai S, Wu Y, Li Q, Luo F, Li B, Jin Y, Xiao C (2015) Polymorphisms within angiotensin II receptor type 1 gene associated with essential hypertension in Chinese Hani and Yi minorities. J Renin Angiotensin Aldosterone Syst 16:653–659

    Google Scholar 

  70. Nakaya H, Sasamura H, Kitamura Y, Amemiya T, Konishi K, Hayashi M, Saruta T (1999) Effects of angiotensin inhibitors on renal injury and angiotensin receptor expression in early hypertensive nephrosclerosis. Hypertens Res 22:303–312

    Article  CAS  Google Scholar 

  71. Katovich MJ, Gelband CH, Reaves P, Wang HW, Raizada MK (1999) Reversal of hypertension by angiotensin II type 1 receptor antisense gene therapy in the adult SHR. Am J Physiol 277:H1260–H1264

    CAS  Google Scholar 

  72. Zhi JM, Liu ZB, Jiao XY, Liu YX, Zhao RR (2003) Effect of losartan on produce of sera autoantibodies to angiotensin II‑1 receptor in renovascular hypertension rats. Zhongguo Ying Yong Sheng Li Xue Za Zhi 19:43–46 (In Chinese)

    Google Scholar 

  73. Olivares-Reyes JA, Arellano-Plancarte A, Castillo-Hernandez JR (2009) Angiotensin II and the development of insulin resistance: implications for diabetes. Mol Cell Endocrinol 302:128–139

    Article  CAS  Google Scholar 

  74. de Ferranti S, Mozaffarian D (2008) The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences. ClinChem 54:945–955

    Google Scholar 

  75. Cole BK, Keller SR, Wu R, Carter JD, Nadler JL, Nunemaker CS (2010) Valsartan protects pancreatic islets and adipose tissue from the inflammatory and metabolic consequences of a high-fat diet in mice. Hypertension 55:715–721

    Article  CAS  Google Scholar 

  76. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, Miyachi H, Maeda S, Egashira K, Kasuga M (2006) MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J C lin Invest 116:1494–1505

    Article  CAS  Google Scholar 

  77. Nickenig G, Harrison DG (2002) The AT(1)-type angiotensin receptor in oxidative stress and atherogenesis: Part II: AT(1) receptor regulation. Circulation 105:530–536

    Article  CAS  Google Scholar 

  78. Hosomi N, Nishiyama A, Ban CR, Naya T, Takahashi T, Kohno M, Koziol JA (2005) Angiotensin type 1 receptor blockage Improves ischemic injury following transient focal cerebral ischemia. Neuroscience 134:225–231

    Article  CAS  Google Scholar 

  79. Iwai M, Liu HW, Chen R, Ide A, Okamoto S, Hata R, Sakanaka M, Shiuchi T, Horiuchi M (2004) Possible inhibition of focal cerebral ischemia by angiotensin II type 2 receptor stimulation. Circulation 110:843–848

    Google Scholar 

  80. Maeda K, Hata R, Bader M, Walther T, Hossmann KA (1999) Larger anastomoses in angiotensinogen-knockout mice attenuate early metabolic disturbances after middle cerebral artery occlusion. J Cereb Blood Flow Metab 19:1092–1098

    Article  CAS  Google Scholar 

  81. Chen S, Li G, Zhang W, Wang J, Sigmund CD, Olson JE, Chen Y (2009) Ischemia-induced brain damage is enhanced in human renin and angiotensinogen double-transgenic mice. Am J Physiol Regul Integr Comp Physiol 297:R1526–R1531

    Article  CAS  Google Scholar 

  82. Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, Goronzy J, Weyand C, Harrison DG (2007) Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med 204:2449–2460

    Article  CAS  Google Scholar 

  83. Nagai M, Terao S, Vital SA, Rodrigues SF, Yilmaz G, Granger DN (2011) Role of blood cell-associated angiotensin II type 1 receptors in the cerebral microvascular response to ischemic stroke during angiotensin-induced hypertension. Exp Transl Stroke Med 3:15

    Article  CAS  Google Scholar 

  84. Walther T, Olah L, Harms C, Maul B, Bader M, Hörtnagl H, Schultheiss HP, Mies G (2002) Ischemic injury in experimental stroke depends on angiotensin II. FASEB J 16:169–176

    Article  CAS  Google Scholar 

  85. Kitiyakara C, Guzman NJ (1998) Malignant hypertension and hypertensive emergencies. J Am Soc Nephrol 9:133–142

    Article  CAS  Google Scholar 

  86. Fleegal-DeMotta MA, Doghu S, Banks WA (2009) Angiotensin II modulates BBB permeability via activation of the AT(1) receptor in brain endothelial cells. J Cereb Blood Flow Metab 29:640–647

    Article  CAS  Google Scholar 

  87. Vital SA, Terao S, Nagai M, Granger DN (2010) Mechanisms underlying the cerebral microvascular responses to angiotensin II-induced hypertension. Microcirculation 17:641–649

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank Aarupadai Veedu Medical College & Hospital, Vinayaka Mission’s Research Foundation (Deemed to be University), Kirumampakkam, Puducherry-607403, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prithiviraj Nagarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagarajan, P. (2023). Role Renin Angiotensin System in Hypertension. In: Dhalla, N.S., Bhullar, S.K., Shah, A.K. (eds) The Renin Angiotensin System in Cardiovascular Disease. Advances in Biochemistry in Health and Disease, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-031-14952-8_12

Download citation

Publish with us

Policies and ethics