Skip to main content
Log in

Methods of Detection of Measurable Residual Disease in AML

  • Acute Myeloid Leukemias (H Erba, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

The presence of measurable (“minimal”) residual disease (MRD) after induction and/or consolidation chemotherapy is a significant risk factor for relapse in patients with acute myeloid leukemia (AML). In recognition of the clinical significance of AML MRD, the European LeukemiaNet (ELN) recently recommended the establishment of CR-MRDNegative as a separate category of treatment response. This recommendation represents a major milestone in the integration of AML MRD testing in standard clinical practice. This review article summarizes the methodologies employed in AML MRD detection and their application in clinical studies that provide evidence supporting the clinical utility of AML MRD testing. Future MRD evaluations in AML likely will require an integrated approach combining multi-parameter flow cytometry and high-sensitivity molecular techniques applied to time points during and after completion of therapy in order to provide the most accurate and comprehensive assessment of treatment response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Cheson BD, Bennett JM, Kopecky KJ, Buchner T, Willman CL, Estey EH, et al. Revised recommendations of the international working Group for Diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol. 2003;21(24):4642–9. https://doi.org/10.1200/JCO.2003.04.036.

    Article  PubMed  Google Scholar 

  2. Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453–74. https://doi.org/10.1182/blood-2009-07-235358.

    Article  PubMed  Google Scholar 

  3. Campana D, Coustan-Smith E, Janossy G. The immunologic detection of minimal residual disease in acute leukemia. Blood. 1990;76(1):163–71.

    CAS  PubMed  Google Scholar 

  4. van Dongen JJ, Breit TM, Adriaansen HJ, Beishuizen A, Hooijkaas H. Detection of minimal residual disease in acute leukemia by immunological marker analysis and polymerase chain reaction. Leukemia. 1992;6(Suppl 1):47–59.

    PubMed  Google Scholar 

  5. Paietta E. Minimal residual disease in acute myeloid leukemia: coming of age. Hematology Am Soc Hematol Educ Program. 2012;2012:35–42. https://doi.org/10.1182/asheducation-2012.1.35.

    PubMed  Google Scholar 

  6. Grimwade D, Freeman SD. Defining minimal residual disease in acute myeloid leukemia: which platforms are ready for "prime time"? Blood. 2014;124(23):3345–55. https://doi.org/10.1182/blood-2014-05-577593.

    Article  CAS  PubMed  Google Scholar 

  7. Ossenkoppele G, Schuurhuis GJ. MRD in AML: does it already guide therapy decision-making? Hematology Am Soc Hematol Educ Program. 2016;2016(1):356–65. https://doi.org/10.1182/asheducation-2016.1.356.

    PubMed  Google Scholar 

  8. Mosna F, Capelli D, Gottardi M. Minimal residual disease in acute myeloid leukemia: still a work in progress? J Clin Med. 2017;6(6). doi:https://doi.org/10.3390/jcm6060057.

  9. • Dohner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Buchner T et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–47. doi:https://doi.org/10.1182/blood-2016-08-733196. For the first time, a major clinical guidline includes absence of MRD as a separate treatment response categary in recognition of the clinical signficance of MRD.

  10. van Lochem EG, van der Velden VH, Wind HK, te Marvelde JG, Westerdaal NA, van Dongen JJ. Immunophenotypic differentiation patterns of normal hematopoiesis in human bone marrow: reference patterns for age-related changes and disease-induced shifts. Cytometry B Clin Cytom. 2004;60(1):1–13. https://doi.org/10.1002/cyto.b.20008.

    Article  PubMed  Google Scholar 

  11. Bender JG, Unverzagt KL, Walker DE, Lee W, Van Epps DE, Smith DH, et al. Identification and comparison of CD34-positive cells and their subpopulations from normal peripheral blood and bone marrow using multicolor flow cytometry. Blood. 1991;77(12):2591–6.

    CAS  PubMed  Google Scholar 

  12. Wood BL, Arroz M, Barnett D, DiGiuseppe J, Greig B, Kussick SJ, et al. 2006 Bethesda International Consensus recommendations on the immunophenotypic analysis of hematolymphoid neoplasia by flow cytometry: optimal reagents and reporting for the flow cytometric diagnosis of hematopoietic neoplasia. Cytometry B Clin Cytom. 2007;72(Suppl 1):S14–22. https://doi.org/10.1002/cyto.b.20363.

    Article  PubMed  Google Scholar 

  13. • Wood BL. Principles of minimal residual disease detection for hematopoietic neoplasms by flow cytometry. Cytometry B Clin Cytom. 2016;90(1):47-53. Doi:https://doi.org/10.1002/cyto.b.21239. A comprehensive review of MFC based MRD detection with a focus on difference-from-normal approach.

