Skip to main content

Role of the Glycocalyx as a Barrier to Leukocyte-Endothelium Adhesion

  • Chapter
  • First Online:
Molecular, Cellular, and Tissue Engineering of the Vascular System

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1097))

Abstract

Leukocyte (WBC) to endothelial cell (EC) adhesion is a receptor-mediated process governed by the avidity and affinity of selectins, which modulate adhesive forces during WBC rolling, and integrins, which determine the strength of firm adhesion. Adhesion receptors on the EC surface lie below an endothelial surface layer (ESL) comprised of the EC glycocalyx and adsorbed proteins which, in vivo, have a thickness on the order 500 nm. The glycocalyx consists of a matrix of the glycosaminoglycans heparan sulfate and chondroitin sulfate, bound to proteoglycans and encased in hyaluronan. Together, these carbohydrates form a layer that varies in glycan content along the length of post-capillary venules where WBC-EC adhesion occurs. Thickness and porosity of the glycocalyx can vary dramatically during the inflammatory response as observed by increased infiltration and diffusion of macromolecules within the layer following activation of the EC by cytokines and chemoattractants. In models of inflammation in the living animal, the shedding of glycans and diminished thickness of the glycocalyx rapidly occur to facilitate penetration by the WBCs and adhesion to the EC. The primary effectors of glycan shedding appear to be metalloproteases and heparanase released by the EC. Retardation of glycan shedding and WBC-EC adhesion has been demonstrated in vivo using MMP inhibitors and low-molecular-weight heparin (LMWH), where the latter competitively binds to heparanase liberated by the EC. Together, these agents may serve to stabilize the ESL and provide a useful strategy for treatment of inflammatory disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamson RH, Clough G (1992) Plasma proteins modify the endothelial cell glycocalyx of frog mesenteric microvessels. J Physiol 445:473–486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alon R, Hammer DA, Springer TA (1995) Lifetime of the p-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature 374:539–542

    Article  CAS  PubMed  Google Scholar 

  • Arfors KE, Lundberg C, Lindbom L, Lundberg K, Beatty PG, Harlan JM (1987) A monoclonal antibody to the membrane glycoprotein complex cd18 inhibits polymorphonuclear leukocyte accumulation and plasma leakage in vivo. Blood 69:338–340

    CAS  PubMed  Google Scholar 

  • Arisaka T, Mitsumata M, Kawasumi M, Tohjima T, Hirose S, Yoshida Y (1995) Effects of shear stress on glycosaminoglycan synthesis in vascular endothelial cells. Ann N Y Acad Sci 748:543–554

    Article  CAS  PubMed  Google Scholar 

  • Atherton A, Born GV (1972) Quantitative investigations of the adhesiveness of circulating polymorphonuclear leucocytes to blood vessel walls. J Physiol 222:447–474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Atherton A, Born GV (1973) Relationship between the velocity of rolling granulocytes and that of the blood flow in venules. J Physiol 233:157–165

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bagge U, Karlsson R (1980) Maintenance of white blood cell margination at the passage through small venular junctions. Microvasc Res 20:92–95

    Article  CAS  PubMed  Google Scholar 

  • Bar-Ner M, Eldor A, Wasserman L, Matzner Y, Cohen IR, Fuks Z et al (1987) Inhibition of heparanase-mediated degradation of extracellular matrix heparan sulfate by non-anticoagulant heparin species. Blood 70:551–557

    CAS  PubMed  Google Scholar 

  • Becker BF, Jacob M, Leipert S, Salmon AH, Chappell D (2015) Degradation of the endothelial glycocalyx in clinical settings: searching for the sheddases. Br J Clin Pharmacol 80:389–402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bennett HS, Luft JH, Hampton JC (1959) Morphological classifications of vertebrate blood capillaries. Am J Phys 196:381–390

    CAS  Google Scholar 

  • Braide M, Amundson B, Chien S, Bagge U (1984) Quantitative studies on the influence of leukocytes on the vascular resistance in a skeletal muscle preparation. Microvasc Res 27:331–352

