Skip to main content

Advertisement

Log in

Activin Receptor II Ligand Traps and Their Therapeutic Potential in Myelodysplastic Syndromes with Ring Sideroblasts

  • Myelodysplastic Syndromes (D Steensma, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Distinct subtypes of lower risk myelodysplastic syndromes display ring sideroblasts in the bone marrow, i. e., erythroid progenitors characterized by excessive iron deposited in the mitochondria. This morphological feature is frequently associated with somatic mutations in components of the splicing machinery that constitutes the underlying molecular principle of the disease. Conventional treatment regimen with erythropoiesis-stimulating agents often fails to induce sustained erythroid improvement in these patients that harbor defects in late-stage erythroblasts downstream of erythropoietin action. In the present review, we will discuss activin receptor ligand traps as novel therapeutic strategies particularly for sideroblastic subgroups of myelodysplastic syndromes that were recently shown to alleviate anemia by specifically inhibiting aberrant TGF-β signaling and thereby promoting erythroid differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Patnaik MM, Tefferi A. Refractory anemia with ring sideroblasts and RARS with thrombocytosis. Am J Hematol. 2015;90(6):549–59.

    Article  CAS  PubMed  Google Scholar 

  2. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405. Revised WHO classification of MDS including re-categorization of MDS-RS.

    Article  PubMed  Google Scholar 

  3. Malcovati L, Cazzola M. Refractory anemia with ring sideroblasts. Best Pr Res Clin Haematol. 2013;26(4):377–85.

    Article  CAS  Google Scholar 

  4. Malcovati L, Della Porta MG, Pascutto C, Invernizzi R, Boni M, Travaglino E, et al. Prognostic factors and life expectancy in myelodysplastic syndromes classified according to WHO criteria: a basis for clinical decision making. J Clin Oncol. 2005;23(30):7594–603.

    Article  PubMed  Google Scholar 

  5. Jeromin S, Haferlach T, Weissmann S, Meggendorfer M, Eder C, Nadarajah N, et al. Refractory anemia with ring sideroblasts and marked thrombocytosis cases harbor mutations in SF3B1 or other spliceosome genes accompanied by JAK2V617F and ASXL1 mutations. Haematologica. 2015;100(4):e125–7.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Broséus J, Alpermann T, Wulfert M, Florensa Brichs L, Jeromin S, Lippert E, et al. Age, JAK2(V617F) and SF3B1 mutations are the main predicting factors for survival in refractory anaemia with ring sideroblasts and marked thrombocytosis. Leukemia. 2013;27(9):1826–31.

    Article  PubMed  Google Scholar 

  7. Visconte V, Rogers HJ, Singh J, Barnard J, Bupathi M, Traina F, et al. SF3B1 haploinsufficiency leads to formation of ring sideroblasts in myelodysplastic syndromes. Blood. 2012;120(16):3173–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D, et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med. 2011;365(15):1384–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Malcovati L, Papaemmanuil E, Bowen DT, Boultwood J, Della Porta MG, Pascutto C, et al. Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Blood. 2011;118(24):6239–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Patnaik MM, Lasho TL, Hodnefield JM, Knudson RA, Ketterling RP, Garcia-Manero G, et al. SF3B1 mutations are prevalent in myelodysplastic syndromes with ring sideroblasts but do not hold independent prognostic value. Blood. 2012;119(2):569–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(7367):64–9.

    Article  CAS  PubMed  Google Scholar 

  12. Patnaik MM, Hanson CA, Sulai NH, Hodnefield JM, Knudson RA, Ketterling RP, et al. Prognostic irrelevance of ring sideroblast percentage in World Health Organization-defined myelodysplastic syndromes without excess blasts. Blood. 2012;119(24):5674–7.

    Article  CAS  PubMed  Google Scholar 

  13. Malcovati L, Karimi M, Papaemmanuil E, Ambaglio I, Jädersten M, Jansson M, et al. SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts. Blood. 2015;126(2):233–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nikpour M, Scharenberg C, Liu A, Conte S, Karimi M, Mortera-Blanco T, et al. The transporter ABCB7 is a mediator of the phenotype of acquired refractory anemia with ring sideroblasts. Leukemia. 2013;27(4):889–96.

