Skip to main content

Cross Talk Between Plasma Membrane Na+/Ca2+ Exchanger-1 and TRPC/Orai-Containing Channels: Key Players in Arterial Hypertension

  • Chapter
  • First Online:
Sodium Calcium Exchange: A Growing Spectrum of Pathophysiological Implications

Abstract

Arterial smooth muscle (ASM) Na+/Ca2+ exchanger type 1 (NCX1) and TRPC/Orai-containing receptor/store-operated cation channels (ROC/SOC) are clustered with α2 Na+ pumps in plasma membrane microdomains adjacent to the underlying junctional sarcoplasmic reticulum. This arrangement enables these transport proteins to function as integrated units to help regulate local Na+ metabolism, Ca2+ signaling, and arterial tone. They thus influence vascular resistance and blood pressure (BP). For instance, upregulation of NCX1 and TRPC6 has been implicated in the pathogenesis of high BP in several models of essential hypertension. The models include ouabain-induced hypertensive rats, Milan hypertensive rats, and Dahl salt-sensitive hypertensive rats, all of which exhibit elevated plasma ouabain levels. We suggest that these molecular mechanisms are key contributors to the increased vascular resistance (“whole body autoregulation”) that elevates BP in essential hypertension. Enhanced expression and function of ASM NCX1 and TRPC/Orai1-containing channels in hypertension implies that these proteins are potential targets for pharmacological intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A. Arnon, J.M. Hamlyn, M.P. Blaustein, Na+ entry via store-operated channels modulates Ca2+ signaling in arterial myocytes. Am. J. Physiol. Cell Physiol. 278, C163–C173 (2000)

    PubMed  CAS  Google Scholar 

  • Y.M. Bae, A. Kim, Y.J. Lee, W. Lim, Y.H. Noh, E.J. Kim, J. Kim, T.K. Kim, S.W. Park, B. Kim, S.I. Cho, D.K. Kim, W.K. Ho, Enhancement of receptor-operated cation current and TRPC6 expression in arterial smooth muscle cells of deoxycorticosterone acetate-salt hypertensive rats. J. Hypertens. 25, 809–817 (2007)

    Article  PubMed  CAS  Google Scholar 

  • S.G. Baryshnikov, M.V. Pulina, A. Zulian, C.I. Linde, V.A. Golovina, Orai1, a critical component of store-operated Ca2+ entry, is functionally associated with Na+/Ca2+ exchanger in proliferating human arterial myocytes. Am. J. Physiol. Cell Physiol. 297, C1103–C1112 (2009)

    Article  PubMed  CAS  Google Scholar 

  • D.J. Beech, K. Muraki, R. Flemming, Non-selective cationic channels of smooth muscle and the mammalian homologues of Drosophila TRP. J. Physiol. 559, 685–706 (2004)

    Article  PubMed  CAS  Google Scholar 

  • M.P. Blaustein, J.M. Hamlyn, Signaling mechanisms that link salt retention to hypertension: endogenous ouabain, the Na+ pump, the Na+/Ca2+ exchanger and TRPC proteins. Biochim. Biophys. Acta 1802, 1219–1229 (2010)

    Article  PubMed  CAS  Google Scholar 

  • M.P. Blaustein, W.J. Lederer, Sodium/calcium exchange: its physiological implications. Physiol. Rev. 79, 763–854 (1999)

    PubMed  CAS  Google Scholar 

  • M.P. Blaustein, J. Zhang, L. Chen, H. Song, H. Raina, S.P. Kinsey, M. Izuka, T. Iwamoto, M.I. Kotlikoff, J.B. Lingrel, K.D. Philipson, W.G. Wier, J.M. Hamlyn, The pump, the exchanger, and endogenous ouabain: signaling mechanisms that link salt retention to hypertension. Hypertension 53, 291–298 (2009)

    Article  PubMed  CAS  Google Scholar 

  • B.R. Boulanger, M.P. Lilly, J.M. Hamlyn, J. Laredo, D. Shurtleff, D.S. Gann, Ouabain is secreted by the adrenal gland in awake dogs. Am. J. Physiol. 264, E413–E419 (1993)

    PubMed  CAS  Google Scholar 

  • J.E. Brayden, S. Earley, M.T. Nelson, S. Reading, Transient receptor potential (TRP) channels, vascular tone and autoregulation of cerebral blood flow. Clin. Exp. Pharmacol. Physiol. 35, 1116–1120 (2008)