    Article  CAS  PubMed  Google Scholar 

  • Bruegger D, Jacob M, Rehm M, Loetsch M, Welsch U, Conzen P et al (2005) Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of Guinea pig hearts. Am J Physiol Heart Circ Physiol 289:H1993–H1999

    Article  CAS  PubMed  Google Scholar 

  • Brule S, Charnaux N, Sutton A, Ledoux D, Chaigneau T, Saffar L et al (2006) The shedding of syndecan-4 and syndecan-1 from hela cells and human primary macrophages is accelerated by sdf-1/cxcl12 and mediated by the matrix metalloproteinase-9. Glycobiology 16:488–501

    Article  CAS  PubMed  Google Scholar 

  • Cabrales P, Vazquez BY, Tsai AG, Intaglietta M (2007) Microvascular and capillary perfusion following glycocalyx degradation. J Appl Physiol 102:2251–2259

    Article  PubMed  Google Scholar 

  • Chappell D, Jacob M, Rehm M, Stoeckelhuber M, Welsch U, Conzen P et al (2008) Heparinase selectively sheds heparan sulphate from the endothelial glycocalyx. Biol Chem 389:79–82

    Article  CAS  PubMed  Google Scholar 

  • Chappell D, Jacob M, Paul O, Rehm M, Welsch U, Stoeckelhuber M et al (2009a) The glycocalyx of the human umbilical vein endothelial cell: an impressive structure ex vivo but not in culture. Circ Res 104:1313–1317

    Article  CAS  PubMed  Google Scholar 

  • Chappell D, Hofmann-Kiefer K, Jacob M, Rehm M, Briegel J, Welsch U et al (2009b) TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin. Basic Res Cardiol 104:78–89

    Article  CAS  PubMed  Google Scholar 

  • Colburn P, Kobayashi E, Buonassisi V (1994) Depleted level of heparan sulfate proteoglycan in the extracellular matrix of endothelial cell cultures exposed to endotoxin. J Cell Physiol 159:121–130

    Article  CAS  PubMed  Google Scholar 

  • Constantinescu AA, Vink H, Spaan JA (2001) Elevated capillary tube hematocrit reflects degradation of endothelial cell glycocalyx by oxidized ldl. Am J Physiol Heart Circ Physiol 280:H1051–H1057

    Article  CAS  PubMed  Google Scholar 

  • Constantinescu AA, Vink H, Spaan JA (2003) Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface. Arterioscler Thromb Vasc Biol 23:1541–1547

    Article  CAS  PubMed  Google Scholar 

  • Daniels B, Linhardt RJ, Zhang F, Mao W, Wice SM, Hiebert LM (2006) In vivo antithrombotic synergy of oral heparin and arginine: endothelial thromboresistance without changes in coagulation parameters. Thromb Haemost 95:865–872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DeLano FA, Schmid-Schonbein GW (2008) Proteinase activity and receptor cleavage: mechanism for insulin resistance in the spontaneously hypertensive rat. Hypertension 52:415–423

    Article  CAS  PubMed  Google Scholar 

  • Desjardins C, Duling BR (1990) Heparinase treatment suggests a role for the endothelial cell glycocalyx in regulation of capillary hematocrit. Am J Phys 258:H647–H654

    CAS  Google Scholar 

  • Diamond MS, Alon R, Parkos CA, Quinn MT, Springer TA (1995) Heparin is an adhesive ligand for the leukocyte integrin mac-1 (cd11b/cd1). J Cell Biol 130:1473–1482

    Article  CAS  PubMed  Google Scholar 

  • Ding K, Lopez-Burks M, Sanchez-Duran JA, Korc M, Lander AD (2005) Growth factor-induced shedding of syndecan-1 confers glypican-1 dependence on mitogenic responses of cancer cells. J Cell Biol 171:729–738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Endo K, Takino T, Miyamori H, Kinsen H, Yoshizaki T, Furukawa M et al (2003) Cleavage of syndecan-1 by membrane type matrix metalloproteinase-1 stimulates cell migration. J Biol Chem 278:40764–40770