  14. Wood B, Jevremovic D, Bene MC, Yan M, Jacobs P, Litwin V, et al. Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS—part V—assay performance criteria. Cytometry B Clin Cytom. 2013;84(5):315–23. https://doi.org/10.1002/cyto.b.21108.

    Article  PubMed  Google Scholar 

  15. Barnett D, Louzao R, Gambell P, De J, Oldaker T, Hanson CA, et al. Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS - part IV - postanalytic considerations. Cytometry B Clin Cytom. 2013;84(5):309–14. https://doi.org/10.1002/cyto.b.21107.

    Article  PubMed  Google Scholar 

  16. Tanqri S, Vall H, Kaplan D, Hoffman B, Purvis N, Porwit A, et al. Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS—part III—analytical issues. Cytometry B Clin Cytom. 2013;84(5):291–308. https://doi.org/10.1002/cyto.b.21106.

    Article  PubMed  Google Scholar 

  17. Davis BH, Dasgupta A, Kussick S, Han JY, Estrellado A, Group IIW. Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS—part II—preanalytical issues. Cytometry B Clin Cytom. 2013;84(5):286–90. https://doi.org/10.1002/cyto.b.21105.

    Article  PubMed  Google Scholar 

  18. Davis BH, Wood B, Oldaker T, Barnett D. Validation of cell-based fluorescence assays: practice guidelines from the ICSH and ICCS—part I—rationale and aims. Cytometry B Clin Cytom. 2013;84(5):282–5. https://doi.org/10.1002/cyto.b.21104.

    Article  PubMed  Google Scholar 

  19. Kalina T, Flores-Montero J, van der Velden VH, Martin-Ayuso M, Bottcher S, Ritgen M, et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia. 2012;26(9):1986–2010. https://doi.org/10.1038/leu.2012.122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. van Dongen JJ, Lhermitte L, Bottcher S, Almeida J, van der Velden VH, Flores-Montero J, et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia. 2012;26(9):1908–75. https://doi.org/10.1038/leu.2012.120.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Terstappen LW, Safford M, Konemann S, Loken MR, Zurlutter K, Buchner T, et al. Flow cytometric characterization of acute myeloid leukemia. Part II. Phenotypic heterogeneity at diagnosis. Leukemia. 1992;6(1):70–80.

    CAS  PubMed  Google Scholar 

  22. Reading CL, Estey EH, Huh YO, Claxton DF, Sanchez G, Terstappen LW, et al. Expression of unusual immunophenotype combinations in acute myelogenous leukemia. Blood. 1993;81(11):3083–90.

    CAS  PubMed  Google Scholar 

  23. Hosen N, Park CY, Tatsumi N, Oji Y, Sugiyama H, Gramatzki M, et al. CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc Natl Acad Sci U S A. 2007;104(26):11008–13. https://doi.org/10.1073/pnas.0704271104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. van Rhenen A, van Dongen GA, Kelder A, Rombouts EJ, Feller N, Moshaver B, et al. The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells. Blood. 2007;110(7):2659–66. https://doi.org/10.1182/blood-2007-03-083048.

    Article  PubMed  Google Scholar 

  25. van Rhenen A, Moshaver B, Kelder A, Feller N, Nieuwint AW, Zweegman S, et al. Aberrant marker expression patterns on the CD34+CD38- stem cell compartment in acute myeloid leukemia allows to distinguish the malignant from the normal stem cell compartment both at diagnosis and in remission. Leukemia. 2007;21(8):1700–7. https://doi.org/10.1038/sj.leu.2404754.

    Article  PubMed  Google Scholar 

  26. Jan M, Chao MP, Cha AC, Alizadeh AA, Gentles AJ, Weissman IL, et al. Prospective separation of normal and leukemic stem cells based on differential expression of TIM3, a human acute myeloid leukemia stem cell marker. Proc Natl Acad Sci U S A. 2011;108(12):5009–14. https://doi.org/10.1073/pnas.1100551108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. • Feller N, van der Velden VH, Brooimans RA, Boeckx N, Preijers F, Kelder A et al. Defining consensus leukemia-associated immunophenotypes for detection of minimal residual disease in acute myeloid leukemia in a multicenter setting. Blood cancer J. 2013;3:e129. Doi:https://doi.org/10.1038/bcj.2013.27. Study highlighting the important challenges for multiinstitutional collaborative MRD studies using multiparameter flow cytometry.

  28. Wood BL. Flow cytometric monitoring of residual disease in acute leukemia. Methods Mol Biol. 2013;999:123–36. https://doi.org/10.1007/978-1-62703-357-2_8.

