Skip to main content

Advertisement

Log in

Angiotensin, inflammation, hypertension, and cardiovascular disease

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

We are used to thinking of angiotensin (Ang) II as a regulatory hormone that stimulates constriction of vascular smooth muscle cells, aldosterone release from the adrenal gland, and sodium reabsorption in the renal tubule. We have also become accustomed to understanding that Ang II may be formed and may act locally as a chemokine that induces tyrosine phosphorylation, cell growth, hypertrophy, and differentiation. Viewing Ang II as an inflammatory molecule is stranger still. Nevertheless, recent evidence shows that Ang II is important in stimulating the production of reactive oxygen species and the activation of ancient inflammatory mechanisms. The nuclear factor kB (NF-kB) is pivotal to these processes. Activation of NF-kB stimulates the expression of a gene menagerie that is important to chemoattraction, expression of surface adhesion molecules, coagulation, and inflammation. In addition, Ang II has been shown to regulate cellular immune responses. It stimulates the proliferation of lymphocytes and contributes to their activation via calcineurin-related pathways. Knowledge of these mechanisms may provide additional therapeutic avenues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Alexander RW: Theodore Cooper Memorial Lecture: Hypertension and the pathogenesis of atherosclerosis, oxidative stress, and the mediation of arterial inflammatory response: a new perspective. Hypertension 1995, 25:155–161.

    PubMed  CAS  Google Scholar 

  2. Nakazono K, Watanabe N, Matsuno K, et al.: Does superoxide underlie the pathogenesis of hypertension? Proc Natl Acad Sci U S A 1991, 88:10045–10048. This study is a bit older, but the paper makes very worthwhile reading. The authors developed a fusion protein to carry superoxide dismutase to the vascular wall. With this technique, they reduced blood pressure of spontaneously hypertensive rats.

    Article  PubMed  CAS  Google Scholar 

  3. Irani K: Oxidant signaling in vascular cell growth, death, and survival: a review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling. Circ Res 2000, 87:179–183.

    PubMed  CAS  Google Scholar 

  4. Baichwal VR, Baeuerle PA: Activate NF-kB or die? Curr Biol 1997, 7:R94-R96. Major contributors to the field review the apoptotic and anti-apoptotic actions of NF-kB.

    Article  PubMed  CAS  Google Scholar 

  5. Chan TO, Rittenhouse SE, Tsichlis PN: AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem 1999, 68:965–1014.

    Article  PubMed  CAS  Google Scholar 

  6. Data SR, Brunet A, Greenberg ME: Cellular survival: a play in three akts. Genes Dev 1999, 13:2905–2927. Detailed review on Akt, a major player in NF-kB activation and cell survival. Akt has not been extensively studied in Ang II-related cellular effects, but such studies can only be a matter of time.

    Article  Google Scholar 

  7. Griendling K, Masuko UF: NADH/NADPH oxidase and vascular function. Trends Cardiovasc Med 1997, 7:301–307.

    Article  CAS  Google Scholar 

  8. Fukuhara M, Geary RL, Diz DI, et al.: Angiotensin-convering enzyme expression in human carotid artery atherosclerosis. Hypertension 2000, 35:353–359.

    PubMed  CAS  Google Scholar 

  9. Touyz RM, Schiffrin EL: Ang II-stimulated superoxide production is mediated via phospholipase D in human vascular smooth muscle cells. Hypertension 1999, 34:976–982. This study delineated Ang II-stimulated reactive oxygen species production in human cells and shed new light on the mechanisms involved.

    PubMed  CAS  Google Scholar 

  10. Viedt C, Soto U, Krieger-Brauer HI, et al.: Differential activation of mitogen-activated protein kinases in smooth muscle cells by angiotensin II: involvement of p22phox and reactive oxygen species. Arterioscler Thromb Vasc Biol 2000, 20:940–948. Important study on NADPH oxidase activation by Ang II.

    PubMed  CAS  Google Scholar 

  11. Ruiz-Ortega M, Bustos C, Hernandez-Presa MA, et al.: Angiotensin II participates in mononuclear cell recruitment in experimental immune complex nephritis through nuclear factor-kappa B activation and monocyte chemoattractant protein-1 synthesis. J Immunol 1998, 161:430–439.