    Article  CAS  PubMed  Google Scholar 

  • Eskens BJM, Zuurbier CJ, van Haare J, Vink H, van Teeffelen J (2013) Effects of two weeks of metformin treatment on whole-body glycocalyx barrier properties in db/db mice. Cardiovasc Diabetol 12:175

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fahraeus R (1929) The suspension stability of blood. Physiol Rev 9:241–274

    Article  Google Scholar 

  • Feng J, Weinbaum S (2000) Lubrication theory in highly compressible porous media: the mechanics of skiing, from red cells to humans. J Fluid Mech 422:281–317

    Article  CAS  Google Scholar 

  • Fitzgerald ML, Wang Z, Park PW, Murphy G, Bernfield M (2000) Shedding of syndecan-1 and -4 ectodomains is regulated by multiple signaling pathways and mediated by a timp-3-sensitive metalloproteinase. J Cell Biol 148:811–824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fux L, Ilan N, Sanderson RD, Vlodavsky I (2009) Heparanase: busy at the cell surface. Trends Biochem Sci 34:511–519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gaddi AV, Cicero AF, Gambaro G (2010) Nephroprotective action of glycosaminoglycans: why the pharmacological properties of sulodexide might be reconsidered. Int J Nephrol Renovasc Dis 3:99–105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gao L, Lipowsky HH (2010) Composition of the endothelial glycocalyx and its relation to its thickness and diffusion of small solutes. Microvasc Res 80:394–401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goldsmith HL, Spain S (1984) Margination of leukocytes in blood flow through small tubes. Microvasc Res 27:204–222

    Article  CAS  PubMed  Google Scholar 

  • Golub LM, Lee HM, Ryan ME, Giannobile WV, Payne J, Sorsa T (1998) Tetracyclines inhibit connective tissue breakdown by multiple non-antimicrobial mechanisms. Adv Dent Res 12:12–26

    Article  CAS  PubMed  Google Scholar 

  • Gotte M (2003) Syndecans in inflammation. FASEB J 17:575–591

    Article  CAS  PubMed  Google Scholar 

  • Gouverneur M, Spaan JA, Pannekoek H, Fontijn RD, Vink H (2006) Fluid shear stress stimulates incorporation of hyaluronan into endothelial cell glycocalyx. Am J Physiol Heart Circ Physiol 290:H458–H452

    Article  CAS  PubMed  Google Scholar 

  • Grant L (1973) The sticking and emigration of white blood cells in inflammation. In: Zweifach BW, Grant L, McClusky R (eds) The inflammatory process, vol 2. Academic Press, Orlando, pp 205–249

    Chapter  Google Scholar 

  • Grimm J, Keller R, de Groot PG (1988) Laminar flow induces cell polarity and leads to rearrangement of proteoglycan metabolism in endothelial cells. Thromb Haemost 60:437–441

    Article  CAS  PubMed  Google Scholar 

  • Gronski TJ, Martin RL, Kobayashi DK, Walsh BC, Holman MC, Huber M et al (1997) Hydrolysis of a broad spectrum of extracellular matrix proteins by human macrophage elastase. J Biol Chem 272:12189–12194

    Article  CAS  PubMed  Google Scholar 

  • Haas TL, Milkiewicz M, Davis SJ, Zhou AL, Egginton S, Brown MD et al (2000) Matrix metalloproteinase activity is required for activity-induced angiogenesis in rat skeletal muscle. Am J Physiol Heart Circ Physiol 279:1540–1547

    Article  Google Scholar 

  • Hafezi-Moghadam A, Thomas KL, Prorock AJ, Huo Y, Ley K (2001) L-selectin shedding regulates leukocyte recruitment. J Exp Med 193:863–872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haldenby KA, Chappell DC, Winlove CP, Parker KH, Firth JA (1994) Focal and regional variations in the composition of the glycocalyx of large vessel endothelium. J Vasc Res 31:2–9