    Article  CAS  PubMed  Google Scholar 

  29. Loken MR, Alonzo TA, Pardo L, Gerbing RB, Raimondi SC, Hirsch BA, et al. Residual disease detected by multidimensional flow cytometry signifies high relapse risk in patients with de novo acute myeloid leukemia: a report from Children’s Oncology Group. Blood. 2012;120(8):1581–8. https://doi.org/10.1182/blood-2012-02-408336.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Feller N, van der Pol MA, van Stijn A, Weijers GW, Westra AH, Evertse BW, et al. MRD parameters using immunophenotypic detection methods are highly reliable in predicting survival in acute myeloid leukaemia. Leukemia. 2004;18(8):1380–90. https://doi.org/10.1038/sj.leu.2403405.

    Article  CAS  PubMed  Google Scholar 

  31. Coustan-Smith E, Ribeiro RC, Rubnitz JE, Razzouk BI, Pui CH, Pounds S, et al. Clinical significance of residual disease during treatment in childhood acute myeloid leukaemia. Br J Haematol. 2003;123(2):243–52.

    Article  PubMed  Google Scholar 

  32. Kern W, Voskova D, Schoch C, Hiddemann W, Schnittger S, Haferlach T. Determination of relapse risk based on assessment of minimal residual disease during complete remission by multiparameter flow cytometry in unselected patients with acute myeloid leukemia. Blood. 2004;104(10):3078–85. https://doi.org/10.1182/blood-2004-03-1036.

    Article  CAS  PubMed  Google Scholar 

  33. Zeijlemaker W, Gratama JW, Schuurhuis GJ. Tumor heterogeneity makes AML a "moving target" for detection of residual disease. Cytometry B Clin Cytom. 2013; https://doi.org/10.1002/cytob.21134.

  34. San Miguel JF, Martinez A, Macedo A, Vidriales MB, Lopez-Berges C, Gonzalez M, et al. Immunophenotyping investigation of minimal residual disease is a useful approach for predicting relapse in acute myeloid leukemia patients. Blood. 1997;90(6):2465–70.

    CAS  PubMed  Google Scholar 

  35. San Miguel JF, Vidriales MB, Lopez-Berges C, Diaz-Mediavilla J, Gutierrez N, Canizo C, et al. Early immunophenotypical evaluation of minimal residual disease in acute myeloid leukemia identifies different patient risk groups and may contribute to postinduction treatment stratification. Blood. 2001;98(6):1746–51.

    Article  CAS  PubMed  Google Scholar 

  36. van der Velden VH, van der Sluijs-Geling A, Gibson BE, te Marvelde JG, Hoogeveen PG, Hop WC, et al. Clinical significance of flowcytometric minimal residual disease detection in pediatric acute myeloid leukemia patients treated according to the DCOG ANLL97/MRC AML12 protocol. Leukemia. 2010;24(9):1599–606. https://doi.org/10.1038/leu.2010.153.

    Article  PubMed  Google Scholar 

  37. Rubnitz JE, Inaba H, Dahl G, Ribeiro RC, Bowman WP, Taub J, et al. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. Lancet Oncol. 2010;11(6):543–52. https://doi.org/10.1016/S1470-2045(10)70090-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. • Inaba H, Coustan-Smith E, Cao X, Pounds SB, Shurtleff SA, Wang KY et al. Comparative analysis of different approaches to measure treatment response in acute myeloid leukemia. J Clin Oncol. 2012;30(29):3625-32. Doi:https://doi.org/10.1200/JCO.2011.41.5323. A comprehensive MRD study highlighting the value of MFC based MRD detection in the context of morpholoigc evaluation and assessment of AML associated gene fusions.

  39. Freeman SD, Virgo P, Couzens S, Grimwade D, Russell N, Hills RK, et al. Prognostic relevance of treatment response measured by flow cytometric residual disease detection in older patients with acute myeloid leukemia. J Clin Oncol. 2013;31(32):4123–31. https://doi.org/10.1200/JCO.2013.49.1753.

    Article  PubMed  Google Scholar 

  40. Terwijn M, van Putten WL, Kelder A, van der Velden VH, Brooimans RA, Pabst T, et al. High prognostic impact of flow cytometric minimal residual disease detection in acute myeloid leukemia: data from the HOVON/SAKK AML 42A study. J Clin Oncol. 2013;31(31):3889–97. https://doi.org/10.1200/JCO.2012.45.9628.

    Article  PubMed  Google Scholar 

  41. Kohnke T, Sauter D, Ringel K, Hoster E, Laubender RP, Hubmann M, et al. Early assessment of minimal residual disease in AML by flow cytometry during aplasia identifies patients at increased risk of relapse. Leukemia. 2015;29(2):377–86. https://doi.org/10.1038/leu.2014.186.

