Skip to main content

Advertisement

Log in

Are angiotensin receptor blockers neuroprotective?

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Stroke is one of the leading causes of invalidism and death in the industrialized world. Among others, the reninangiotensin system (RAS) has been implicated in the pathogenesis and outcome of ischemic events, including stroke. Angiotensin II (Ang II), the major effector peptide of the RAS, exerts most of its well-defined physiologic and pathophysiologic actions, including those on the central and peripheral nervous system, through its Ang II type 1 (AT1) receptor subtype. This receptor not only contributes to stroke-related pathologic mechanisms (eg, hypertension, atherothrombosis, and cardiac hypertrophy) but also may be involved in postischemic damage to the brain. However, it has also been demonstrated that Ang II, via its AT2 receptor subtype, accelerates neuronal tissue regeneration after injury. In this article, we review the experimental evidence supporting the notion that blockade of brain AT1 receptors can be beneficial with respect to stroke incidence and outcome. We further delineate how AT2 receptors could be involved in neuronal regeneration following brain injury, such as stroke. In doing so, we also attempt to shed some light on the mechanisms by which AT1 receptor blockers, which leave the AT2 receptor unopposed, might exert protective actions in brain ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Murray CJL, Lopez AD: Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet 1997, 349:1436–1442.

    Article  PubMed  CAS  Google Scholar 

  2. Murray CJL, Lopez AD: Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet 1997, 349:1269–1276.

    Article  PubMed  CAS  Google Scholar 

  3. Kjeldsen SE, Fossum E, Reims HM, et al.: Hypertension treatment and stroke prevention. Blood Press 2003, 12:264–268.

    Article  PubMed  Google Scholar 

  4. Alberts MJ: Update on the treatment and prevention of ischaemic stroke. Curr Med Res Opin 2003, 19:438–441.

    Article  PubMed  CAS  Google Scholar 

  5. Culman J, Blume A, Gohlke P, et al.: The renin-angiotensin system in the brain: possible therapeutic implications of AT1-receptor blockers. J Hum Hyperten 2002, 16:64–70. A seminal review on the brain renin-angiotensin system.

    Article  CAS  Google Scholar 

  6. De Gasparo M, Catt KJ, Inagami T, et al.: International Union of Pharmacology. XXIII. The Angiogenesis II Receptors. Pharmacol Rev 2000, 52:415–472. The most comprehensive recent review on angiotensin receptors.

    PubMed  Google Scholar 

  7. Kaschina E, Unger T: Angiotensin AT1/AT2 receptor: regulation, signalling and function. Blood Press 2003, 12:70–88. Most recent angiotensin receptor review.

    Article  PubMed  CAS  Google Scholar 

  8. Blume A, Herdegen T, Unger T: Angiotensin peptides and inducible transcription factors. J Mol Med 1999, 77:339–357.

    Article  PubMed  CAS  Google Scholar 

  9. McKinley MJ, Albiston AL, Allen AM, et al.: The brain renin-angiotensin system: location and physiological roles. Int J Biochem Cell Biol 2003, 35:901–918.

    Article  PubMed  CAS  Google Scholar 

  10. Unger T, Becker H, Petty M, et al.: Differential effects of central angiotensin II and substance P on sympathetic nerve activity in conscious rats: implications for cardiovascular adaption to behavioral responses. Circ Res 1985, 56:563–575.

    PubMed  CAS  Google Scholar 

  11. Unger T, Badoer E, Ganten D, et al.: Brain angiotensin: pathways and pharmacology. Circulation 1988, 77:I40-I54.

    PubMed  CAS  Google Scholar 

  12. Gelband CH, Sumners C, Lu D, et al.: Angiotensin receptors and norepinephrine neuromodulation: implication of functional coupling. Regul Pept 1998, 73:141–147.