    Article  CAS  PubMed  Google Scholar 

  15. Boultwood J, Pellagatti A, Nikpour M, Pushkaran B, Fidler C, Cattan H, et al. The role of the iron transporter ABCB7 in refractory anemia with ring sideroblasts. PLoS One. 2008;3(4), e1970.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Del Rey M, Benito R, Fontanillo C, Campos-Laborie FJ, Janusz K, Velasco-Hernández T, et al. Deregulation of genes related to iron and mitochondrial metabolism in refractory anemia with ring sideroblasts. PLoS One. 2015;10(5), e0126555.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dolatshad H, Pellagatti A, Fernandez-Mercado M, Yip BH, Malcovati L, Attwood M, et al. Disruption of SF3B1 results in deregulated expression and splicing of key genes and pathways in myelodysplastic syndrome hematopoietic stem and progenitor cells. Leukemia. 2015;29(5):1092–103.

    Article  CAS  PubMed  Google Scholar 

  18. Conte S, Katayama S, Vesterlund L, Karimi M, Dimitriou M, Jansson M, et al. Aberrant splicing of genes involved in haemoglobin synthesis and impaired terminal erythroid maturation in SF3B1 mutated refractory anaemia with ring sideroblasts. Br J Haematol. 2015;171(4):478–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Obeng EA, McConkey ME, Campagna DR, Schneider RK, Chen MC, Schmidt PJ, et al. Mutant splicing factor 3b subunit 1 (SF3B1) causes dysregulated erythropoiesis and a stem cell disadvantage. Blood. 2014;124:828.

    Article  Google Scholar 

  20. Ambaglio I, Malcovati L, Papaemmanuil E, Laarakkers CM, Della Porta MG, Gallì A, et al. Inappropriately low hepcidin levels in patients with myelodysplastic syndrome carrying a somatic mutation of SF3B1. Haematologica. 2013;98(3):420–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhu Y, Li X, Chang C, Xu F, He Q, Guo J, et al. SF3B1-mutated myelodysplastic syndrome with ring sideroblasts harbors more severe iron overload and corresponding over-erythropoiesis. Leuk Res. 2016;44:8–16.

    Article  CAS  PubMed  Google Scholar 

  22. Mian SA, Rouault-Pierre K, Smith AE, Seidl T, Pizzitola I, Kizilors A, et al. SF3B1 mutant MDS-initiating cells may arise from the haematopoietic stem cell compartment. Nat Commun. 2015;6:10004. Elegant study demonstrating that SF3B1 mutations are an initiating event during clonal evolution in MDS-RS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Raaijmakers MHGP, Mukherjee S, Guo S, Zhang S, Kobayashi T, Schoonmaker JA, et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature. 2010;464(7290):852–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Balderman S, Calvi L. Targeting of the bone marrow microenvironment improves outcome in a murine model of myelodysplastic syndrome. Blood. 2016;127(5):616–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bejar R, Stevenson KE, Caughey BA, Abdel-Wahab O, Steensma DP, Galili N, et al. Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes. J Clin Oncol. 2012;30(27):3376–82.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Walter MJ, Ding L, Shen D, Shao J, Grillot M, McLellan M, et al. Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia. 2011;25(7):1153–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122(22):3616–27. Description of the role of acquired mutations in MDS, in particular RNA splicing mutations as driver mutations for disease progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jabbour E, Kantarjian HM, Koller C, Taher A. Red blood cell transfusions and iron overload in the treatment of patients with myelodysplastic syndromes. Cancer. 2008;112(5):1089–95.

    Article  PubMed  Google Scholar 

  29. Fenaux P, Ades L. How we treat lower-risk myelodysplastic syndromes. Blood. 2013;121(21):4280–6. Review summarizing current treatment options for lower risk MDS patients.

    Article  CAS  PubMed  Google Scholar 

  30. Hellström-Lindberg E. Efficacy of erythropoietin in the myelodysplastic syndromes: a meta-analysis of 205 patients from 17 studies. Br J Haematol. 1995;89(1):67–71.