    Article  CAS  PubMed  Google Scholar 

  • Hayward R, Scalia R, Hopper B, Appel JZ III, Lefer AM (1998) Cellular mechanisms of heparinase iii protection in rat traumatic shock. Am J Phys 275:H23–H30

    CAS  Google Scholar 

  • Henry CB, Duling BR (1999) Permeation of the luminal capillary glycocalyx is determined by hyaluronan. Am J Phys 277:H508–H514

    CAS  Google Scholar 

  • Henry CB, Duling BR (2000) TNF-alpha increases entry of macromolecules into luminal endothelial cell glycocalyx. Am J Physiol Heart Circ Physiol 279:H2815–H2823

    Article  CAS  PubMed  Google Scholar 

  • Hofmann-Kiefer KF, Kemming GI, Chappell D, Flondor M, Kisch-Wedel H, Hauser A et al (2009) Serum heparan sulfate levels are elevated in endotoxemia. Eur J Med Res 14:526–531

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoover RL, Folger R, Haering WA, Ware BR, Karnovsky MJ (1980) Adhesion of leukocytes to endothelium: roles of divalent cations, surface charge, chemotactic agents and substrate. J Cell Sci 45:73–86

    CAS  PubMed  Google Scholar 

  • House SD, Lipowsky HH (1987a) Microvascular hematocrit and red cell flux in rat cremaster muscle. Am J Phys 252:H211–H222

    CAS  Google Scholar 

  • House SD, Lipowsky HH (1987b) Leukocyte-endothelium adhesion: microhemodynamics in mesentery of the cat. Microvasc Res 34:363–379

    Article  CAS  PubMed  Google Scholar 

  • Huxley VH, Curry FE (1991) Differential actions of albumin and plasma on capillary solute permeability. Am J Phys 260:H1645–H1654

    CAS  Google Scholar 

  • Ihrcke NS, Platt JL (1996) Shedding of heparan sulfate proteoglycan by stimulated endothelial cells: evidence for proteolysis of cell-surface molecules. J Cell Physiol 168:625–637

    Article  CAS  PubMed  Google Scholar 

  • Ihrcke NS, Wrenshall LE, Lindman BJ, Platt JL (1993) Role of heparan sulfate in immune system-blood vessel interactions. Immunol Today 14:500–505

    Article  CAS  PubMed  Google Scholar 

  • Iigo Y, Suematsu M, Higashida T, Oheda J, Matsumoto K, Wakabayashi Y et al (1997) Constitutive expression of icam-1 in rat microvascular systems analyzed by laser confocal microscopy. Am J Phys 273:H138–H147

    CAS  Google Scholar 

  • Jo H, Jung SH, Kang J, Yim HB, Kang KD (2014) Sulodexide inhibits retinal neovascularization in a mouse model of oxygen-induced retinopathy. BMB Rep 47:637–642

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jung U, Norman KE, Scharffetter-Kochanek K, Beaudet AL, Ley K (1998) Transit time of leukocytes rolling through venules controls cytokine-induced inflammatory cell recruitment in vivo. J Clin Invest 102:1526–1533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kinashi T, Katagiri K (2004) Regulation of lymphocyte adhesion and migration by the small GTPase Rap1 and its effector molecule RAPL. Immunol Lett 93:1–5

    Article  CAS  PubMed  Google Scholar 

  • Klitzman B, Duling BR (1979) Microvascular hematocrit and red cell flow in resting and contracting striated muscle. Am J Phys 237:H481–H490

    CAS  Google Scholar 

  • Koenig A, Norgard-Sumnicht K, Linhardt R, Varki A (1998) Differential interactions of heparin and heparan sulfate glycosaminoglycans with the selectins. Implications for the use of unfractionated and low molecular weight heparins as therapeutic agents. J Clin Invest 101:877–889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kolarova H, Ambruzova B, Sindlerova LS, Klinke A, Kubala L (2014) Modulation of endothelial glycocalyx structure under inflammatory conditions. Mediat Inflamm 2014:694312