    Article  PubMed  CAS  Google Scholar 

  • M.D. Cahalan, STIMulating store-operated Ca2+ entry. Nat. Cell Biol. 11, 69–77 (2009)

    Article  Google Scholar 

  • X. Chen, D. Yang, S. Ma, H. He, Z. Luo, X. Feng, T. Cao, L. Ma, Z. Yan, D. Liu, M. Tepel, Z. Zhu, Increased rhythmicity in hypertensive arterial smooth muscle is linked to transient receptor potential canonical channels. J. Cell. Mol. Med. 14, 2483–2494 (2010)

    Article  PubMed  CAS  Google Scholar 

  • A.W. Cowley Jr., Long-term control of arterial blood pressure. Physiol. Rev. 72, 231–300 (1992)

    PubMed  Google Scholar 

  • M.J. Davis, M.A. Hill, Signaling mechanisms underlying the vascular myogenic response. Physiol. Rev. 79, 387–423 (1999)

    PubMed  CAS  Google Scholar 

  • K.M. Dibb, H.K. Graham, L.A. Venetucci, D.A. Eisner, A.W. Trafford, Analysis of cellular calcium fluxes in cardiac muscle to understand calcium homeostasis in the heart. Cell Calcium 42, 503–512 (2007)

    Article  PubMed  CAS  Google Scholar 

  • I. Dostanic-Larson, J.W. Van Huysse, J.N. Lorenz, J.B. Lingrel, The highly conserved cardiac glycoside binding site of Na+, K  +  - ATPase plays a role in blood pressure regulation. Proc. Natl. Acad. Sci. U. S. A. 102, 15845–15850 (2005)

    Article  PubMed  CAS  Google Scholar 

  • P. Eder, M. Poteser, C. Romanin, K. Groschner, Na+ entry and modulation of Na+/Ca2+ exchange as a key mechanism of TRPC signaling. Pflugers Arch. 451, 99–104 (2005)

    Article  PubMed  CAS  Google Scholar 

  • S.K. Fellner, W.J. Arendshorst, Angiotensin II-stimulated Ca2+ entry mechanisms in afferent arterioles: role of transient receptor potential canonical channels and reverse Na+/Ca2+ exchange. Am. J. Physiol. Renal Physiol. 294, F212–F219 (2008)

    Article  PubMed  CAS  Google Scholar 

  • M. Ferrandi, G. Tripodi, S. Salardi, M. Florio, R. Modica, P. Barassi, P. Parenti, A. Shainskaya, S. Karlish, G. Bianchi, P. Ferrari, Renal Na+, K  +  -ATPase in genetic hypertension. Hypertension 28, 1018–1025 (1996)

    Article  PubMed  CAS  Google Scholar 

  • M. Ferrandi, P. Manunta, S. Balzan, J.M. Hamlyn, G. Bianchi, P. Ferrari, Ouabain-like factor quantification in mammalian tissues and plasma: comparison of two independent assays. Hypertension 30, 886–896 (1997)

    Article  PubMed  CAS  Google Scholar 

  • M. Ferrandi, S. Salardi, G. Tripodi, P. Barassi, R. Rivera, P. Manunta, R. Goldshleger, P. Ferrari, G. Bianchi, S.J. Karlish, Evidence for an interaction between adducin and Na+-K+-ATPase: relation to genetic hypertension. Am. J. Physiol. 277, H1338–H1349 (1999)

    PubMed  CAS  Google Scholar 

  • R. Flemming, A. Cheong, A.M. Dedman, D.J. Beech, Discrete store-operated calcium influx into an intracellular compartment in rabbit arteriolar smooth muscle. J. Physiol. 543, 455–464 (2002)

    Article  PubMed  CAS  Google Scholar 

  • F.R. Giachini, C.W. Chiao, F.S. Carneiro, V.V. Lima, Z.N. Carneiro, A.M. Dorrance, R.C. Tostes, R.C. Webb, Increased activation of stromal interaction molecule-1/Orai-1 in aorta from hypertensive rats: a novel insight into vascular dysfunction. Hypertension 53, 409–416 (2009)

    Article  PubMed  CAS  Google Scholar 

  • V.A. Golovina, Visualization of localized store-operated calcium entry in mouse astrocytes. Close proximity to the endoplasmic reticulum. J. Physiol. 564, 737–749 (2005)