    PubMed  CAS  Google Scholar 

  12. Barnes PJ, Karin M: Nuclear factor-kB — a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997, 336:1066–1078. Excellent introduction to NF-kB.

    Article  PubMed  CAS  Google Scholar 

  13. Intengan HD, Schiffrin EL: Structure and mechanical properties of resistance arteries in hypertension: role of adhesion molecules and extracellular matrix determinants. Hypertension 2000, 36:312–318.

    PubMed  CAS  Google Scholar 

  14. Brasier AR, Ron D, Tate JE, et al.: A family of constitutive C/EBP-like DNA binding proteins attenuate the IL-1 alpha induced, NF kappa B mediated trans-activation of the angiotensinogen gene acute-phase response element. EMBO J 1990, 9:3933–3944.

    PubMed  CAS  Google Scholar 

  15. Brasier AR, Li J, Copland A: Transcription factors modulating angiotensinogen gene expression in hepatocytes. Kidney Int 1994, 46:1564–1566.

    Article  PubMed  CAS  Google Scholar 

  16. Brasier AR, Li J, Wimbish KA: Tumor necrosis factor activates angiotensinogen gene expression by the Rel A transactivator. Hypertension 1996, 27:1009–1017.

    PubMed  CAS  Google Scholar 

  17. Jamaluddin M, Meng T, Sun J, et al.: Angiotensin II induces nuclear factor (NF)-kappaB1 isoforms to bind the angiotensinogen gene acute-phase response element: a stimulus-specific pathway for NF-kappaB activation. Mol Endocrinol 2000, 14:99–113.

    Article  PubMed  CAS  Google Scholar 

  18. Hernandez-Presa M, Bustos C, Ortego M, et al.: Angiotensinconverting enzyme inhibition prevents arterial nuclear factor-kappa B activation, monocyte chemoattractant protein-1 expression, and macrophage infiltration in a rabbit model of early accelerated atherosclerosis. Circulation 1997, 95:1532–1541. The authors show an important role for NF-kB in atherosclerosis, document subsequent gene expression, and show amelioration with an ACE inhibitor.

    PubMed  CAS  Google Scholar 

  19. Hernandez-Presa MA, Bustos C, Ortego M, et al.: ACE inhibitor quinapril reduces the arterial expression of NF-kappaB-dependent proinflammatory factors but not of collagen I in a rabbit model of atherosclerosis. Am J Pathol 1998, 153:1825–1837.

    PubMed  CAS  Google Scholar 

  20. The Heart Outcomes Prevention Evaluation Study Investigators: Effects of an angiotensin converting enzyme inhibitor, ramipril on death from cardiovascular causes, myocardial infarction, and stroke in high risk patients. N Engl J Med 2000, 342:145–153.

    Article  Google Scholar 

  21. Morrissey JJ, Klahr S: Rapid communication. Enalapril decreases nuclear factor kappa B activation in the kidney with ureteral obstruction. Kidney Int 1997, 52:926–933.

    Article  PubMed  CAS  Google Scholar 

  22. Ruiz-Ortega M, Lorenzo O, Egido J: Angiotensin III increases MCP-1 and activates NF-kappaB and AP-1 in cultured mesangial and mononuclear cells. Kidney Int 2000, 57:2285–2298.

    Article  PubMed  CAS  Google Scholar 

  23. Ruiz-Ortega M, Lorenzo O, Ruperez M, Konig S, et al.: Angiotensin II activates nuclear transcription factor kappaB through AT(1) and AT(2) in vascular smooth muscle cells: molecular mechanisms. Circ Res 2000, 86:1266–1272. The authors suggest a novel and rather unexpected role for the AT2 receptor.

    PubMed  CAS  Google Scholar 

  24. Bush E, Maeda N, Kuziel WA, et al.: CC chemokine receptor 2 is required for macrophage infiltration and vascular hypertrophy in angiotensin II-induced hypertension. Hypertension 2000, 36:360–363.

    PubMed  CAS  Google Scholar 

  25. Day FL, Rafty LA, Chesterman CN, et al.: Angiotensin II (ATII)-inducible platelet-derived growth factor A-chain gene expression is p42/44 extracellular signal-regulated kinase-1/ 2 and Egr-1-dependent and mediated via the ATII type 1 but not type 2 receptor. Induction by ATII antagonized by nitric oxide. J Biol Chem 1999, 274:23726–23733. Important signaling paper on immediate early gene activation by Ang II.