    Article  PubMed  CAS  Google Scholar 

  13. Averill DB, Diz Di: Angiotensin peptides and baroreflex control of sympathetic outflow: pathways and mechanisms of the medulla oblongata. Brain Res Bull 2000, 51:119–128.

    Article  PubMed  CAS  Google Scholar 

  14. Montani JP, Van Vliet BN: General physiology and pathophysiology of the renin-angiotensin-system. In Handbook of Experimental Pharmacology 163/II. Angiotensin, Vol. II. Edited by Unger T, Schölkens BA. Berlin, Heidelberg, New York: Springer Verlag; 2004: 3–29. The standard handbook on angiotensin.

    Google Scholar 

  15. Lenkei Z, Palkovits M, Corvol P, et al.: Expression of angiotensin type-1 (AT1) and type-2 (AT2) receptor mRNAs in the adult rat brain: a functional neuroanatomical review. Front Neuroendocrinol 1997, 18:383–439.

    Article  PubMed  CAS  Google Scholar 

  16. Fitzsimons J: Angiotensin, thirst, and sodium appetite. Physiol Rev 1998, 78:583–686.

    PubMed  CAS  Google Scholar 

  17. Rohmeiss P, Demmert G, Rettig R, et al.: Centrally administered atrial natriuretic factor inhibits central angiotensininduced natriuresis. Brain Res 1989, 502:198–203.

    Article  PubMed  CAS  Google Scholar 

  18. Unger T, Horst JP, Bauer M, et al.: Natriuretic action of central angiotensin II in conscious rats. Brain Res 1989, 486:33–38.

    Article  PubMed  CAS  Google Scholar 

  19. Dirnagl U, Iadecola C, Moskowitz: Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 1999, 22:391–397.

    Article  PubMed  CAS  Google Scholar 

  20. Walther T, Olah L, Harms C, et al.: Ischemic injury in experimental stroke depends on angiotensin II. FASB J 2003, 16:169–176.

    Article  Google Scholar 

  21. Stenman E, Edvinsson L: Cerebral ischemia enhances vascular angiotensin AT1 receptor mediated contraction in rats. Stroke 2004, 35:970–974.

    Article  PubMed  CAS  Google Scholar 

  22. Danton GH, Dietrich WD: Inflammatory mechanisms after ischemia and stroke. J Neuropathol Exp Neurol 2003, 62:127–136.

    PubMed  CAS  Google Scholar 

  23. Huang XC, Deng T, Sumners C: Angiotensin II stimulates activation of Fos-regulating kinase and c-Jun NH2-terminal kinase in neuronal cultures from rat brain. Endocrinology 1998, 139:245–251.

    Article  PubMed  CAS  Google Scholar 

  24. Lebrun C, Blume A, Herdegen T, et al.: Angiotensin II induces a complex activation of transcription factors in the rat brain: expression of Fos, Jun and Krox proteins. Neuroscience 1995, 65:93–99.

    Article  PubMed  CAS  Google Scholar 

  25. Blume A, Lebrun C, Herdegen T, et al.: Increased brain transcription factor expression by angiotensin in genetic hypertension. Hypertension 1997, 29:592–598.

    PubMed  CAS  Google Scholar 

  26. Blume A, Seifert K, Lebrun C, et al.: Differential time course of angiotensin-induced AP-1 and Krox proteins in the rat lamina terminalis and hypothalamus. Neurosci Lett 1998, 241:87–90.

    Article  PubMed  CAS  Google Scholar 

  27. Dai WJ, Funk A, Herdegen T, et al.: Blockade of central angiotensin AT(1) receptors improves neurological outcome and reduces expression of AP-1 transcription factors after focal brain ischemia in rats. Stroke 1999, 30:2391–2398; discussion 2398–2399.

    PubMed  CAS  Google Scholar 

  28. Herdegen T, Skene P, Bähr M: The c-Jun transcription factor: bipotential mediator for neuronal death, survival and regeneration. Trends Neurosci 1997, 20:227–231.