    Article  CAS  PubMed  Google Scholar 

  42. Loken MR. Residual disease in AML, a target that can move in more than one direction. Cytometry B Clin Cytom. 2013; https://doi.org/10.1002/cytob.21140.

  43. Kussick SJ, Wood BL. Using 4-color flow cytometry to identify abnormal myeloid populations. Arch Pathol Lab Med. 2003;127(9):1140–7. https://doi.org/10.1043/1543-2165(2003)127<1140:UCFCTI>2.0.CO;2.

    PubMed  Google Scholar 

  44. Walter RB, Gooley TA, Wood BL, Milano F, Fang M, Sorror ML, et al. Impact of pretransplantation minimal residual disease, as detected by multiparametric flow cytometry, on outcome of myeloablative hematopoietic cell transplantation for acute myeloid leukemia. J Clin Oncol. 2011;29(9):1190–7. https://doi.org/10.1200/JCO.2010.31.8121.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Walter RB, Buckley SA, Pagel JM, Wood BL, Storer BE, Sandmaier BM, et al. Significance of minimal residual disease before myeloablative allogeneic hematopoietic cell transplantation for AML in first and second complete remission. Blood. 2013;122(10):1813–21. https://doi.org/10.1182/blood-2013-06-506725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Walter RB, Gyurkocza B, Storer BE, Godwin CD, Pagel JM, Buckley SA, et al. Comparison of minimal residual disease as outcome predictor for AML patients in first complete remission undergoing myeloablative or nonmyeloablative allogeneic hematopoietic cell transplantation. Leukemia. 2015;29(1):137–44. https://doi.org/10.1038/leu.2014.173.

    Article  CAS  PubMed  Google Scholar 

  47. Chen X, Xie H, Wood BL, Walter RB, Pagel JM, Becker PS, et al. Relation of clinical response and minimal residual disease and their prognostic impact on outcome in acute myeloid leukemia. J Clin Oncol. 2015;33(11):1258–64. https://doi.org/10.1200/JCO.2014.58.3518.

    Article  PubMed  Google Scholar 

  48. Zhou Y, Othus M, Araki D, Wood BL, Radich JP, Halpern AB, et al. Pre- and post-transplant quantification of measurable ('minimal') residual disease via multiparameter flow cytometry in adult acute myeloid leukemia. Leukemia. 2016;30(7):1456–64. https://doi.org/10.1038/leu.2016.46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Araki D, Wood BL, Othus M, Radich JP, Halpern AB, Zhou Y, et al. Allogeneic hematopoietic cell transplantation for acute myeloid leukemia: time to move toward a minimal residual disease-based definition of complete remission? J Clin Oncol. 2016;34(4):329–36. https://doi.org/10.1200/JCO.2015.63.3826.

    Article  PubMed  Google Scholar 

  50. Schumacher J, Szankasi P, Kelley TW. Detection and quantification of acute myeloid leukemia-associated fusion transcripts. Methods Mol Biol. 1633;2017:151–61. https://doi.org/10.1007/978-1-4939-7142-8_10.

    Google Scholar 

  51. • Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N et al. Standardization and quality control studies of 'real-time' quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia— a Europe Against Cancer program. Leukemia. 2003;17(12):2318–57. doi:https://doi.org/10.1038/sj.leu.2403135. This study sets the standerdard for real time quantitative PCR based MRD detection in acute leukemia.

  52. Beillard E, Pallisgaard N, van der Velden VH, Bi W, Dee R, van der Schoot E, et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using 'real-time' quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR) - a Europe against cancer program. Leukemia. 2003;17(12):2474–86. https://doi.org/10.1038/sj.leu.2403136.

    Article  CAS  PubMed  Google Scholar 

  53. Preudhomme C, Philippe N, Macintyre E, Henic N, Lai JL, Jouet JP, et al. Persistence of AML1/ETO fusion mRNA in t(8;21) acute myeloid leukemia (AML) in prolonged remission: is there a consensus? Leukemia. 1996;10(1):186–8.

    CAS  PubMed  Google Scholar 

  54. Costello R, Sainty D, Blaise D, Gastaut JA, Gabert J, Poirel H, et al. Prognosis value of residual disease monitoring by polymerase chain reaction in patients with CBF beta/MYH11-positive acute myeloblastic leukemia. Blood. 1997;89(6):2222–3.

    CAS  PubMed  Google Scholar 

  55. Diverio D, Rossi V, Avvisati G, De Santis S, Pistilli A, Pane F, et al. Early detection of relapse by prospective reverse transcriptase-polymerase chain reaction analysis of the PML/RARalpha fusion gene in patients with acute promyelocytic leukemia enrolled in the GIMEMA-AIEOP multicenter "AIDA" trial. GIMEMA-AIEOP multicenter "AIDA" trial. Blood. 1998;92(3):784–9.