    Article  PubMed  CAS  Google Scholar 

  26. Schieffer B, Schieffer E, Hilfiker-Kleiner D, et al.: Expression of angiotensin II and interleukin 6 in human coronary atherosclerotic plaques: potential implications for inflammation and plaque instability. Circulation 2000, 101:1372–1378.

    PubMed  CAS  Google Scholar 

  27. Han Y, Runge MS, Brasier ARL: Angiotensin II induces interleukin-6 transcription in vascular smooth muscle cells through pleiotropic activation of nuclear factor-kappa B transcription factors. Circ Res 1999, 84:695–703.

    PubMed  CAS  Google Scholar 

  28. Kranzhofer R, Schmidt J, Pfeiffer CA, et al.: Angiotensin induces inflammatory activation of human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1999, 19:1623–1629.

    PubMed  CAS  Google Scholar 

  29. Pueyo ME, Gonzalez W, Nicoletti A, et al.: Angiotensin II stimulates endothelial vascular cell adhesion molecule-1 via nuclear factor-kappaB activation induced by intracellular oxidative stress. Arterioscler Thromb Vasc Biol 2000, 20:645–651.

    PubMed  CAS  Google Scholar 

  30. Kitamoto S, Egashira K, Kataoka C, et al.: Increased activity of nuclear factor-kB participates in cardiovascular remodeling induced by chronic inhibition of nitric oxide synthesis in rats. Circulation 2000, 102:806–812.

    PubMed  CAS  Google Scholar 

  31. Tharaux PL, Chatziantoniou C, Fakhouri F, et al.: Angiotensin II activates collagen I gene through a mechanism involving MAP/ER kinase pathway. Hypertension 2000, 36:330–336.

    PubMed  CAS  Google Scholar 

  32. Bohlender J, Fukamizu A, Lippoldt A, et al.: High human renin hypertension in transgenic rats. Hypertension 1997, 29:428–434. This study first showed the utility of a double transgenic rat model for studying Ang II-induced vascular inflammation.

    PubMed  CAS  Google Scholar 

  33. Luft FC, Mervaala EMA, Müller DN, et al.: Hypertensioninduced end-organ damage: a new transgenic approach to an old problem. Hypertension 1999, 33:212–218.

    PubMed  CAS  Google Scholar 

  34. Mervaala EMA, Müller D, Park J-K, et al.: Monocyte infiltration and adhesion molecules in a rat model of high human renin hypertension. Hypertension 1999, 33:389–395.

    PubMed  CAS  Google Scholar 

  35. Müller DN, Dechend R, Mervaala EMA, et al.: NFkB inhibition ameliorates angiotensin II-induced inflammatory damage in rats. Hypertension 2000, 35:193–201.

    PubMed  Google Scholar 

  36. Mervaala EMA, Müller DN, Park J-K, et al.: Cyclosporine A protects against angiotensin II-induced end-organ damage in double transgenic rats with human renin and angiotensinogen genes. Hypertension 2000, 35:360–366.

    PubMed  CAS  Google Scholar 

  37. Mervaala E, Müller DN, Schmidt F, et al.: Angiotensin II induces blood pressure-independent inflammation and cell proliferation in high human renin hypertension. Hypertension 2000, 35:587–594. This study successfully separated the effects of Ang II and blood pressure-related effects on the vessel wall.

    PubMed  CAS  Google Scholar 

  38. Müller D, Mervaala EMA, Dechend R, et al.: AT1 receptor blockade reduces tissue factor via inhibition of NF-kB and AP-1 in angiotensin II-induced cardiac damage. Am J Pathol 2000, 157:111–122. This study showed the molecular mechanisms of tissue factor gene activation by Ang II-induced signaling.

    PubMed  Google Scholar 

  39. Müller DN, Mervaala EMA, Schmidt F, et al.: Effect of bosentan on NF-kappaB, inflammation, and tissue factor in angiotensin II-induced end-organ damage. Hypertension 2000 36:282–290.