    Article  PubMed  CAS  Google Scholar 

  • J.M. Hamlyn, M.P. Blaustein, S. Bova, D.W. DuCharme, D.W. Harris, F. Mandel, W.R. Mathews, J.H. Ludens, Identification and characterization of a ouabain-like compound from human plasma. Proc. Natl. Acad. Sci. U. S. A. 88, 6259–6263 (1991)

    Article  PubMed  CAS  Google Scholar 

  • T. Iwamoto, S. Kita, J. Zhang, M.P. Blaustein, Y. Arai, S. Yoshida, K. Wakimoto, I. Komuro, T. Katsuragi, Salt-sensitive hypertension is triggered by Ca2+ entry via Na+/Ca2+ exchanger type-1 in vascular smooth muscle. Nat. Med. 10, 1193–1199 (2004)

    Article  PubMed  CAS  Google Scholar 

  • M. Juhaszova, M.P. Blaustein, Na+ pump low and high ouabain affinity alpha subunit isoforms are differently distributed in cells. Proc. Natl. Acad. Sci. U. S. A. 94, 1800–1805 (1997)

    Article  PubMed  CAS  Google Scholar 

  • M. Juhaszova, H. Shimizu, M.L. Borin, R.K. Yip, E.M. Santiago, G.E. Lindenmayer, M.P. Blaustein, Localization of the Na+/Ca2+ exchanger in vascular smooth muscle, and in neurons and astrocytes. Ann. N. Y. Acad. Sci. 779, 318–335 (1996)

    Article  PubMed  CAS  Google Scholar 

  • J. Kaide, N. Ura, T. Torii, M. Nakagawa, T. Takada, K. Shimamoto, Effects of digoxin-specific antibody Fab fragment (Digibind) on blood pressure and renal water-sodium metabolism in 5/6 reduced renal mass hypertensive rats. Am. J. Hypertens. 12, 611–619 (1999)

    Article  PubMed  CAS  Google Scholar 

  • T. Kashihara, K. Nakayama, T. Matsuda, A. Baba, T. Ishikawa, Role of Na+/Ca2+ exchanger-mediated Ca2+ entry in pressure-induced myogenic constriction in rat posterior cerebral arteries. J. Pharmacol. Sci. 110, 218–222 (2009)

    Article  PubMed  CAS  Google Scholar 

  • H. Krep, D.A. Price, P. Soszynski, Q.F. Tao, S.W. Graves, N.K. Hollenberg, Volume sensitive hypertension and the digoxin-like factor. Reversal by a Fab directed against digoxin in DOCA-salt hypertensive rats. Am. J. Hypertens. 8, 921–927 (1995)

    Article  PubMed  CAS  Google Scholar 

  • G.J. Lagaud, V. Randriamboavonjy, G. Roulm, J.C. Stoclet, R. Andriantsitohaina, Mechanism of Ca2+ release and entry during contraction elicited by norepinephrine in rat resistance arteries. Am. J. Physiol. 276, H300–H308 (1999)

    PubMed  CAS  Google Scholar 

  • M.Y. Lee, H. Song, J. Nakai, M. Ohkura, M.I. Kotlikoff, S.P. Kinsey, V.A. Golovina, M.P. Blaustein, Local subplasma membrane Ca2+ signals detected by a tethered Ca2+ sensor. Proc. Natl. Acad. Sci. U. S. A. 103, 13232–13237 (2006)

    Article  PubMed  CAS  Google Scholar 

  • F.H. Leenen, E. Harmsen, H. Yu, Dietary sodium and central vs peripheral ouabain-like activity in Dahl salt-sensitive vs salt-resistant rats. Am. J. Physiol. 267, H1916–H1920 (1994)

    PubMed  CAS  Google Scholar 

  • J. Li, P. Sukumar, C.J. Milligan, B. Kumar, Z.Y. Ma, C.M. Munsch, L.H. Jiang, K.E. Porter, D.J. Beech, Interactions, functions, and independence of plasma membrane STIM1 and TRPC1 in vascular smooth muscle cells. Circ. Res. 103, e97–e104 (2008)