    CAS  PubMed  Google Scholar 

  56. Muto A, Mori S, Matsushita H, Awaya N, Ueno H, Takayama N, et al. Serial quantification of minimal residual disease of t(8;21) acute myelogenous leukaemia with RT-competitive PCR assay. Br J Haematol. 1996;95(1):85–94.

    Article  CAS  PubMed  Google Scholar 

  57. Tobal K, Yin JA. Monitoring of minimal residual disease by quantitative reverse transcriptase-polymerase chain reaction for AML1-MTG8 transcripts in AML-M2 with t(8; 21). Blood. 1996;88(10):3704–9.

    CAS  PubMed  Google Scholar 

  58. van Dongen JJ, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G, et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 concerted action: investigation of minimal residual disease in acute leukemia. Leukemia. 1999;13(12):1901–28.

    Article  PubMed  Google Scholar 

  59. Perea G, Lasa A, Aventin A, Domingo A, Villamor N, Queipo de Llano MP et al. Prognostic value of minimal residual disease (MRD) in acute myeloid leukemia (AML) with favorable cytogenetics [t(8;21) and inv(16)]. Leukemia 2006;20(1):87–94. doi:https://doi.org/10.1038/sj.leu.2404015.

  60. Corbacioglu A, Scholl C, Schlenk RF, Eiwen K, Du J, Bullinger L, et al. Prognostic impact of minimal residual disease in CBFB-MYH11-positive acute myeloid leukemia. J Clin Oncol. 2010;28(23):3724–9. https://doi.org/10.1200/JCO.2010.28.6468.

    Article  CAS  PubMed  Google Scholar 

  61. Yin JA, O'Brien MA, Hills RK, Daly SB, Wheatley K, Burnett AK. Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: results of the United Kingdom MRC AML-15 trial. Blood. 2012;120(14):2826–35. https://doi.org/10.1182/blood-2012-06-435669.

    Article  CAS  PubMed  Google Scholar 

  62. • Zhu HH, Zhang XH, Qin YZ, Liu DH, Jiang H, Chen H et al. MRD-directed risk stratification treatment may improve outcomes of t(8;21) AML in the first complete remission: results from the AML05 multicenter trial. Blood 2013;121(20):4056–4062. doi:10.1182/blood-2012-11-468348. The study highlights the signifiacne of MRD detection in optimization of diease management and improvement of clinical outcome.

  63. Jourdan E, Boissel N, Chevret S, Delabesse E, Renneville A, Cornillet P, et al. Prospective evaluation of gene mutations and minimal residual disease in patients with core binding factor acute myeloid leukemia. Blood. 2013;121(12):2213–23. https://doi.org/10.1182/blood-2012-10-462879.

    Article  CAS  PubMed  Google Scholar 

  64. Willekens C, Blanchet O, Renneville A, Cornillet-Lefebvre P, Pautas C, Guieze R, et al. Prospective long-term minimal residual disease monitoring using RQ-PCR in RUNX1-RUNX1T1-positive acute myeloid leukemia: results of the French CBF-2006 trial. Haematologica. 2016;101(3):328–35. https://doi.org/10.3324/haematol.2015.131946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang Y, DP W, Liu QF, Qin YZ, Wang JB, LP X, et al. In adults with t(8;21)AML, posttransplant RUNX1/RUNX1T1-based MRD monitoring, rather than c-KIT mutations, allows further risk stratification. Blood. 2014;124(12):1880–6. https://doi.org/10.1182/blood-2014-03-563403.

    Article  CAS  PubMed  Google Scholar 

  66. Viehmann S, Teigler-Schlegel A, Bruch J, Langebrake C, Reinhardt D, Harbott J. Monitoring of minimal residual disease (MRD) by real-time quantitative reverse transcription PCR (RQ-RT-PCR) in childhood acute myeloid leukemia with AML1/ETO rearrangement. Leukemia. 2003;17(6):1130–6. https://doi.org/10.1038/sj.leu.2402959.

    Article  CAS  PubMed  Google Scholar 

  67. Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med. 2005;352(3):254–66. https://doi.org/10.1056/NEJMoa041974.

    Article  CAS  PubMed  Google Scholar 

  68. Schnittger S, Kern W, Tschulik C, Weiss T, Dicker F, Falini B, et al. Minimal residual disease levels assessed by NPM1 mutation-specific RQ-PCR provide important prognostic information in AML. Blood. 2009;114(11):2220–31. https://doi.org/10.1182/blood-2009-03-213389.

