Skip to main content
Log in

Regulation of sodium/potassium ATPase activity: Impact on salt balance and vascular contractility

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Na+,K+-ATPase distributes ions between the intracellular and extracellular space and is responsible for total-body sodium homeostasis. The activity of this ion pump is regulated by catecholamines and peptide hormones; by the ligand of Na+,K+-ATPase, ouabain; and by direct interaction with cytoskeleton proteins. This review summarizes recent advances in the field of short-term regulation of Na+,K+-ATPase and the implications of these advances for the regulation of blood pressure. Renal Na+,K+-ATPase activity is bidirectionally regulated by natriuretic and antinatriuretic hormones, and a shift in the balance between these forces may lead to salt retention and hypertension. Dopamine plays a key role in this interactive regulation. By inhibiting vascular Na+,K+-ATPase activity, an excess of circulating ouabain may increase calcium concentration in vascular cells and lead to increased vascular contractility. Finally, mutations in cytoskeleton proteins may stimulate renal Na+,K+-ATPase activity by way of protein/protein interaction and lead to salt retention and hypertension. Abnormalities in the systems regulating Na+,K+-ATPase should be explored further in the search for the multiple causes of essential hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Lingrel JB, Kuntzweiler T: Na+,K(+)-ATPase. J Biol Chem 1994, 269:19659–19662.

    PubMed  CAS  Google Scholar 

  2. Lingrel JB, Croyle ML, Woo AL, et al.: Ligand binding sites of Na,K-ATPase. Acta Physiol Scand Suppl 1998, 643:69–77.

    PubMed  CAS  Google Scholar 

  3. Crambert G, Hasler U, Beggah AT, et al.: Transport and pharmacological properties of nine different human Na,KATPase isozymes. J Biol Chem 2000, 275:1976–1986.

    Article  PubMed  CAS  Google Scholar 

  4. Therien AG, Blostein R: Mechanisms of sodium pump regulation. Am J Physiol 2000, 279:C541-C566. Excellent review on the regulation of Na+,K+-ATPase. Also discusses aspects of long-term regulation that are not covered in the current review.

    CAS  Google Scholar 

  5. Bertorello A, Aperia A, Walaas I, et al.: Phosphorylation of the catalytic subunit of Na+,K+-ATPase inhibits the activity of the enzyme. Proc Natl Acad Sci U S A 1991, 88:11359–11362.

    Article  PubMed  CAS  Google Scholar 

  6. Fisone G, Cheng S X-J, Nairn AC, et al.: Identification of the phosphorylation site for cAMP-dependent protein kinase on Na+,K+ATPase and effects of site-directed mutagenesis. J Biol Chem 1994, 269:9368–9373.

    PubMed  CAS  Google Scholar 

  7. Logvinenko NS, Dulubova I, Fedosova N, et al.: Phosphorylation by protein kinase C of serine-23 of the α-1 subunit of rat Na+,K+-ATPase affects its conformational equilibrium. Proc Natl Acad Sci U S A 1996, 93:9132–9137.

    Article  PubMed  CAS  Google Scholar 

  8. Belusa R, Wang Z, Matsubara T, et al.: Mutation of the site of protein kinase C phosphorylation on rat a1 Na+,K+-ATPase alters regulation of intracellular Na+, pH and influences cell shape and adhesiveness. J Biol Chem 1997, 272:20179–20184.

    Article  PubMed  CAS  Google Scholar 

  9. Feschenko MS, Sweadner KJ: Structural basis for species-specific differences in the phosphorylation of Na,K-ATPase by protein kinase C. J Biol Chem 1995, 270:14072–14077.

    Article  PubMed  CAS  Google Scholar 

  10. Cheng XJ, Hoog JO, Nairn AC, et al.: Regulation of rat Na(+)-K(+)-ATPase activity by PKC is modulated by state of phosphorylation of Ser-943 by PKA. Am J Physiol 1997, 273(6 Pt 1):C1981-C1086.

    PubMed  CAS  Google Scholar 

  11. Feschenko MS, Stevenson E, Sweadner KJ: Interaction of protein kinase C and cAMP-dependent pathways in the phosphorylation of the Na,K-ATPase. J Biol Chem 2000, 275:34693–34700.