    Article  PubMed  CAS  Google Scholar 

  • Y. Liao, C. Erxleben, J. Abramowitz, V. Flockerzi, M.X. Zhu, D.L. Armstrong, L. Birnbaumer, Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels. Proc. Natl. Acad. Sci. U. S. A. 105, 2895–2900 (2008)

    Article  PubMed  CAS  Google Scholar 

  • D. Liu, D. Yang, H. He, X. Chen, T. Cao, X. Feng, L. Ma, Z. Luo, L. Wang, Z. Yan, Z. Zhu, M. Tepel, Increased transient receptor potential canonical type 3 channels in vasculature from hypertensive rats. Hypertension 53, 70–76 (2009)

    Article  PubMed  CAS  Google Scholar 

  • J.N. Lorenz, E.L. Loreaux, I. Dostanic-Larson, V. Lasko, J.R. Schnetzer, R.J. Paul, J.B. Lingrel, ACTH-induced hypertension is dependent on the ouabain-binding site of the alpha2-Na+, K  +  -ATPase subunit. Am. J. Physiol. Heart Circ. Physiol. 295, H273–H280 (2008)

    Article  PubMed  CAS  Google Scholar 

  • P. Manunta, A.C. Rogowski, B.P. Hamilton, J.M. Hamlyn, Ouabain-induced hypertension in the rat: relationships among plasma and tissue ouabain and blood pressure. J. Hypertens. 12, 549–560 (1994)

    Article  PubMed  CAS  Google Scholar 

  • S.S. McDaniel, O. Platoshyn, J. Wang, Y. Yu, M. Sweeney, S. Krick, L.J. Rubin, J.X. Yuan, Capacitative Ca2+ entry in agonist- induced pulmonary vasoconstriction. Am. J. Physiol. Lung Cell. Mol. Physiol. 280, L870–L880 (2001)

    PubMed  CAS  Google Scholar 

  • M.T. Nelson, J.B. Patlak, J.F. Worley, N.B. Standen, Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am. J. Physiol. 259, C3–C18 (1990)

    PubMed  CAS  Google Scholar 

  • L.C. Ng, D. Ramduny, J.A. Airey, C.A. Singer, P.S. Keller, X.M. Shen, H. Tian, M. Valencik, J.R. Hume, Orai1 interacts with STIM1 and mediates capacitative Ca2+ entry in mouse pulmonary arterial smooth muscle cells. Am. J. Physiol. Cell Physiol. 299, C1079–C1090 (2010)

    Article  PubMed  Google Scholar 

  • B. Nilius, G. Owsianik, T. Voets, J.A. Peters, Transient receptor potential cation channels in disease. Physiol. Rev. 87, 165–217 (2007)

    Article  PubMed  CAS  Google Scholar 

  • W.J. O’Brien, J.B. Lingrel, E.T. Wallick, Ouabain binding kinetics of the rat alpha two and alpha three isoforms of the sodium-potassium adenosine triphosphate. Arch. Biochem. Biophys. 310, 32–39 (1994)

    Article  PubMed  Google Scholar 

  • D. Poburko, K. Potter, E. van Breemen, N. Fameli, C.H. Liao, O. Basset, U.T. Ruegg, C. van Breemen, Mitochondria buffer NCX-mediated Ca2+-entry and limit its diffusion into vascular smooth muscle cells. Cell Calcium 40, 359–371 (2006)

    Article  PubMed  CAS  Google Scholar 

  • D. Poburko, C.H. Liao, V.S. Lemos, E. Lin, Y. Maruyama, W.C. Cole, C. van Breemen, Transient receptor potential channel 6- mediated, localized cytosolic [Na+] transients drive Na+/Ca2+ exchanger-mediated Ca2+ entry in purinergically stimulated aorta smooth muscle cells. Circ. Res. 101, 1030–1038 (2007)

    Article  PubMed  CAS  Google Scholar 

  • M. Potier, J.C. Gonzalez, R.K. Motiani, I.F. Abdullaev, J.M. Bisaillon, H.A. Singer, M. Trebak, Evidence for STIM1- and Orai1- dependent store-operated calcium influx through ICRAC in vascular smooth muscle cells: role in proliferation and migration. FASEB J. 23, 2425–2437 (2009)