    PubMed  Google Scholar 

  40. Faggiotto A, Paoletti R. State-of-the-art lecture. Statins and blockers of the renin-angiotensin-system: vascular protection beyond their primary mode of action. Hypertension 1999, 34:987–996.

    PubMed  CAS  Google Scholar 

  41. Kreuzer J, Watson L, Herdegen T, et al.: Effects of HMG-CoA reductase inhibition on PDGF-and angiotensin II-mediated signal transduction: suppression of c-Jun and c-Fos in vascular smooth muscle cells in vitro. Eur J Med Res 1999, 4:135–143.

    PubMed  CAS  Google Scholar 

  42. Luo JD, Zhang WW, Zhang GP, et al.: Simvastatin inhibits cardiac hypertrophy and angiotensin-converting enzyme activity in rats with aortic stenosis. Clin Exp Pharmacol Physiol 1999, 11:903–908.

    Article  Google Scholar 

  43. Nickenig G, Baumer AT, Temur Y, et al.: Statin-sensitive dysregulated AT1 receptor function and density in hypercholesterolemic men. Circulation 1999, 100:2131–2134. Important study indicating that statins influence AT1 receptor-mediated signaling.

    PubMed  CAS  Google Scholar 

  44. Park JK, Müller DN, Mervaala EMA, et al.: Cerivastatin prevents leukocyte infiltration and iNOS induction by inhibition of ERK phosphorylation and NF-kB activation in angiotensin II-induced end-organ damage. Kidney Int 2000, 58:1420–1430.

    Article  PubMed  CAS  Google Scholar 

  45. Ortego M, Bustos C, Hernandez-Presa MA, et al.: Atorvastatin reduces NF-kappaB activation and chemokine expression in vascular smooth muscle cells. Atherosclerosis 1999, 147:253–261.

    Article  PubMed  CAS  Google Scholar 

  46. Magee T, Marshall C: New insights into the interaction of Ras with the plasma membrane. Cell 1999, 98:9–12.

    Article  PubMed  CAS  Google Scholar 

  47. Ikeda U, Shimpo M, Ohki R, et al.: Fluvastatin inhibits matrix metalloproteinase-1 expression in human vascular endothelial cells. Hypertension 2000, 36:325–329.

    PubMed  CAS  Google Scholar 

  48. Nataraj C, Oliverio MI, Mannon RB, et al.: Angiotensin II regulates cellular immune responses through a calcineurindependent pathway. J Clin Invest 1999, 104:1693–1701. Important new functions of Ang II involving lymphocyte activation that are particularly germane not only to transplantation but also to vascular diseases.

    Article  PubMed  CAS  Google Scholar 

  49. Azizi M, Rousseau A, Ezan E, et al.: Acute angiotensinconverting enzyme inhibition increases the plasma level of the natural stem cell regulator N-acetyl-seryl-aspartyllysyl-proline. J Clin Invest 1996, 97:839–844. Interesting study introducing the role of ACE in regulating the stem cell regulator Ac-SDKP.

    PubMed  CAS  Google Scholar 

  50. Azizi M, Ezan E, Nicolet L, et al.: High plasma level of Nacetyl-seryl-aspartyl-lysyl-proline: a new marker of chronic angiotensin converting enzyme inhibition. Hypertension 1997, 30:1015–1019.

    PubMed  CAS  Google Scholar 

  51. Boulanger CM, Ezan E, Masse F, et al.: The hemoregulatory peptide N-acetyl-ser-asp-lys-pro impairs angiotensin I-induced contractions in rat aorta. Eur J Pharmcol 1998, 363:153–156.

    Article  CAS  Google Scholar 

  52. Baumann H, Wang Y, Richards CD, et al.: Endotoxin-induced renal inflammatory response. Oncostatin M as a major mediator of suppressed renin expression. J Biol Chem 2000, 275:22014–22019.

    Article  PubMed  CAS  Google Scholar 

  53. Berk BC: Angiotensin II signal transduction in vascular smooth muscle: pathways activated by specific tryrosine kinases. J Am Soc Nephrol 1999, 11:S62-S68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luft, F.C. Angiotensin, inflammation, hypertension, and cardiovascular disease. Current Science Inc 3, 61–67 (2001). https://doi.org/10.1007/s11906-001-0082-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-001-0082-y

Keywords

Navigation