    Article  PubMed  CAS  Google Scholar 

  12. Chibalin AV, Ogimoto G, Pedemonte CH, et al.: Dopamineinduced endocytosis of Na+,K+-ATPase is initiated by phosphorylation of Ser-18 in the rat alpha subunit and is responsible for the decreased activity in epithelial cells. J Biol Chem 1999, 274:1920–1927.

    Article  PubMed  CAS  Google Scholar 

  13. Efendiev R, Bertorello AM, Pressley TA, et al.: Simultaneous phosphorylation of Ser11 and Ser 18 in the a-subunit promotes the recruitment of Na(+),K(+)-ATPase molecules to the plasma membrane. Biochemistry 2000, 39:9884–9892.

    Article  PubMed  CAS  Google Scholar 

  14. Gao J, Mathias RT, Cohen IS, et al.: Isoprenaline, Ca2+ and the Na+,K+ pump in guinea-pig ventricular myocytes. J Physiol 1992, 449:689–704.

    PubMed  CAS  Google Scholar 

  15. Cheng SX, Aizman O, Nairn AC, et al.: [Ca2+]i determines the effects of protein kinases A and C on activity of rat renal Na+,K+-ATPase. J Physiol (Lond) 1999, 518(Pt 1):37–46. Demonstrates how the level of intracellular calcium influences the functional effects of Na+,K+-ATPase phosphorylation. Resolves many previous controversies in the field and places further attention on the important crosstalk between Na+,K+-ATPase and calcium.

    Article  CAS  Google Scholar 

  16. Szent-Gyorgyi A: Chemical Physiology of Contraction in Body and Heart Muscle. New York: Academic Press; 1953.

    Google Scholar 

  17. Hamlyn JM, Ringel R, Schaeffer J, et al.: A circulating inhibitor of (Na+ +K+)ATPase associated with essential hypertension. Nature 1982, 300:650–652.

    Article  PubMed  CAS  Google Scholar 

  18. Hamlyn JM, Lu ZR, Manunta P, et al.: Observations on the nature, biosynthesis, secretion and significance of endogenous ouabain. Clin Exp Hypertens 1998, 20(5-6): 523–533.

    PubMed  CAS  Google Scholar 

  19. Schoner W: Ouabain, a new steroid hormone of adrenal gland and hypothalamus. Exp Clin Endocrinol Diabetes 2000, 108:449–454.

    Article  PubMed  CAS  Google Scholar 

  20. Kometiani P, Li J, Gnudi L, et al.: Multiple signal transduction pathways link Na+/K+-ATPase to growth-related genes in cardiac myocytes. J Biol Chem 1998, 273:15249–15256. So far the most convincing demonstration that Na+,K+-ATPase is a multifunctional protein and that it may also be a signal transducer that regulates growth and differentiation.

    Article  PubMed  CAS  Google Scholar 

  21. Xie Z, Kometiani P, Liu J, et al.: Intracellular reactive oxygen species mediate the linkage of Na+/K+-ATPase to hypertrophy and its marker genes in cardiac myocytes. J Biol Chem 1999, 274:19323–19328.

    Article  PubMed  CAS  Google Scholar 

  22. Devarajan P, Scaramuzzino DA, Morrow JS: Ankyrin binds two distinct cytoplasmic domains of Na,K-ATPase a subunit. Proc Natl Acad Sci U S A 1994, 91:2965–2969.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang Z, Devarajan P, Dorfman AL, et al.: Structure of the ankyrin-binding domain of a-Na,K-ATPase. J Biol Chem 1998, 273:18681–18684.

    Article  PubMed  CAS  Google Scholar 

  24. Cantiello HF: Changes in actin filament organization regulate Na+,K(+)-ATPase activity. Role of actin phosphorylation. Ann N Y Acad Sci 1997, 834:559–561.

    Article  PubMed  CAS  Google Scholar 

  25. Ferrandi M, Salardi S, Tripodi G, et al.: Evidence for an interaction between adducin and Na+,K+-ATPase: relation to genetic hypertension. Am J Physiol Heart Circ Physiol 1999, 277:H1338-H1349.