    Article  PubMed  CAS  Google Scholar 

  • M.V. Pulina, A. Zulian, R. Berra-Romani, O. Beskina, A. Mazzocco-Spezzia, S.G. Baryshnikov, I. Papparella, J.M. Hamlyn, M.P. Blaustein, V.A. Golovina, Up-regulation of Na+ and Ca2+ transporters in arterial smooth muscle from ouabain hypertensive rats. Am. J. Physiol. Heart Circ. Physiol. 298, H263–H274 (2010)

    Article  PubMed  CAS  Google Scholar 

  • C. Rosker, A. Graziani, M. Lukas, P. Eder, M.X. Zhu, C. Romanin, K. Groschner, Ca2+ signaling by TRPC3 involves Na+ entry and local coupling to the Na+/Ca2+ exchanger. J. Biol. Chem. 279, 13696–13704 (2004)

    Article  PubMed  CAS  Google Scholar 

  • G. Rossi, P. Manunta, J.M. Hamlyn, E. Pavan, R. De Toni, A. Semplicini, A.C. Pessina, Immunoreactive endogenous ouabain in primary aldosteronism and essential hypertension: relationship with plasma renin, aldosterone and blood pressure levels. J. Hypertens. 13, 1181–1191 (1995)

    Article  PubMed  CAS  Google Scholar 

  • K.M. Sanders, Invited review: mechanisms of calcium handling in smooth muscles. J. Appl. Physiol. 91, 1438–1449 (2001)

    PubMed  CAS  Google Scholar 

  • J.R. Shah, J. Laredo, B.P. Hamilton, J.M. Hamlyn, Different signaling pathways mediate stimulated secretions of endogenous ouabain and aldosterone from bovine adrenocortical cells. Hypertension 31, 463–468 (1998)

    Article  PubMed  CAS  Google Scholar 

  • D.A. Shelly, S. He, A. Moseley, C. Weber, M. Stegemeyer, R.M. Lynch, J. Lingrel, R.J. Paul, Na+ pump alpha 2-isoform specifically couples to contractility in vascular smooth muscle: evidence from gene-targeted neonatal mice. Am. J. Physiol. Cell Physiol. 286, C813–C820 (2004)

    Article  PubMed  CAS  Google Scholar 

  • A.V. Somlyo, C. Franzini-Armstrong, New views of smooth muscle structure using freezing, deep-etching and rotary shadowing. Experientia 41, 841–856 (1985)

    Article  PubMed  CAS  Google Scholar 

  • H. Song, M.Y. Lee, S.P. Kinsey, D.J. Weber, M.P. Blaustein, An N-terminal sequence targets and tethers Na+ pump alpha2 subunits to specialized plasma membrane microdomains. J. Biol. Chem. 281, 12929–12940 (2006)

    Article  PubMed  CAS  Google Scholar 

  • S. Taniguchi, K. Furukawa, S. Sasamura, Y. Ohizumi, K. Seya, S. Motomura, Gene expression and functional activity of sodium/calcium exchanger enhanced in vascular smooth muscle cells of spontaneously hypertensive rats. J. Cardiovasc. Pharmacol. 43, 629–637 (2004)

    Article  PubMed  CAS  Google Scholar 

  • C. van Breemen, Q. Chen, I. Laher, Superficial buffer barrier function of smooth muscle sarcoplasmic reticulum. Trends Pharmacol. Sci. 16, 98–105 (1995)

    Article  PubMed  Google Scholar 

  • D.G. Welsh, A.D. Morielli, M.T. Nelson, J.E. Brayden, Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ. Res. 90, 248–250 (2002)

    Article  PubMed  CAS  Google Scholar 

  • M.M. Wu, J. Buchanan, R.M. Luik, R.S. Lewis, Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J. Cell Biol. 174, 803–813 (2006)

    Article  PubMed  CAS  Google Scholar 

  • A.V. Yeromin, S.L. Zhang, W. Jiang, Y. Yu, O. Safrina, M.D. Cahalan, Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443, 226–229 (2006)

    Article  PubMed  CAS  Google Scholar 

  • Y. Yu, I. Fantozzi, C.V. Remillard, J.W. Landsberg, N. Kunichika, O. Platoshyn, D.D. Tigno, P.A. Thistlethwaite, L.J. Rubin, J.X. Yuan, Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. Proc. Natl. Acad. Sci. U. S. A. 101, 13861–13866 (2004)