    Article  CAS  PubMed  Google Scholar 

  69. Ivey A, Hills RK, Simpson MA, Jovanovic JV, Gilkes A, Grech A, et al. Assessment of minimal residual disease in standard-risk AML. N Engl J Med. 2016;374(5):422–33. https://doi.org/10.1056/NEJMoa1507471.

    Article  CAS  PubMed  Google Scholar 

  70. Gorello P, Cazzaniga G, Alberti F, Dell'Oro MG, Gottardi E, Specchia G, et al. Quantitative assessment of minimal residual disease in acute myeloid leukemia carrying nucleophosmin (NPM1) gene mutations. Leukemia. 2006;20(6):1103–8. https://doi.org/10.1038/sj.leu.2404149.

    Article  CAS  PubMed  Google Scholar 

  71. Chou WC, Tang JL, SJ W, Tsay W, Yao M, Huang SY, et al. Clinical implications of minimal residual disease monitoring by quantitative polymerase chain reaction in acute myeloid leukemia patients bearing nucleophosmin (NPM1) mutations. Leukemia. 2007;21(5):998–1004. https://doi.org/10.1038/sj.leu.2404637.

    CAS  PubMed  Google Scholar 

  72. Kronke J, Schlenk RF, Jensen KO, Tschurtz F, Corbacioglu A, Gaidzik VI, et al. Monitoring of minimal residual disease in NPM1-mutated acute myeloid leukemia: a study from the German-Austrian acute myeloid leukemia study group. J Clin Oncol. 2011;29(19):2709–16. https://doi.org/10.1200/JCO.2011.35.0371.

    Article  PubMed  Google Scholar 

  73. Shayegi N, Kramer M, Bornhauser M, Schaich M, Schetelig J, Platzbecker U, et al. The level of residual disease based on mutant NPM1 is an independent prognostic factor for relapse and survival in AML. Blood. 2013;122(1):83–92. https://doi.org/10.1182/blood-2012-10-461749.

    Article  CAS  PubMed  Google Scholar 

  74. Hubmann M, Kohnke T, Hoster E, Schneider S, Dufour A, Zellmeier E, et al. Molecular response assessment by quantitative real-time polymerase chain reaction after induction therapy in NPM1-mutated patients identifies those at high risk of relapse. Haematologica. 2014;99(8):1317–25. https://doi.org/10.3324/haematol.2014.104133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Balsat M, Renneville A, Thomas X, de Botton S, Caillot D, Marceau A, et al. Postinduction minimal residual disease predicts outcome and benefit from allogeneic stem cell transplantation in acute myeloid leukemia with NPM1 mutation: a study by the acute leukemia French association group. J Clin Oncol. 2017;35(2):185–93. https://doi.org/10.1200/JCO.2016.67.1875.

    Article  PubMed  Google Scholar 

  76. Inoue K, Sugiyama H, Ogawa H, Nakagawa M, Yamagami T, Miwa H, et al. WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood. 1994;84(9):3071–9.

    CAS  PubMed  Google Scholar 

  77. Cilloni D, Renneville A, Hermitte F, Hills RK, Daly S, Jovanovic JV, et al. Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: a European LeukemiaNet study. J Clin Oncol. 2009;27(31):5195–201. https://doi.org/10.1200/JCO.2009.22.4865.

    Article  CAS  PubMed  Google Scholar 

  78. Inoue K, Ogawa H, Yamagami T, Soma T, Tani Y, Tatekawa T, et al. Long-term follow-up of minimal residual disease in leukemia patients by monitoring WT1 (Wilms tumor gene) expression levels. Blood. 1996;88(6):2267–78.

    CAS  PubMed  Google Scholar 

  79. Cilloni D, Gottardi E, De Micheli D, Serra A, Volpe G, Messa F, et al. Quantitative assessment of WT1 expression by real time quantitative PCR may be a useful tool for monitoring minimal residual disease in acute leukemia patients. Leukemia. 2002;16(10):2115–21. https://doi.org/10.1038/sj.leu.2402675.

    Article  CAS  PubMed  Google Scholar 

  80. Kramarzova K, Boublikova L, Stary J, Trka J. Evaluation of WT1 expression in bone marrow vs peripheral blood samples of children with acute myeloid leukemia-impact on minimal residual disease detection. Leukemia. 2013;27(5):1194–6. https://doi.org/10.1038/leu.2012.291.

    Article  CAS  PubMed  Google Scholar 

  81. Lapillonne H, Renneville A, Auvrignon A, Flamant C, Blaise A, Perot C, et al. High WT1 expression after induction therapy predicts high risk of relapse and death in pediatric acute myeloid leukemia. J Clin Oncol. 2006;24(10):1507–15. https://doi.org/10.1200/JCO.2005.03.5303.