    CAS  Google Scholar 

  26. Mercer RW, Biemesderfer D, Bliss DP Jr, et al.: Molecular cloning and immunological characterization of the g polypeptide, a small protein associated with the Na,K-ATPase. J Cell Biol 1993, 121:579–586.

    Article  PubMed  CAS  Google Scholar 

  27. Arystarkhova E, Wetzel RK, Asinovski NK, et al.: The gamma subunit modulates Na(+) and K(+) affinity of the renal Na,K-ATPase. J Biol Chem 1999, 274:33183–33185.

    Article  PubMed  CAS  Google Scholar 

  28. Meij IC, Koenderink JB, van Bokhoven H, et al.: Dominant isolated renal magnesium loss is caused by misrouting of the Na+,K+-ATPase gamma-subunit. Nat Genet 2000, 26:265–266.

    Article  PubMed  CAS  Google Scholar 

  29. Sweadner KJ, Wetzel RK, Arystarkhova E: Genomic organization of the human FXYD2 gene encoding the g subunit of the Na, K-ATPase. Biochem Biophys Res Commun 2000, 279:196–201.

    Article  PubMed  CAS  Google Scholar 

  30. Aperia A, Bertorello A, Seri I: Dopamine causes inhibition of Na+,K+ATPase activity in rat proximal convoluted tubule segments. Am J Physiol 1987, 252:F39-F45.

    PubMed  CAS  Google Scholar 

  31. Aperia A: Intrarenal dopamine: a key signal in the interactive regulation of sodium metabolism. Annu Rev Physiol 2000, 62:621–647.

    Article  PubMed  CAS  Google Scholar 

  32. Eklöf A-C, Holtbäck U, Sundelöf M, et al.: Inhibition of COMT induces dopamine-dependent natriuresis and inhibition of proximal tubular Na+,K+-ATPase. Kidney Int 1997, 52:742–747.

    Article  PubMed  Google Scholar 

  33. Brismar H, Asghar M, Carey RM, et al.: Dopamine-induced recruitment of dopamine D1 receptors to the plasma membrane. Proc Natl Acad Sci U S A 1998, 95:5573–5578.

    Article  PubMed  CAS  Google Scholar 

  34. Holtbäck U, Brismar H, DiBona GF, et al.: Receptor recruitment: a mechanism for interactions between G protein-coupled receptors. Proc Natl Acad Sci U S A 1999, 96:7271–7275. Presents a novel concept for hormonal interaction.

    Article  PubMed  Google Scholar 

  35. Meister B, Fryckstedt J, Schalling M, et al.: Dopamine- and cAMP-regulated phosphoprotein (DARPP-32) and dopamine DA1 agonist-sensitive Na+,K+-ATPase in renal tubule cells. Proc Natl Acad Sci U S A 1989, 86:8068–8072.

    Article  PubMed  CAS  Google Scholar 

  36. Li D, Belusa R, Nowicki S, et al.: Arachidonic acid metabolic pathways regulating activity of renal Na+-K+-ATPase are age dependent. Am J Physiol Renal Physiol 2000, 278:F823-F829.

    PubMed  CAS  Google Scholar 

  37. Omata K, Abraham NG, Escalante B, et al.: Age-related changes in renal cytochrome P-450 arachidonic acid metabolism in spontaneously hypertensive rats. Am J Physiol 1992, 262:F8-F16.

    PubMed  CAS  Google Scholar 

  38. Katoh T, Sophasan S, Kurokawa K: Permissive role of dopamine in renal action of ANP in volume-expanded rats. Am J Physiol 1989, 257:F300-F309.

    PubMed  CAS  Google Scholar 

  39. Hedge SS, Chen C-J, Lokhandwala MF: Involvement of endogenous dopamine and DA-1 receptors in the renal effects of atrial natriuretic factor in rats. Clin Exp Hypertens 1991, A13:357–369.

    Article  CAS  Google Scholar 

  40. Ibarra F, Aperia A, Svensson L-B, et al.: Bidirectional regulation of Na+,K+-ATPase activity by dopamine and an a-adrenergic agonist. Proc Natl Acad Sci U S A 1993, 90:21–24.