    Article  PubMed  CAS  Google Scholar 

  29. Tsutsumi K, Strömberg C, Viswanathan, et al.: Angiotensin II receptor subtypes in fetal tissue of the rat: autoradiography, guanine nucleotide sensitivity and association with phosphoinoside hydrolysis. Endocrinology 1991, 129:1075–1082.

    Article  PubMed  CAS  Google Scholar 

  30. Grady EF, Sechi LA, Griffin CA, et al.: Expression of AT2 receptors in the developing rat fetus. J Clin Invest 1991, 88:921–933.

    PubMed  CAS  Google Scholar 

  31. Timmermans PB, Wong PC, Chiu AT, et al.: Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 1993, 45:205–251.

    PubMed  CAS  Google Scholar 

  32. Unger T, Chung O, Csikos T, et al.: Angiotensin receptors. J Hypertens 1996, 14:95–103.

    Article  Google Scholar 

  33. Matsubara H: Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal disease. Circ Res 1998, 83:1182–1191.

    PubMed  CAS  Google Scholar 

  34. Horiuchi M, Aksishita M, Dzau VJ: Recent progress in angiotensin II type 2 receptor research in the cardiovascular system. Hypertension 1999, 33:613–621.

    PubMed  CAS  Google Scholar 

  35. McMullen JR, Gibson KJ, Lumbers ER, et al.: Interactions between AT1 and AT2 receptors in uterine arteries from pregnant ewes. Eur J Pharmacol 1999, 378:195–202.

    Article  PubMed  CAS  Google Scholar 

  36. McMullen JR, Gibson KJ, Lumbers ER, et al.: Selective downregulation of AT2 receptors in uterine arteries from pregnant ewes given 24-h intravenous infusions of angiotensin II. Regul Pept 2001, 99:119–129.

    Article  PubMed  CAS  Google Scholar 

  37. Ohkubo N, Matsubara H, Nozawa Y, et al.: Angiotensin type 2 receptors are reexpressed by cardiac fibroblasts from failing myopathic hamsters hearts and inhibit cell growth and fibrillar collagen metabolism. Circulation 1997, 96:3954–3962.

    PubMed  CAS  Google Scholar 

  38. Chung O, Unger T: Angiotensin II receptor blockade and end-organ protection. Am J Hypertens 1999, 12:150–156.

    Article  Google Scholar 

  39. Kimura B, Sumners C, Phillips MI: Changes in skin angiotensin II receptors in rats during wound healing. Biochem Biophys Res Commun 1992, 187:083–1090.

    Article  Google Scholar 

  40. Nakajima M, Hutchinson HG, Fujinaga M: The angiotensin II type 2 (AT2) receptor antagonizes the growth effects of the AT1 receptor: gain-function study using gene transfer. Proc Natl Acad Sci U S A 1995, 92:10663–10667.

    Article  PubMed  CAS  Google Scholar 

  41. Nio Y, Matsubara H, Murasawa S, et al.: Regulation of gene transcription of angiotensin II receptor subtypes in myocardial infarction. J Clin Invest 1995, 95:46–54.

    PubMed  CAS  Google Scholar 

  42. Zhu YZ, Zhu YC, Li J, et al.: Effects of losartan on hemodynamic parameters and angiotensin receptor mRNA levels of rat heart after myocardial infarction. J Renin Angiotensin Aldosterone Syst 2000, 1:257–262.

    PubMed  CAS  Google Scholar 

  43. Viswanathan M, Saavedra JM: Expression of angiotensin AT2 receptors in the rat brain during wound healing. Peptide 1992, 13:783–786.

    Article  CAS  Google Scholar 

  44. Gallinat S, Yu M, Dorst A, et al.: Sciatic nerve transection evokes lasting up-regulation of angiotensin AT 2 and AT 1 receptor mRNA in adult rat dorsal root ganglia and sciatic nerves. Mol Brain Res 1998, 57:111–122.