    Article  PubMed  Google Scholar 

  31. Moyo V, Lefebvre P, Duh MS, Yektashenas B, Mundle S. Erythropoiesis-stimulating agents in the treatment of anemia in myelodysplastic syndromes: a meta-analysis. Ann Hematol. 2008;87(7):527–36.

    Article  CAS  PubMed  Google Scholar 

  32. Greenberg PL, Sun Z, Miller KB, Bennett JM, Tallman MS, Dewald G, et al. Treatment of myelodysplastic syndrome patients with erythropoietin with or without granulocyte colony-stimulating factor: results of a prospective randomized phase 3 trial by the Eastern Cooperative Oncology Group (E1996). Blood. 2009;114(12):2393–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jädersten M, Montgomery SM, Dybedal I, Porwit-MacDonald A, Hellström-Lindberg E. Long-term outcome of treatment of anemia in MDS with erythropoietin and G-CSF. Blood. 2005;106(3):803–11.

    Article  PubMed  Google Scholar 

  34. Garcia-Manero G. Myelodysplastic syndromes: 2014 update on diagnosis, risk-stratification, and management. Am J Hematol. 2014;89(1):97–108.

    Article  CAS  PubMed  Google Scholar 

  35. Fenaux P, Mufti GJ, Hellström-Lindberg E, Santini V, Finelli C, Giagounidis A, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;10(3):223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Prébet T, Gore SD, Esterni B, Gardin C, Itzykson R, Thepot S, et al. Outcome of high-risk myelodysplastic syndrome after azacitidine treatment failure. J Clin Oncol. 2011;29(24):3322–7.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cutler CS, Lee SJ, Greenberg P, Deeg HJ, Párez WS, Anasetti C, et al. A decision analysis of allogeneic bone marrow transplantation for the myelodysplastic syndromes: delayed transplantation for low-risk myelodysplasia is associated with improved outcome. Blood. 2004;104(2):579–85.

    Article  CAS  PubMed  Google Scholar 

  38. Platzbecker U, Mufti G. Allogeneic stem cell transplantation in MDS: how? When? Best Pract Res Clin Haematol. 2013;26(4):421–9.

    Article  CAS  PubMed  Google Scholar 

  39. Aul C, Arning M, Runde V, Schneider W. Serum erythropoietin concentrations in patients with myelodysplastic syndromes. Leuk Res. 1991;15(7):571–5.

    Article  CAS  PubMed  Google Scholar 

  40. Hattangadi SM, Wong P, Zhang L, Flygare J, Lodish HF. From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood. 2011;118(24):6258–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Claessens YE, Bouscary D, Dupont JM, Picard F, Melle J, Gisselbrecht S, et al. In vitro proliferation and differentiation of erythroid progenitors from patients with myelodysplastic syndromes: evidence for Fas-dependent apoptosis. Blood. 2002;99(5):1594–601.

    Article  CAS  PubMed  Google Scholar 

  42. Hellström-Lindberg E, van de Loosdrecht A. Erythropoiesis stimulating agents and other growth factors in low-risk MDS. Best Pract Res Clin Haematol. 2013;26(4):401–10.

    Article  PubMed  Google Scholar 

  43. Herbertz S, Sawyer JS, Stauber AJ, Gueorguieva I, Driscoll KE, Estrem ST, et al. Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug Des Devel Ther. 2015;9:4479–99.

    PubMed  PubMed Central  Google Scholar 

  44. Mies A, Bulycheva E, Rogulj IM, Hofbauer LC, Platzbecker U. Alterations within the osteo-hematopoietic niche in MDS and their therapeutic implications. Curr Pharm Des. 2016;22(16):2323–32.

    Article  CAS  PubMed  Google Scholar 

  45. Blank U, Karlsson S. TGF-β signaling in the control of hematopoietic stem cells. Blood. 2015;125(23):3542–50.

    Article  CAS  PubMed  Google Scholar 

  46. Zermati Y, Fichelson S, Valensi F, Freyssinier JM, Rouyer-Fessard P, Cramer E, et al. Transforming growth factor inhibits erythropoiesis by blocking proliferation and accelerating differentiation of erythroid progenitors. Exp Hematol. 2000;28(8):885–94.