    Article  CAS  PubMed  Google Scholar 

  82. Bustin SA, Beaulieu JF, Huggett J, Jaggi R, Kibenge FS, Olsvik PA, et al. MIQE precis: practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments. BMC Mol Biol. 2010;11:74. https://doi.org/10.1186/1471-2199-11-74.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Vogelstein B, Kinzler KW, Digital PCR. Proc Natl Acad Sci U S A. 1999;96(16):9236–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Huggett JF, Cowen S, Foy CA. Considerations for digital PCR as an accurate molecular diagnostic tool. Clin Chem. 2015;61(1):79–88. https://doi.org/10.1373/clinchem.2014.221366.

    Article  CAS  PubMed  Google Scholar 

  85. Jennings LJ, George D, Czech J, Yu M, Joseph L. Detection and quantification of BCR-ABL1 fusion transcripts by droplet digital PCR. J Mol Diagn. 2014;16(2):174–9. https://doi.org/10.1016/j.jmoldx.2013.10.007.

    Article  CAS  PubMed  Google Scholar 

  86. Alikian M, Whale AS, Akiki S, Piechocki K, Torrado C, Myint T, et al. RT-qPCR and RT-digital PCR: a comparison of different platforms for the evaluation of residual disease in chronic myeloid leukemia. Clin Chem. 2017;63(2):525–31. https://doi.org/10.1373/clinchem.2016.262824.

    Article  CAS  PubMed  Google Scholar 

  87. Brambati C, Galbiati S, Xue E, Toffalori C, Crucitti L, Greco R, et al. Droplet digital polymerase chain reaction for DNMT3A and IDH1/2 mutations to improve early detection of acute myeloid leukemia relapse after allogeneic hematopoietic stem cell transplantation. Haematologica. 2016;101(4):e157–61. https://doi.org/10.3324/haematol.2015.135467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wiseman DH, Struys EA, Wilks DP, Clark CI, Dennis MW, Jansen EE, et al. Direct comparison of quantitative digital PCR and 2-hydroxyglutarate enantiomeric ratio for IDH mutant allele frequency assessment in myeloid malignancy. Leukemia. 2015;29(12):2421–3. https://doi.org/10.1038/leu.2015.151.

    Article  CAS  PubMed  Google Scholar 

  89. Bacher U, Dicker F, Haferlach C, Alpermann T, Rose D, Kern W, et al. Quantification of rare NPM1 mutation subtypes by digital PCR. Br J Haematol. 2014;167(5):710–4. https://doi.org/10.1111/bjh.13038.

    Article  CAS  PubMed  Google Scholar 

  90. Mencia-Trinchant N, Hu Y, Alas MA, Ali F, Wouters BJ, Lee S, et al. Minimal residual disease monitoring of acute myeloid leukemia by massively multiplex digital PCR in patients with NPM1 mutations. J Mol Diagn. 2017;19(4):537–48. https://doi.org/10.1016/j.jmoldx.2017.03.005.

    Article  CAS  PubMed  Google Scholar 

  91. Metzeler KH, Herold T, Rothenberg-Thurley M, Amler S, Sauerland MC, Gorlich D, et al. Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia. Blood. 2016;128(5):686–98. https://doi.org/10.1182/blood-2016-01-693879.

    Article  CAS  PubMed  Google Scholar 

  92. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209–21. https://doi.org/10.1056/NEJMoa1516192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361(11):1058–66. https://doi.org/10.1056/NEJMoa0903840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Thol F, Kolking B, Damm F, Reinhardt K, Klusmann JH, Reinhardt D, et al. Next-generation sequencing for minimal residual disease monitoring in acute myeloid leukemia patients with FLT3-ITD or NPM1 mutations. Genes Chromosomes Cancer. 2012;51(7):689–95. https://doi.org/10.1002/gcc.21955.

    Article  CAS  PubMed  Google Scholar 

  95. Salipante SJ, Fromm JR, Shendure J, Wood BL, Wu D. Detection of minimal residual disease in NPM1-mutated acute myeloid leukemia by next-generation sequencing. Mod Pathol. 2014;27(11):1438–46. https://doi.org/10.1038/modpathol.2014.57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kohlmann A, Nadarajah N, Alpermann T, Grossmann V, Schindela S, Dicker F, et al. Monitoring of residual disease by next-generation deep-sequencing of RUNX1 mutations can identify acute myeloid leukemia patients with resistant disease. Leukemia. 2014;28(1):129–37. https://doi.org/10.1038/leu.2013.239.