    Article  PubMed  CAS  Google Scholar 

  45. Lucius R, Gallinat S, Rosenstiel P, et al.: The angiotensin II type 2 (AT2) receptor promotes axonal regeneration in the optic nerve of adult rats. J Exp Med 1998, 188:661–670. A seminal paper on the effect of the AT2 receptor on nerve regeneration in vivo.

    Article  PubMed  CAS  Google Scholar 

  46. Stoll M, Stechelings UM, Paul M, et al.: The angiotensin AT2 receptor mediates inhibition of cell prolilferation in coronary endothelial cells. J Clin Invest 1995, 95:651–657.

    Article  PubMed  CAS  Google Scholar 

  47. Laflamme L, DeGasparo M, Gallo JM, et al.: Angiotensin II induction of neurite outgrowth by AT2 receptors in NG 108-15 cells. J Biol Chem 1996, 271:22729–22735.

    Article  PubMed  CAS  Google Scholar 

  48. Meffert S, Stoll M, Steckelings UM, et al.: The angiotensin AT2 receptor inhibits proliferation and promotes differentiation in PC12W cells. Mol Cell Endocrinol 1996, 122:59–67.

    Article  PubMed  CAS  Google Scholar 

  49. Gallinat S, Csikos T, Meffert S, et al.: The angiotensin AT2 receptor mediates downregulation of neurofilament M in PC12 W cells. Neurosci Lett 1997, 227:29–32.

    Article  PubMed  CAS  Google Scholar 

  50. Stroth U, Mefferts S, Gallinat S: Angiotensin II and NGF differentially influence microtubule proteins in PC12W cells: role of the AT2 receptor. Mol Brain Res 1998, 53:187–195.

    Article  PubMed  CAS  Google Scholar 

  51. Buisson B, Bottani SP, de Gasparo M, et al.: The angiotensin AT2 receptor modulates T-type calcium current in nondifferentiated NG108-15 cells. FEBS Lett 1992, 309:161–164.

    Article  PubMed  CAS  Google Scholar 

  52. Buisson B, Laflamme L, Bottani SP, et al.: A G-protein is involved in the angiotensin AT2 receptor inhibition of the T-type Ca2+ current in non-differentiated NG 108-15 cells. J Biol Chem 1995, 270:1670–1674.

    Article  PubMed  CAS  Google Scholar 

  53. Kater SB, Mills LR: Regulation of growth cone behavior by calcium. Neuroscience 1991, 11:891–899.

    PubMed  CAS  Google Scholar 

  54. Lucius R, Gallinat S, Busche S: Beyond blood pressure: new roles for angiotensin II. Cell Mol Life Sci 1999, 56:1008–1019.

    Article  PubMed  CAS  Google Scholar 

  55. Gallinat S, Busch S, Schütze S, et al.: AT2 receptor stimulation induces generation of ceramides in PC12W cells. FEBS Lett 1999, 443:75–79.

    Article  PubMed  CAS  Google Scholar 

  56. Tanaka M, Ohnishi J, Ozawa Y: Characterization of angiotensin II receptor type 2 during differentiation and apoptosis of rat ovarian cultured granulosa cells. Biochem Biophys Res Commun 1995, 207:593–598.

    Article  PubMed  CAS  Google Scholar 

  57. Lucius R, Gallinat S, Rosenstiel P, et al.: The angiotensin II type 2 (AT2) receptor promotes axonal regeneration in the optic nerve of adult rats. J Exp Med 1998, 188:661–670.

    Article  PubMed  CAS  Google Scholar 

  58. Reinecke K, Lucius R, Reinecke A, et al.: Angiotensin II accelerates functional recovery in the rat sciatic nerve in vivo: role of the AT2 receptor and the transcription factor NF-kappaB. FASEB J 2003, 17:2094–2096. A recent paper on functional aspects of Ang II in nerve regeneration.