    Article  CAS  PubMed  Google Scholar 

  47. Xie Y, Bai H, Liu Y, Hoyle DL, Cheng T, Wang ZZ. Cooperative effect of erythropoietin and TGF-β inhibition on erythroid development in human pluripotent stem cells. J Cell Biochem. 2015;116(12):2735–43.

    Article  CAS  PubMed  Google Scholar 

  48. Suragani RNVS, Cadena SM, Cawley SM, Sako D, Mitchell D, Li R, et al. Transforming growth factor-β superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis. Nat Med. 2014;20(4):408–14. First experimental evidence for efficacy of ACE/RAP-536 in MDS.

    Article  CAS  PubMed  Google Scholar 

  49. Lin YW, Slape C, Zhang Z, Aplan PD. NUP98-HOXD13 transgenic mice develop a highly penetrant, severe myelodysplastic syndrome that progresses to acute leukemia. Blood. 2005;106(1):287–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhou L, Nguyen AN, Sohal D, Ma JY, Pahanish P, Gundabolu K, et al. Inhibition of the TGF-β receptor I kinase promotes hematopoiesis in MDS. Blood. 2008;112(8):3434–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bhagat TD, Zhou L, Sokol L, Kessel R, Caceres G, Gundabolu K, et al. MiR-21 mediates hematopoietic suppression in MDS by activating TGF-β signaling. Blood. 2013;121(15):2875–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhou L, McMahon C, Bhagat T, Alencar C, Yu Y, Fazzari M, et al. Reduced SMAD7 leads to overactivation of TGF-β signaling in MDS that can be reversed by a specific inhibitor of TGF-β receptor I kinase. Cancer Res. 2011;71(3):955–63.

    Article  CAS  PubMed  Google Scholar 

  53. Raje N, Vallet S. Sotatercept, a soluble activin receptor type 2A IgG-Fc fusion protein for the treatment of anemia and bone loss. Curr Opin Mol Ther. 2010;12(5):586–97.

    CAS  PubMed  Google Scholar 

  54. Lotinun S, Pearsall RS, Davies MV, Marvell TH, Monnell TE, Ucran J, et al. A soluble activin receptor type IIA fusion protein (ACE-011) increases bone mass via a dual anabolic-antiresorptive effect in cynomolgus monkeys. Bone. 2010;46(4):1082–8.

    Article  CAS  PubMed  Google Scholar 

  55. Fajardo RJ, Manoharan RK, Pearsall RS, Davies MV, Marvell T, Monnell TE, et al. Treatment with a soluble receptor for activin improves bone mass and structure in the axial and appendicular skeleton of female cynomolgus macaques (Macaca fascicularis). Bone. 2010;46(1):64–71.

    Article  CAS  PubMed  Google Scholar 

  56. Pearsall RS, Canalis E, Cornwall-Brady M, Underwood KW, Haigis B, Ucran J, et al. A soluble activin type IIA receptor induces bone formation and improves skeletal integrity. Proc Natl Acad Sci U S A. 2008;105(19):7082–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mulivor AW, Barbosa D, Kumar R, Sherman ML, Seehra JS, Pearsall RS. RAP-011, a soluble activin receptor type IIa murine IgG-Fc fusion protein, prevents chemotherapy induced anemia. Blood. 2009;114:161.

    Google Scholar 

  58. Dussiot M, Maciel TT, Fricot A, Chartier C, Negre O, Veiga J, et al. An activin receptor IIA ligand trap corrects ineffective erythropoiesis in β-thalassemia. Nat Med. 2014;20(4):398–407.

    Article  CAS  PubMed  Google Scholar 

  59. Carrancio S, Markovics J, Wong P, Leisten J, Castiglioni P, Groza MC, et al. An activin receptor IIA ligand trap promotes erythropoiesis resulting in a rapid induction of red blood cells and haemoglobin. Br J Haematol. 2014;165(6):870–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Langdon JM, Barkataki S, Berger AE, Cheadle C, Xue Q-L, Sung V, et al. RAP-011, an activin receptor ligand trap, increases hemoglobin concentration in hepcidin transgenic mice. Am J Hematol. 2015;90(1):8–14.

