Skip to main content
Log in

Role of adhesion molecules in vascular regulation and damage

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

The trafficking of leukocytes within the microcirculation is critical for normal immune surveillance of tissues. The process of leukocyte recruitment is tightly regulated by the sequential expression and activation of specific adhesion molecules on the surface of leukocytes and endothelial cells. These adhesion molecules mediate distinct steps in the recruitment of leukocytes in the microcirculation. The selectins mediate leukocyte rolling, whereas glycoproteins belonging to the integrin and immunoglobulin supergene families enable leukocytes to firmly adhere and emigrate in venules. The leukocyte-endothelial cell adhesion that is mediated by these adhesion molecules has been shown to alter the function of endothelial cells in all segments of the vasculature (ie, in arterioles, capillaries, and venules). Diseases such as ischemia-reperfusion, hypertension, and atherosclerosis exhibit vascular changes that are characteristic of acute or chronic inflammatory responses. These vascular alterations are associated with, and influenced by, changes in the avidity and density of adhesion molecules on the surface of either endothelial cells, leukocytes, or both. The activation and increased expression of these adhesion glycoproteins have been attributed to excessive production of cytokines and oxidants. The risk factors for cardiovascular disease, particularly diabetes mellitus and hypercholesterolemia, appear to sensitize the microvasculature to these inflammatory stimuli, thereby rendering tissues more vulnerable to the deleterious effects of ischemia and reperfusion. These findings raise the possibility of applying therapeutic strategies that are directed against adhesion molecules for the management of some cardiovascular diseases

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Korthius RJ, Anderson DC, Granger DN: Role of neutro phil-endothelial cell adhesion in inflammatory disorders. J Crit Care 1994, 9:47–71.

    Article  Google Scholar 

  2. Panés J, Granger DN: Leukocyte-endothelial cell interactions: Molecular mechanisms and implications in gastrointestinal disease. Gastroenterol 1998, 114:1066–1090. This is a comprehensive review of the several adhesion molecules that are involved in the inflammatory process as well as the influence of risk factors on the leukocyte-adhesion process.

    Article  Google Scholar 

  3. Granger DN: Physiology and pathophysiology of the microcirculation. Dialogues Cardiovasc Med 1998, 3:123–140.

    Google Scholar 

  4. Panés J, Perry M, Granger DN: Leukocyte-endothelial cell adhesion: avenues for therapeutic interventions. Br J Pharmacol 1999, 126:537–550.

    Article  PubMed  Google Scholar 

  5. Haraldsen G, Kvale D, Lien B, et al.: Cytokine-regulated expression of E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in human intestinal microvascular endothelial cells. J Immunol 1996, 156:2558–2565.

    PubMed  CAS  Google Scholar 

  6. Muller WA, Weigel SA, Deng X: PECAM-1 is required for transendothelial migration of leukocytes. J Exp Med 1993, 178:449–460.

    Article  PubMed  CAS  Google Scholar 

  7. Strauch UG, Lifka A, Gosslar U, et al.: Distinct binding specificities of integrins a4ß7 (LPAM-1), a4ß1 (VLA-4), and a IEL ß7. Int Immunol 1994, 6:263–275.

    Article  PubMed  CAS  Google Scholar 

  8. Eppihimer MJ, Granger DN: Ischemia/reperfusion-induced leukocyte endothelial interactions in postcapillary venules. Shock 1997, 30:1628–1633.

    Google Scholar 

  9. Banda MA, Lefer DJ, Granger DN: Postischemic endotheliumdependent vascular reactivity is preserved in adhesion molecule-deficient mice. Am J Physiol 1997, 273:H2721-H2725.

    PubMed  CAS  Google Scholar 

  10. Harris NR, Granger DN: Mechanisms underlying enhanced capillary function induced by platelet activating factor. Am J Physiol 1996, 270:H127-H133.

    PubMed  CAS  Google Scholar 

  11. Kurose I, Anderson DC, Miyasaka M, et al.: Molecular determinants of reperfusion-induced leukocyte adhesion and vascular protein leakage. Circ Res 1994, 74:336–343.

    PubMed  CAS  Google Scholar 

  12. Horie Y, Wolf R, Flores SC, et al.: Transgenic mice with increased copper/zinc-superoxide dismutase activity are resistant to hepatic leukostasis and capillary no-reflow after gut ischemia/reperfusion. Circ Res 1998, 83:691–696.

    PubMed  CAS  Google Scholar 

  13. Kurose I, Wolf R, Grisham MB, Granger DN: Hypercholesterolemia enhances oxidant production in mesenteric venules exposed to ischemia-reperfusion. Arterioscler Thromb Vasc Biol 1998, 18:1583–1588.

    PubMed  CAS  Google Scholar 

  14. Harris NR, Granger DN: Neutrophil enhancement of reperfusion-induced capillary fluid filtration associated with hypercholesterolemia. Am J Physiol 1996, 271:H1755-H1761.

    PubMed  CAS  Google Scholar 

  15. Kurose I, Argenbright LW, Wolf R, et al.: Ischemia/reperfusioninduced microvascular dysfunction: role of oxidants and lipid mediators. Am J Physiol 1997, 272:H2976-H2982.

    PubMed  CAS  Google Scholar 

  16. Lehr HA, Guhlmann A, Nolte D, et al.: Leukotrienes as mediators in ischemia-reperfusion in a microcirculation model of the hamster. J Clin Invest 1991, 87:2036–2041.