    Article  CAS  Google Scholar 

  • Laudanna C, Kim JY, Constantin G, Butcher EC (2002) Rapid leukocyte integrin activation by chemokines. Immunol Rev 186:37–46

    Article  CAS  PubMed  Google Scholar 

  • Laurent TC, Fraser JR (1992) Hyaluronan. FASEB J 6:2397–2404

    Article  CAS  PubMed  Google Scholar 

  • Lawrence MB, Springer TA (1991) Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell 65:859–873

    Article  CAS  PubMed  Google Scholar 

  • Lawrence MB, Springer TA (1993) Neutrophils roll on E-selectin. J Immunol 151:6338–6346

    CAS  PubMed  Google Scholar 

  • Lawrence MB, McIntire LV, Eskin SG (1987) Effect of flow on polymorphonuclear leukocyte endothelial-cell adhesion. Blood 70:1284–1290

    CAS  PubMed  Google Scholar 

  • Lever R, Hoult JRS, Page CP (2000) The effects of heparin and related molecules upon the adhesion of human polymorphonuclear leucocytes to vascular endothelium in vitro. Br J Pharmacol 129:533–540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ley K, Bullard DC, Arbones ML, Bosse R, Vestweber D, Tedder TF et al (1995) Sequential contribution of l- and p-selectin to leukocyte rolling in vivo. J Exp Med 181:669–675

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Li L, Zielke HR, Cheng L, Xiao R, Crow MT et al (1996) Increased expression of 72-kd type iv collagenase (mmp-2) in human aortic atherosclerotic lesions. Am J Pathol 148:121–128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li Q, Park PW, Wilson CL, Parks WC (2002) Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 111:635–646

    Article  CAS  PubMed  Google Scholar 

  • Lipowsky HH, Lescanic A (2013) The effect of doxycycline on shedding of the glycocalyx due to reactive oxygen species. Microvasc Res 90:80–85

    Article  CAS  PubMed  Google Scholar 

  • Lipowsky HH, Lescanic A (2017) Inhibition of inflammation induced shedding of the endothelial glycocalyx with low molecular weight heparin. Microvasc Res 112:72–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lipowsky HH, Sah R, Lescanic A (2011) Relative roles of doxycycline and cation chelation in endothelial glycan shedding and adhesion of leukocytes. Am J Physiol Heart Circ Physiol 300:H415–H422

    Article  CAS  PubMed  Google Scholar 

  • Lipowsky HH, Lescanic A, Sah R (2015) Role of matrix metalloproteases in the kinetics of leukocyte-endothelial adhesion in post-capillary venules. Biorheology 52:433–445

    Article  CAS  PubMed  Google Scholar 

  • Luft JH (1966) Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed Proc 25:1773–1783

    CAS  PubMed  Google Scholar 

  • Luo B-H, Carman CV, Springer TA (2007) Structural basis of integrin regulation and signaling. Annu Rev Immunol 25:619–647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marki A, Esko JD, Pries AR, Ley K (2015) Role of the endothelial surface layer in neutrophil recruitment. J Leukoc Biol 98:503–515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mulivor AW, Lipowsky HH (2002) Role of glycocalyx in leukocyte-endothelial cell adhesion. Am J Physiol Heart Circ Physiol 283:H1282–H1291

    Article  CAS  PubMed  Google Scholar 

  • Mulivor AW, Lipowsky HH (2004) Inflammation- and ischemia-induced shedding of venular glycocalyx. Am J Physiol Heart Circ Physiol 286:H1672–H1680

    Article  CAS  PubMed  Google Scholar 

  • Mulivor AW, Lipowsky HH (2009) Inhibition of glycan shedding and leukocyte-endothelial adhesion in postcapillary venules by suppression of matrixmetalloprotease activity with doxycycline. Microcirculation 16:657–666