    Article  CAS  PubMed  Google Scholar 

  97. Fu Y, Schroeder T, Zabelina T, Badbaran A, Bacher U, Kobbe G, et al. Postallogeneic monitoring with molecular markers detected by pretransplant next-generation or sanger sequencing predicts clinical relapse in patients with myelodysplastic/myeloproliferative neoplasms. Eur J Haematol. 2014;92(3):189–94. https://doi.org/10.1111/ejh.12223.

    Article  CAS  PubMed  Google Scholar 

  98. Klco JM, Miller CA, Griffith M, Petti A, Spencer DH, Ketkar-Kulkarni S, et al. Association between mutation clearance after induction therapy and outcomes in acute myeloid leukemia. JAMA. 2015;314(8):811–22. https://doi.org/10.1001/jama.2015.9643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bibault JE, Figeac M, Helevaut N, Rodriguez C, Quief S, Sebda S, et al. Next-generation sequencing of FLT3 internal tandem duplications for minimal residual disease monitoring in acute myeloid leukemia. Oncotarget. 2015;6(26):22812–21. 10.18632/oncotarget.4333.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Getta BM, Devlin SM, Levine RL, Arcila ME, Mohanty AS, Zehir A, et al. Multicolor flow cytometry and multigene next-generation sequencing are complementary and highly predictive for relapse in acute myeloid leukemia after allogeneic transplantation. Biol Blood Marrow Transplant. 2017;23(7):1064–71. https://doi.org/10.1016/j.bbmt.2017.03.017.

    Article  CAS  PubMed  Google Scholar 

  101. Hirsch P, Tang R, Abermil N, Flandrin P, Moatti H, Favale F, et al. Precision and prognostic value of clone-specific minimal residual disease in acute myeloid leukemia. Haematologica. 2017;102(7):1227–37. https://doi.org/10.3324/haematol.2016.159681.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371(26):2477–87. https://doi.org/10.1056/NEJMoa1409405.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Corces-Zimmerman MR, Hong WJ, Weissman IL, Medeiros BC, Majeti R. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Natl Acad Sci U S A. 2014;111(7):2548–53. https://doi.org/10.1073/pnas.1324297111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hirsch P, Zhang Y, Tang R, Joulin V, Boutroux H, Pronier E, et al. Genetic hierarchy and temporal variegation in the clonal history of acute myeloid leukaemia. Nat Commun. 2016;7:12475. https://doi.org/10.1038/ncomms12475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012;481(7382):506–10. https://doi.org/10.1038/nature10738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B. Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci U S A. 2011;108(23):9530–5. https://doi.org/10.1073/pnas.1105422108.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Hiatt JB, Pritchard CC, Salipante SJ, O'Roak BJ, Shendure J. Single molecule molecular inversion probes for targeted, high-accuracy detection of low-frequency variation. Genome Res. 2013;23(5):843–54. https://doi.org/10.1101/gr.147686.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gregory MT, Bertout JA, Ericson NG, Taylor SD, Mukherjee R, Robins HS, et al. Targeted single molecule mutation detection with massively parallel sequencing. Nucleic Acids Res. 2016;44(3):e22. https://doi.org/10.1093/nar/gkv915.

    Article  PubMed  Google Scholar 

  109. • Young AL, Wong TN, Hughes AE, Heath SE, Ley TJ, Link DC, et al. Quantifying ultra-rare pre-leukemic clones via targeted error-corrected sequencing. Leukemia. 2015;29(7):1608–11. https://doi.org/10.1038/leu.2015.17. A concept-defining study demonstrating the utility of error-corrected NGS in AML MRD detection.

  110. Waalkes A, Penewit K, Wood BL, Wu D, Salipante SJ. Ultrasensitive detection of acute myeloid leukemia minimal residual disease using single molecule molecular inversion probes. Haematologica. 2017; https://doi.org/10.3324/haematol.2017.169136.

  111. Chen Y, Cortes J, Estrov Z, Faderl S, Qiao W, Abruzzo L, et al. Persistence of cytogenetic abnormalities at complete remission after induction in patients with acute myeloid leukemia: prognostic significance and the potential role of allogeneic stem-cell transplantation. J Clin Oncol. 2011;29(18):2507–13. https://doi.org/10.1200/JCO.2010.34.2873.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brent L. Wood.

Ethics declarations

Conflict of Interest

Yi Zhou declares no potential conflicts of interest.

Brent L. Wood reports contract research for Seattle Genetics, Amgen, Stemline, and Genentech.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Acute Myeloid Leukemias

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Wood, B.L. Methods of Detection of Measurable Residual Disease in AML. Curr Hematol Malig Rep 12, 557–567 (2017). https://doi.org/10.1007/s11899-017-0419-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-017-0419-5

Keywords

Navigation