    PubMed  CAS  Google Scholar 

  59. Bleuel A, de Gasparo M, Whitebread S, et al.: Regulation of protease nexin-1 expression in cultured Schwann cells is mediated by angiotensin II receptors. J Neurosci 1995, 15:750–761.

    PubMed  CAS  Google Scholar 

  60. Houenou LJ, Turner PL, Li L, et al.: A serine protease inhibitor, protease nexin-1, rescues motoneurons from naturally occurring and axotomy-induced cell death. Proc Natl Acad Sci U S A 1995, 92:895–899.

    Article  PubMed  CAS  Google Scholar 

  61. Yamada T, Horiuchi M, Dazau VJ: Angiotensin II type 2 receptor dephosphorylates Bcl-2 by activating mitogenactivated protein kinase phosphatase-I and induces apoptosis. J Biol Chem 1997, 272:19022–19026.

    Article  PubMed  Google Scholar 

  62. Stroth U, Blume A, Mielke K, et al.: Angiotensin AT2-receptor stimulates ERK1 and ERK2 in quiescent but inhibits ERK in NGF-stimulated PC12W cells. Mol Brain Res 2000, 78:175–180.

    Article  PubMed  CAS  Google Scholar 

  63. Kummer JL, Rao PK, Heidrich KA: Apoptosis induced by withdrawal of trophic factors is mediated by p 38 mitogenactivated protein kinase. J Biol Chem 1997, 272:20490–20494.

    Article  PubMed  CAS  Google Scholar 

  64. Zohn IE, Yu H, Li X, et al.: Angiotensin II stimulates calciumdependent activation of c-Jun N-terminal kinase. Mol Cell Biol 1995, 15:6160–6168.

    PubMed  CAS  Google Scholar 

  65. Lehtonen JY, Horiuchi M, Daviet L, et al.: Activation of the de novo biosynthesis of sphingolipids mediates angiotensin II type 2 receptor-induced-apoptosis. J Biol Chem 1999, 274:16901–16906.

    Article  PubMed  CAS  Google Scholar 

  66. Inada Y, Wada T, Ojima M, et al.: Protective effects of candesartan cilexetil (TCV-116) against stroke, kidney dysfunction and cardiac hypertrophy in stroke-prone spontaneously hypertensive rats. Clin Exp Hypertens 1997, 19:1079–1099.

    Article  PubMed  CAS  Google Scholar 

  67. Nishimura Y, Ito T, Saavedra JM: Angiotensin II AT1 blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats. Stroke 2000, 31:2478–2486.

    PubMed  CAS  Google Scholar 

  68. Xu J, Culman J, Blume A, et al.: Treatment with telmisartan and lithium for stroke-prone spontaneously hypertensive rats survival study [abstract 255]. Naunyn Schmiedebergs Arch Pharmacol 2002, 365(Suppl1):R67.

    Google Scholar 

  69. Groth W, Blume A, Gohlke P, et al.: Chronic treatment with candesartan improves recovery from focal cerebral ischaemia in rats. J Hypertens 2003, 21:2175–2182. A recent paper on the effect of AT1 blockade on stroke outcome.

    Article  PubMed  CAS  Google Scholar 

  70. Brdon J, Kaiser S, Hagemann A, et al.: Candesartan administered after ischemic injury improves the recovery from stroke [abstract]. Dtsch Med Wochenschr 2003, 128:166.

    Google Scholar 

  71. Gohlke P, Weiss S, Jansen A, et al.: AT1 receptor antagonist telmisartan administered peripherally inhibits central responses to angiotensin II in conscious rats. Pharmacol Exp Ther 2001, 298:62–70.

    CAS  Google Scholar 

  72. Gohlke P, von Kügelgen S, Jürgensen T, et al.: Effects of orally applied candesartan cilexetil on central responses to angiotensins II in conscious rats. J Hypertens 2002, 20:909–918.