    Article  CAS  PubMed  Google Scholar 

  • Ning F, Wang X, Shang L, Wang T, Lv C, Qi Z et al (2015) Low molecular weight heparin may prevent acute lung injury induced by sepsis in rats. Gene 557:88–91

    Article  CAS  PubMed  Google Scholar 

  • Nordling S, Hong J, Fromell K, Edin F, Brannstrom J, Larsson R et al (2015) Vascular repair utilising immobilised heparin conjugate for protection against early activation of inflammation and coagulation. Thromb Haemost 113:1312–1322

    Article  PubMed  Google Scholar 

  • Oduah EI, Linhardt RJ, Sharfstein ST (2016) Heparin: past, present, and future. Pharmaceuticals (Basel) 9 pii: E38

    Google Scholar 

  • Padberg JS, Wiesinger A, di Marco GS, Reuter S, Grabner A, Kentrup D et al (2014) Damage of the endothelial glycocalyx in chronic kidney disease. Atherosclerosis 234:335–343

    Article  CAS  PubMed  Google Scholar 

  • Page C (2013) Heparin and related drugs: beyond anticoagulant activity. ISRN Pharmacol 2013:910743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park PW, Reizes O, Bernfield M (2000) Cell surface heparan sulfate proteoglycans: selective regulators of ligand-receptor encounters. J Biol Chem 275:29923–29926

    Article  CAS  PubMed  Google Scholar 

  • Platt JL, Vercellotti GM, Lindman BJ, Oegema TR Jr, Bach FH, Dalmasso AP (1990) Release of heparan sulfate from endothelial cells. Implications for pathogenesis of hyperacute rejection. J Exp Med 171:1363–1368

    Article  CAS  PubMed  Google Scholar 

  • Platt JL, Dalmasso AP, Lindman BJ, Ihrcke NS, Bach FH (1991) The role of c5a and antibody in the release of heparan sulfate from endothelial cells. Eur J Immunol 21:2887–2890

    Article  CAS  PubMed  Google Scholar 

  • Platts SH, Duling BR (2004) Adenosine a3 receptor activation modulates the capillary endothelial glycocalyx. Circ Res 94:77–82

    Article  CAS  PubMed  Google Scholar 

  • Platts SH, Linden J, Duling BR (2003) Rapid modification of the glycocalyx caused by ischemia-reperfusion is inhibited by adenosine a2a receptor activation. Am J Physiol Heart Circ Physiol 284:H2360–H2367

    Article  CAS  PubMed  Google Scholar 

  • Poiseuille JLM (1835) Recherches sur les causes du mouvement du sang dans les vaisseaux capillaries. C R Acad Sci 6:554–560

    Google Scholar 

  • Potter DR, Damiano ER (2008) The hydrodynamically relevant endothelial cell glycocalyx observed in vivo is absent in vitro. Circ Res 102:770–776

    Article  CAS  PubMed  Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P, Gross JF (1990) Blood flow in microvascular networks. Experiments and simulation. Circ Res 67:826–834

    Article  CAS  PubMed  Google Scholar 

  • Pries AR, Secomb TW, Jacobs H, Sperandio M, Osterloh K, Gaehtgens P (1997) Microvascular blood flow resistance: role of endothelial surface layer. Am J Phys 273:H2272–H2279

    CAS  Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P (2000) The endothelial surface layer. Pflugers Arch 440:653–666

    Article  CAS  PubMed  Google Scholar 

  • Purushothaman A, Chen L, Yang Y, Sanderson RD (2008) Heparanase stimulation of protease expression implicates it as a master regulator of the aggressive tumor phenotype in myeloma. J Biol Chem 283:32628–32636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Purushothaman A, Uyama T, Kobayashi F, Yamada S, Sugahara K, Rapraeger AC et al (2010) Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis. Blood 115:2449–2457