    Article  CAS  PubMed  Google Scholar 

  61. Ruckle J, Jacobs M, Kramer W, Pearsall AE, Kumar R, Underwood KW, et al. Single-dose, randomized, double-blind, placebo-controlled study of ACE-011 (ActRIIA-IgG1) in postmenopausal women. J Bone Miner Res. 2009;24(4):744–52.

    Article  CAS  PubMed  Google Scholar 

  62. Sherman ML, Borgstein NG, Mook L, Wilson D, Yang Y, Chen N, et al. Multiple-dose, safety, pharmacokinetic, and pharmacodynamic study of sotatercept (ActRIIA-IgG1), a novel erythropoietic agent, in healthy postmenopausal women. J Clin Pharmacol. 2013;53(11):1121–30.

    CAS  PubMed  Google Scholar 

  63. Abdulkadyrov KM, Salogub GN, Khuazheva NK, Sherman ML, Laadem A, Barger R, et al. Sotatercept in patients with osteolytic lesions of multiple myeloma. Br J Haematol. 2014;165(6):814–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Iancu-Rubin C, Mosoyan G, Wang J, Kraus T, Sung V, Hoffman R. Stromal cell-mediated inhibition of erythropoiesis can be attenuated by Sotatercept (ACE-011), an activin receptor type II ligand trap. Exp Hematol. 2013;41(2):155–66.e17.

  65. Raftopoulos H, Laadem A, Hesketh PJ, Goldschmidt J, Gabrail N, Osborne C, et al. Sotatercept (ACE-011) for the treatment of chemotherapy-induced anemia in patients with metastatic breast cancer or advanced or metastatic solid tumors treated with platinum-based chemotherapeutic regimens: results from two phase 2 studies. Support Care Cancer. 2016;24(4):1517–25.

    Article  PubMed  Google Scholar 

  66. Komrokji RS, Garcia-Manero G, Ades L, Laadem A, Vo B, Prebet T, et al. An open-label, phase 2, dose-finding study of sotatercept (ACE-011) in patients with low or intermediate-1 (int-1) myelodysplastic syndromes (MDS) or non-proliferative chronic myelomonocytic leukemia (CMML) and anemia requiring transfusion. Blood. 2014;124:3251.

    Google Scholar 

  67. Attie KM, Allison MJ, Mcclure T, Boyd IE, Wilson DM, Pearsall AE, et al. A phase 1 study of ACE-536, a regulator of erythroid differentiation, in healthy volunteers. Am J Hematol. 2014;89(7):766–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Platzbecker U, Giagounidis A, Germing U, Götze K, Kiewe P, Mayer K, et al. Luspatercept increases hemoglobin and reduces transfusion burden in patients with low-intermediate risk myelodysplastic syndromes (MDS): long-term results from phase 2 PACE-MDS study. Haematologica. 2016;S131.

  69. Piga A, Perrotta S, Gamberini MR, Voskaridou E, Melpignano A, Filosa A, et al. Luspatercept (ACE-536) reduces disease burden, including anemia, iron overload, and leg ulcers, in adults with beta-thalassemia: results from a phase 2 study. Blood. 2015;126:752.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the José Carreras Foundation (DJCLS R13/15) and a grant from the German Research Foundation (SFB655) (UP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Platzbecker.

Ethics declarations

Conflict of Interest

Anna Mies declares no potential conflicts of interest.

Olivier Hermine reports a research grant from Celgene.

Uwe Platzbecker reports research grants from Celgene and Acceleron.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Myelodysplastic Syndromes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mies, A., Hermine, O. & Platzbecker, U. Activin Receptor II Ligand Traps and Their Therapeutic Potential in Myelodysplastic Syndromes with Ring Sideroblasts. Curr Hematol Malig Rep 11, 416–424 (2016). https://doi.org/10.1007/s11899-016-0347-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-016-0347-9

Keywords

Navigation