    PubMed  CAS  Google Scholar 

  17. Vollner B, Glasz J, Menger MD, Messmer K: Leukocytes contribute to hepatic ischemia/reperfusion via ICAM-1 mediated venular adherence. Surg 1995, 117:195–200.

    Article  Google Scholar 

  18. Kubes P, Granger DN: Leukocyte-endothelial cell interactions invoked by mast cells. Cardiovasc Res 1996, 32:699–708.

    Article  PubMed  CAS  Google Scholar 

  19. Eppihimer MJ, Russell J, Anderson DC, et al.: Modulation of P-selectin expression in the post-ischemic intestinal microvasculature. Am J Physiol 1997, 273:G1326-G1332.

    PubMed  CAS  Google Scholar 

  20. Zibari GB, Brown MF, Burney DL, et al.: Role of P-selectin in the recruitment of leukocytes in mouse liver exposed to ischemia and reperfusion. Transplant Proc 1998, 30:2327–2330.

    Article  PubMed  CAS  Google Scholar 

  21. Ichikawa H, Flores S, Kvietys PR, et al.: Molecular mechanisms of anoxia/reoxygenation-induced neutrophil adherence to cultured endothelial cells. Circ Res 1997, 26:1499–1505.

    Google Scholar 

  22. Bauer P, Russell JM, Granger DN: Role of endotoxin in intestinal reperfusion-induced expression of E-selectin. Am J Physiol 1999, 276:G479-G484.

    PubMed  CAS  Google Scholar 

  23. Harrison DG: Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest 1997, 100:2153–2157.

    Article  Google Scholar 

  24. Harris NR, Granger DN: Neutrophil enhancement of reperfusion-induced capillary fluid filtration associated with hypercholesterolemia. Am J Physiol 1996, 271:H1755-H1761.

    PubMed  CAS  Google Scholar 

  25. Kurose I, Argenbright LW, Anderson DC, et al.: Reperfusioninduced leukocyte adhesion and vascular protein leakage in normal and hypercholesterolemic rats. Am J Physiol 1997, 42:H854-H860.

    Google Scholar 

  26. Mori N, Horie Y, Gerritsen ME, Granger DN: Ischemia-reperfusion induced microvascular responses in LDL receptor -/-mice. Am J Physiol 1999, H1647–H1654.

  27. Liao L, Harris NR, Granger DN: Oxidised low density lipoproteins and microvascular responses to ischemia-reperfusion. Am J Physiol 1996, 271:H2508-H2514.

    PubMed  CAS  Google Scholar 

  28. Kubes P, Kurose I, Granger DN: Nitric oxide: An endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci 1991, 88:4651–4655.

    Article  PubMed  CAS  Google Scholar 

  29. Panés J, Kurose I, Roddriguez-Vaca D, et al.: Diabetes exacerbates inflammatory responses to ischemia-reperfusion. Circulation 1996, 93:161–167.

    PubMed  Google Scholar 

  30. Sàlàs A, Panés J, Elizalde JL, et al.: Mechanisms responsible for enhanced inflammatory response to ischemia-reperfusion in diabetes. Am J Physiol 1998, 275:1773–1781.

    Google Scholar 

  31. Sàlàs A, Panés J, Elizalde JL, et al.: Reperfusion-induced oxidative stress in diabetes: Cellular and enzymatic sources. J Leukoc Biol 1999, 66:59–66.

    PubMed  Google Scholar 

  32. Schmid-Schönbein GW, Seiffge D, DeLano FA, et al.: Leukocyte counts and activation in spontaneously hypertensive and normotensive rats. Hypertension 1991, 17:323–330.

    PubMed  Google Scholar 

  33. Suzuki H, DeLano FA, Parks DA, et al.: Xanthine oxidase activity associated with arterial blood pressure in spontaneously hypertensive rats. Proc Natl Acad Sci 1998, 95:4754–4759. This study looks at the involvement of xanthine oxidase-derived oxidants in vivo in hypertension, with the findings that oxygen free radicals contribute to the hypertensive state.

    Article  PubMed  CAS  Google Scholar 

  34. Swei A, Lacy F, DeLano FA, Schmid-Schönbein GW: Oxidative stress in the Dhal hypertensive rat. Hypertension 1997, 30:1628–1633.

    PubMed  CAS  Google Scholar 

  35. Arndt H, Smith CW, Granger DN: Leukocyte-endothelial cell adhesion in spontaneously hypertensive and normotensive rats. Hypertension 1993, 321:667–673.

    Google Scholar 

  36. Suzuki H, Schmid-Schönbein GW, Suematsu M, et al.: Impaired leukocyte-endothelial cell interaction in spontaneously hypertensive rats. Hypertension 1994, 24:719–727.

    PubMed  CAS  Google Scholar 

  37. Kurose I, Wolf R, Cerwinka W, Granger DN: Microvascular responses to ischemia/reperfusion in normotensive and hypertensive rats. Hypertension 1999, 34:212–216. This major study focuses on the role of adhesion molecules in hypertension following an inflammatory insult, with some interesting findings comparable with other studies published.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tailor, A., Granger, D.N. Role of adhesion molecules in vascular regulation and damage. Current Science Inc 2, 78–83 (2000). https://doi.org/10.1007/s11906-000-0063-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-000-0063-6

Keywords

Navigation