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Purushothaman A, Hurst DR, Pisano C, Mizumoto S, Sugahara K, Sanderson RD (2011) Heparanase-mediated loss of nuclear syndecan-1 enhances histone acetyltransferase (hat) activity to promote expression of genes that drive an aggressive tumor phenotype. J Biol Chem 286:30377–30383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rapraeger A (1989) Transforming growth factor (type beta) promotes the addition of chondroitin sulfate chains to the cell surface proteoglycan (syndecan) of mouse mammary epithelia. J Cell Biol 109:2509–2518

    Article  CAS  PubMed  Google Scholar 

  • Rehm M, Bruegger D, Christ F, Conzen P, Thiel M, Jacob M et al (2007) Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation 116:1896–1906

    Article  CAS  PubMed  Google Scholar 

  • Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG (2007) The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 454:345–359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmid-Schonbein GW, Usami S, Skalak R, Chien S (1980) The interaction of leukocytes and erythrocytes in capillary and postcapillary vessels. Microvasc Res 19:45–70

    Article  CAS  PubMed  Google Scholar 

  • Schnitzer JE, Ulmer JB, Palade GE (1990a) A major endothelial plasmalemmal sialoglycoprotein, gp60, is immunologically related to glycophorin. Proc Natl Acad Sci U S A 87:6843–6847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schnitzer JE, Shen CP, Palade GE (1990b) Lectin analysis of common glycoproteins detected on the surface of continuous microvascular endothelium in situ and in culture: identification of sialoglycoproteins. Eur J Cell Biol 52:241–251

    CAS  PubMed  Google Scholar 

  • Secomb TW, Hsu R, Pries AR (2001) Motion of red blood cells in a capillary with an endothelial surface layer: effect of flow velocity. Am J Physiol Heart Circ Physiol 281:H629–H636

    Article  CAS  PubMed  Google Scholar 

  • Simionescu M, Simionescu N, Palade GE (1982) Differentiated microdomains on the luminal surface of capillary endothelium: distribution of lectin receptors. J Cell Biol 94:406–413

    Article  CAS  PubMed  Google Scholar 

  • Smith ML, Long DS, Damiano ER, Ley K (2003) Near-wall micro-piv reveals a hydrodynamically relevant endothelial surface layer in venules in vivo. Biophys J 85:637–645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spinale FG (2007) Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev 87:1285–1342

    Article  CAS  PubMed  Google Scholar 

  • Springer TA (1990) Adhesion receptors of the immune system. Nature 346:425–434

    Article  CAS  PubMed  Google Scholar 

  • Springer TA, Lasky LA (1991) Cell adhesion. Sticky sugars for selectins. Nature 349:196–197

    Article  CAS  PubMed  Google Scholar 

  • Squire JM, Chew M, Nneji G, Neal C, Barry J, Michel C (2001) Quasi-periodic substructure in the microvessel endothelial glycocalyx: a possible explanation for molecular filtering? J Struct Biol 136:239–255

    Article  CAS  PubMed  Google Scholar 

  • Subramanian SV, Fitzgerald ML, Bernfield M (1997) Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor receptor activation. J Biol Chem 272:14713–14720

    Article  CAS  PubMed  Google Scholar 

  • Sutera SP, Seshadri V, Croce PA, Hochmuth RM (1970) Capillary blood flow II. Deformable model cells in tube flow. Microvasc Res 2:420–433

    Article  CAS  PubMed  Google Scholar 

  • Svennevig K, Hoel T, Thiara A, Kolset S, Castelheim A, Mollnes T et al (2008) Syndecan-1 plasma levels during coronary artery bypass surgery with and without cardiopulmonary bypass. Perfusion 23:165–171

    Article  CAS  PubMed  Google Scholar 

  • Taraboletti G, D'Ascenzo S, Borsotti P, Giavazzi R, Pavan A, Dolo V (2002) Shedding of the matrix metalloproteinases mmp-2, mmp-9, and mt1-mmp as membrane vesicle-associated components by endothelial cells. Am J Pathol 160:673–680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teixeira MM, Hellewell PG (1993) Suppression by intradermal administration of heparin of eosinophil accumulation but not oedema formation in inflammatory reactions in Guinea-pig skin. Br J Pharmacol 110:1496–1500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • VanTeeffelen JW, Brands J, Jansen C, Spaan JA, Vink H (2007) Heparin impairs glycocalyx barrier properties and attenuates shear dependent vasodilation in mice. Hypertension 50:261–267