    Article  PubMed  CAS  Google Scholar 

  • Y. Yu, S.H. Keller, C.V. Remillard, O. Safrina, A. Nicholson, S.L. Zhang, W. Jiang, N. Vangala, J.W. Landsberg, J.Y. Wang, P.A. Thistlethwaite, R.N. Channick, I.M. Robbins, J.E. Loyd, H.A. Ghofrani, F. Grimminger, R.T. Schermuly, M.D. Cahalan, L.J. Rubin, J.X. Yuan, A functional single-nucleotide ­polymorphism in the TRPC6 gene promoter associated with idiopathic pulmonary arterial hypertension. Circulation 119, 2313–2322 (2009)

    Article  PubMed  CAS  Google Scholar 

  • J.P. Yuan, M.S. Kim, W. Zeng, D.M. Shin, G. Huang, P.F. Worley, S. Muallem, TRPC channels as STIM1-regulated SOCs. Channels (Austin) 3, 221–225 (2009)

    Article  CAS  Google Scholar 

  • J. Zhang, M.Y. Lee, M. Cavalli, L. Chen, R. Berra-Romani, C.W. Balke, G. Bianchi, P. Ferrari, J.M. Hamlyn, T. Iwamoto, J.B. Lingrel, D.R. Matteson, W.G. Wier, M.P. Blaustein, Sodium pump alpha2 subunits control myogenic tone and blood pressure in mice. J. Physiol. 569, 243–256 (2005a)

    Article  PubMed  CAS  Google Scholar 

  • S.L. Zhang, Y. Yu, J. Roos, J.A. Kozak, T.J. Deerinck, M.H. Ellisman, K.A. Stauderman, M.D. Cahalan, STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437, 902–905 (2005b)

    Article  PubMed  CAS  Google Scholar 

  • S. Zhang, H. Dong, L.J. Rubin, J.X. Yuan, Upregulation of Na+/Ca2+ exchanger contributes to the enhanced Ca2+ entry in pulmonary artery smooth muscle cells from patients with idiopathic pulmonary arterial hypertension. Am. J. Physiol. Cell Physiol. 292, C2297–C2305 (2007a)

    Article  PubMed  CAS  Google Scholar 

  • S. Zhang, H.H. Patel, F. Murray, C.V. Remillard, C. Schach, P.A. Thistlethwaite, P.A. Insel, J.X. Yuan, Pulmonary artery smooth muscle cells from normal subjects and IPAH patients show divergent cAMP-mediated effects on TRPC expression and capacitative Ca2+ entry. Am. J. Physiol. Lung Cell. Mol. Physiol. 292, L1202–L1210 (2007b)

    Article  PubMed  CAS  Google Scholar 

  • J. Zhang, C. Ren, L. Chen, M.F. Navedo, L.K. Antos, S.P. Kinsey, T. Iwamoto, K.D. Philipson, M.I. Kotlikoff, L.F. Santana, W.G. Wier, D.R. Matteson, M.P. Blaustein, Knockout of Na+/Ca2+ exchanger in smooth muscle attenuates vasoconstriction and L-type Ca2+ channel current and lowers blood pressure. Am. J. Physiol. Heart Circ. Physiol. 298, H1472–H1483 (2010)

    Article  PubMed  CAS  Google Scholar 

  • H. Zou, P.H. Ratz, M.A. Hill, Temporal aspects of Ca2+ and myosin phosphorylation during myogenic and norepinephrine-induced arteriolar constriction. J. Vasc. Res. 37, 556–567 (2000)

    Article  PubMed  CAS  Google Scholar 

  • A. Zulian, S.G. Baryshnikov, C.I. Linde, J.M. Hamlyn, P. Ferrari, V.A. Golovina, Upregulation of Na+/Ca2+ exchanger and TRPC6 contributes to abnormal Ca2+ homeostasis in arterial smooth muscle cells from Milan hypertensive rats. Am. J. Physiol. Heart Circ. Physiol. 299, H624–H633 (2010)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera A. Golovina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pulina, M.V. et al. (2013). Cross Talk Between Plasma Membrane Na+/Ca2+ Exchanger-1 and TRPC/Orai-Containing Channels: Key Players in Arterial Hypertension. In: Annunziato, L. (eds) Sodium Calcium Exchange: A Growing Spectrum of Pathophysiological Implications. Advances in Experimental Medicine and Biology, vol 961. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4756-6_31

Download citation

Publish with us

Policies and ethics