    Article  PubMed  CAS  Google Scholar 

  73. Gohlke P, Kox T, Jürgensen T, et al.: Peripherally applied candesartan inhibits central responses to angiotensin II in conscious rats. Naunyn-Schmiedebergs Arch Pharmacol 2002, 265:477–483.

    Google Scholar 

  74. Culman J, von Heyer C, Piepenburg B, et al.: Effects of systemic treatment with irbesartan and losartan on central responses to angiotensin II in conscious, normotensive rats. Eur J Pharmacol 1999, 367:255–265.

    Article  PubMed  CAS  Google Scholar 

  75. Blume A, Funk A, Gohlke P, et al.: AT2 receptor inhibition in the rat brain reverses the beneficial effects of AT1 receptor blockade on neurological outcome after focal brain ischemia [abstract]. Hypertens 2000, 36:656.

    Google Scholar 

  76. The Heart Outcomes Prevention Evaluation Study Investigators: Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med 2000, 342:145–153.

    Article  Google Scholar 

  77. Staessen JA, Gasowski J, Wang JG, et al.: Risks of untreated and treated isolated systolic hypertension in the elderly: meta-analysis of outcome trials. Lancet 2000, 355:865–872.

    Article  PubMed  CAS  Google Scholar 

  78. PROGRESS Collaborative Group: Randomized trial of a perindopril-based blood-pressure-lowering regimen among 6105 individuals with previous stroke or transient ischaemic attack. Lancet 2001, 358:1033–1041.

    Article  Google Scholar 

  79. The European Trial on Reduction of Cardiac Events with Perindopril in Stable Coronary Artery Disease Investigators: Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: randomised, double blind, placebo-controlled, multicentre trial (the EUROPA study). Lancet 2003, 362:782–788.

    Article  CAS  Google Scholar 

  80. Wing LM, Reid CM, Ryan P, et al.: Second Australian National Blood Pressure Study Group: a comparison of outcomes with angiotensin-converting-enzyme inhibitors and diuretics for hypertension in the elderly. N Engl J Med 2003, 348:583–592.

    Article  PubMed  CAS  Google Scholar 

  81. Hansson L, Lindholm LH, Niskanen L, et al.: Effect of angiotensin-converting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: the Captopril Prevention Project (CAPPP) randomised trial. Lancet 1999, 353:611–616.

    Article  PubMed  CAS  Google Scholar 

  82. Dahlöf B, Devereux RB, Kjeldsen SE, et al.: Cardiovascular morbidity and mortality in the Losartan Intervention for Endpoint Reduction in Hypertension Study (LIFE): a randomised trial against atenolol. The LIFE Study Group. Lancet 359:995–1003. A seminal AT1 blocker trial.

  83. Lithell H, Hansson L, Skoog I, et al.: The Study on Cognition and Prognosis in the Elderly (SCOPE): principal results of a randomized double-blind intervention trial. J Hypertens 2003, 21:875–886.

    Article  PubMed  CAS  Google Scholar 

  84. Schrader J, Luders S, Kulschewski A, et al.: The ACCESS Study: evaluation of Acute Candesartan Cilexetil Therapy in Stroke Survivors. Stroke 2003, 34:1699–1703.

    Article  PubMed  Google Scholar 

  85. Gohlke P, Schölkens BA: ACE inhibitors: pharmacology. In Handbook of Experimental Pharmacology 163/II. Angiotensin, Vol. II. Edited by Unger T, Schölkens BA. Berlin, Heidelberg, New York: Springer Verlag; 2004:375–413. The standard handbook on angiotensin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thöne-Reineke, C., Zimmermann, M., Neumann, C. et al. Are angiotensin receptor blockers neuroprotective?. Current Science Inc 6, 257–266 (2004). https://doi.org/10.1007/s11906-004-0019-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-004-0019-3

Keywords

Navigation