    Article  CAS  PubMed  Google Scholar 

  • Vink H, Duling BR (1996) Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ Res 79:581–589

    Article  CAS  PubMed  Google Scholar 

  • Vink H, Duling BR (2000) Capillary endothelial surface layer selectively reduces plasma solute distribution volume. Am J Physiol Heart Circ Physiol 278:H285–H289

    Article  CAS  PubMed  Google Scholar 

  • Vogl-Willis CA, Edwards IJ (2004) High-glucose-induced structural changes in the heparan sulfate proteoglycan, perlecan, of cultured human aortic endothelial cells. Biochim Biophys Acta 1672:36–45

    Article  CAS  PubMed  Google Scholar 

  • Weinbaum S, Tarbell JM, Damiano ER (2007) The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 9:121–167

    Article  CAS  PubMed  Google Scholar 

  • Wiesinger A, Peters W, Chappell D, Kentrup D, Reuter S, Pavenstadt H et al (2013) Nanomechanics of the endothelial glycocalyx in experimental sepsis. PLoS One 8:e80905

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu J, Qu D, Esmon NL, Esmon CT (2000) Metalloproteolytic release of endothelial cell protein c receptor. J Biol Chem 275:6038–6044

    Article  CAS  PubMed  Google Scholar 

  • Yaras N, Sariahmetoglu M, Bilginoglu A, Aydemir-Koksoy A, Onay-Besikci A, Turan B et al (2008) Protective action of doxycycline against diabetic cardiomyopathy in rats. Br J Pharmacol 155:1174–1184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yini S, Heng Z, Xin A, Xiaochun M (2015) Effect of unfractionated heparin on endothelial glycocalyx in a septic shock model. Acta Anaesthesiol Scand 59:160–169

    Article  CAS  PubMed  Google Scholar 

  • Young E (2008) The anti-inflammatory effects of heparin and related compounds. Thromb Res 122:743–752

    Article  CAS  PubMed  Google Scholar 

  • Yu WH, Woessner JF Jr (2000) Heparan sulfate proteoglycans as extracellular docking molecules for matrilysin (matrix metalloproteinase 7). J Biol Chem 275:4183–4191

    Article  CAS  PubMed  Google Scholar 

  • Zarbock A, Ley K (2009) Neutrophil adhesion and activation under flow. Microcirculation 16:31–42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zcharia E, Jia J, Zhang X, Baraz L, Lindahl U, Peretz T et al (2009) Newly generated heparanase knock-out mice unravel co-regulation of heparanase and matrix metalloproteinases. PLoS One 4:e5181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao Y, Chien S, Weinbaum S (2001) Dynamic contact forces on leukocyte microvilli and their penetration of the endothelial glycocalyx. Biophys J 80:1124–1140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zuurbier CJ, Demirci C, Koeman A, Vink H, Ince C (2005) Short-term hyperglycemia increases endothelial glycocalyx permeability and acutely decreases lineal density of capillaries with flowing red blood cells. J Appl Physiol 99:1471–1476

    Article  PubMed  Google Scholar 

  • Zweifach BW (1955) Structural makeup of capillary wall. Ann N Y Acad Sci 61:670–677

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH R01 HL-39286.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert H. Lipowsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lipowsky, H.H. (2018). Role of the Glycocalyx as a Barrier to Leukocyte-Endothelium Adhesion. In: Fu, B., Wright, N. (eds) Molecular, Cellular, and Tissue Engineering of the Vascular System. Advances in Experimental Medicine and Biology, vol 1097. Springer, Cham. https://doi.org/10.1007/978-3-319-96445-4_3

Download citation

Publish with us

Policies and ethics