    Article  PubMed  CAS  Google Scholar 

  41. Wang ZQ, Siragy HM, Felder RA, et al.: Intrarenal dopamine production and distribution in the rat. Physiological control of sodium excretion. Hypertension 1997, 29(1 Pt 2):228–234.

    PubMed  CAS  Google Scholar 

  42. Aperia A, Holtbäck U, Syrén M-L, et al.: Activation/deactivation of renal Na+,K+-ATPase: a final common pathway for regulation of natriuresis. FASEB J 1994, 8:436–439.

    PubMed  CAS  Google Scholar 

  43. Aperia A, Fryckstedt J, Holtbäck U, et al.: Cellular mechanisms for bi-directional regulation of tubular sodium reabsorption. Kidney Int 1996, 49:1743–1747.

    Article  PubMed  CAS  Google Scholar 

  44. Greengard P, Allen PB, Nairn AC: Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron 1999, 23:435–447.

    Article  PubMed  CAS  Google Scholar 

  45. Hussain T, Lokhandwala MF: Renal dopamine receptor function in hypertension. Hypertension 1998, 32:187–197.

    PubMed  CAS  Google Scholar 

  46. Jose PA, Eisner GM, Drago J, et al.: Dopamine receptor signaling defects in spontaneous hypertension. Am J Hypertens 1996, 9:400–405.

    Article  PubMed  CAS  Google Scholar 

  47. Nishi A, Eklöf A-C, Bertorello AM, et al.: Dopamine regulation of renal Na+,K+-ATPase activity is lacking in Dahl salt-sensitive rats. Hypertension 1993, 21:767–771.

    PubMed  CAS  Google Scholar 

  48. Sanada H, Jose PA, Hazen-Martin D, et al.: Dopamine-1 receptor coupling defect in renal proximal tubule cells in hypertension. Hypertension 1999, 33:1036–1042.

    PubMed  CAS  Google Scholar 

  49. Albrecht FE, Drago J, Felder RA, et al.: Role of the D1A dopamine receptor in the pathogenesis of genetic hypertension. J Clin Invest 1996, 97:2283–2288.

    PubMed  CAS  Google Scholar 

  50. Asico LD, Ladines C, Fuchs S, et al.: Disruption of the dopamine D3 receptor gene produces renin-dependent hypertension. J Clin Invest 1998, 102:493–498.

    PubMed  CAS  Google Scholar 

  51. Tripodi G, Valtorta F, Torielli L, et al.: Hypertension-associated point mutations in the adducin a and b subunits affect actin cytoskeleton and ion transport. J Clin Invest 1996, 97:2815–2822.

    Article  PubMed  CAS  Google Scholar 

  52. Zagato L, Modica R, Florio M, et al.: Genetic mapping of blood pressure quantitative trait loci in Milan hypertensive rats. Hypertension 2000, 36:734–739. Presents clinical evidence that mutation in a cytoskeleton protein that interacts with Na+,K+-ATPase leads to hypertension.

    PubMed  CAS  Google Scholar 

  53. Manunta P, Burnier M, D’Amico M, et al.: Adducin polymorphism affects renal proximal tubule reabsorption in hypertension. Hypertension 1999, 33:694–697.

    PubMed  CAS  Google Scholar 

  54. Blaustein MP: Endogenous ouabain: role in the pathogenesis of hypertension. Kidney Int 1996, 49:1748–1753.

    Article  PubMed  CAS  Google Scholar 

  55. Rossoni LV, Cunha V, Franca A, et al.: The influence of nanomolar ouabain on vascular pressor responses is modulated by the endothelium. J Cardiovasc Pharmacol 1999, 34:887–892.

    Article  PubMed  CAS  Google Scholar 

  56. Blaustein MP, Juhaszova M, Golovina VA: The cellular mechanism of action of cardiotonic steroids: a new hypothesis. Clin Exp Hypertens 1998, 20(5-6):691–703.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aperia, A. Regulation of sodium/potassium ATPase activity: Impact on salt balance and vascular contractility. Current Science Inc 3, 165–171 (2001). https://doi.org/10.1007/s11906-001-0032-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-001-0032-8

Keywords

Navigation