Skip to main content

Advertisement

Log in

Minimal Residual Disease in Acute Myeloid Leukemia—Current Status and Future Perspectives

  • Acute Myeloid Leukemias (R Stone, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

In acute myeloid leukemia (AML), the achievement of a morphological complete remission (CR) is an important milestone on the road to cure. Still, the majority of patients who achieve a morphological CR will eventually relapse. Thus, morphological means are not sensitive enough to detect clinically relevant tumor burdens left behind after therapy. Over the last years, several methodologies, particularly multiparameter flow cytometry and polymerase chain reaction, have emerged that can detect, quantify, and monitor submicroscopic amounts of leukemia cells (“minimal residual disease”, MRD). Newer techniques, such as next-generation sequencing, have not only changed our understanding of the molecular pathogenesis and clonal heterogeneity of AML but may also be used for MRD detection. Increasing evidence indicates that MRD could play an important role in dynamically refining disease risk and, perhaps, serve to fine-tune post-remission therapy in a risk-adapted manner, although the latter concept awaits validation through well-controlled trials. In this review, we discuss the current use of MRD measurements during AML treatment and highlight future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance;•• Of major importance

  1. Burnett A, Wetzler M, Löwenberg B. Therapeutic advances in acute myeloid leukemia. J Clin Oncol. 2011;29(5):487–94.

    Article  PubMed  Google Scholar 

  2. Ferrara F, Schiffer CA. Acute myeloid leukaemia in adults. Lancet. 2013;381(9865):484–95.

    Article  PubMed  Google Scholar 

  3. Döhner H, Estey EH, Amadori S, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453–74.

    Article  PubMed  Google Scholar 

  4. Cheson BD, Bennett JM, Kopecky KJ, et al. Revised recommendations of the international working group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol. 2003;21(24):4642–9.

    Article  PubMed  Google Scholar 

  5. Grimwade D, Freeman SD. Defining minimal residual disease in acute myeloid leukemia: which platforms are ready for "Prime Time"? Blood. 2014;124(23):3345–55.

    Article  CAS  PubMed  Google Scholar 

  6. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059–74.

    Article  Google Scholar 

  7. Schlenk RF. Post-remission therapy for acute myeloid leukemia. Haematologica. 2014;99(11):1663–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Terwijn M, van Putten WL, Kelder A, et al. High prognostic impact of flow cytometric minimal residual disease detection in acute myeloid leukemia: data from the HOVON/SAKK AML 42A study. J Clin Oncol. 2013;31(31):3889–97. Results of a large clinical trial evaluating the role of immunophenotyping in MRD monitoring.

    Article  PubMed  Google Scholar 

  9. Baccarani M, Deininger MW, Rosti G, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122(6):872–84.

    Article  CAS  PubMed  Google Scholar 

  10. Vora A, Goulden N, Wade R, et al. Treatment reduction for children and young adults with low-risk acute lymphoblastic leukaemia defined by minimal residual disease (UKALL 2003): a randomised controlled trial. Lancet Oncol. 2013;14(3):199–209.

    Article  CAS  PubMed  Google Scholar 

  11. Vora A, Goulden N, Mitchell C, et al. Augmented post-remission therapy for a minimal residual disease-defined high-risk subgroup of children and young people with clinical standard-risk and intermediate-risk acute lymphoblastic leukaemia (UKALL 2003): a randomised controlled trial. Lancet Oncol. 2014;15(8):809–18.

    Article  PubMed  Google Scholar 

  12. Brüggemann M, Raff T, Kneba M. Has MRD monitoring superseded other prognostic factors in adult ALL? Blood. 2012;120(23):4470–81.

    Article  PubMed  Google Scholar 

  13. Brüggemann M, Raff T, Flohr T, et al. Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia. Blood. 2006;107(3):1116–23.

    Article  PubMed  Google Scholar 

  14. Buyse M, Molenberghs G, Paoletti X, et al. Statistical evaluation of surrogate endpoints with examples from cancer clinical trials. Biom J. 2015 Feb 12. doi: 10.1002/bimj.201400049. [Epub ahead of print].

  15. Walter RB, Buckley SA, Pagel JM, et al. Significance of minimal residual disease before myeloablative allogeneic hematopoietic cell transplantation for AML in first and second complete remission. Blood. 2013;122(10):1813–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Nolan GP, Roederer M, Chattopadhyay PK. A deep profiler’s guide to cytometry. Trends Immunol. 2012;33(7):323–32.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Amir el AD, Davis KL, Tadmor MD, et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol. 2013;31(6):545–52.

    Article  Google Scholar 

  18. Feller N, van der Velden VH, Brooimans RA, et al. Defining consensus leukemia-associated immunophenotypes for detection of minimal residual disease in acute myeloid leukemia in a multicenter setting. Blood Cancer J. 2013;3, e129.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Gabert J, Beillard E, van der Velden VH, et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—a Europe Against Cancer program. Leukemia. 2003;17(12):2318–57.

    Article  CAS  PubMed  Google Scholar 

  20. Baer MR, Stewart CC, Dodge RK, et al. High frequency of immunophenotypic changes in acute myeloid leukemia at relapse: implications for residual disease detection (Cancer and Leukemia Group B study 8361). Blood. 2001;97(11):3574–80.

    Article  CAS  PubMed  Google Scholar 

  21. Langebrake C, Brinkmann I, Teigler-Schlegel A, et al. Immunophenotypic differences between diagnosis and relapse in childhood AML: implications for MRD monitoring. Cytometry B Clin Cytom. 2005;63(1):1–9.

    Article  PubMed  Google Scholar 

  22. Voskova D, Schoch C, Schnittger S, Hiddemann W, Haferlach T, Kern W. Stability of leukemia-associated aberrant immunophenotypes in patients with acute myeloid leukemia between diagnosis and relapse: comparison with cytomorphologic, cytogenetic, and molecular genetic findings. Cytometry B Clin Cytom. 2004;62(1):25–38.

    Article  PubMed  Google Scholar 

  23. Kubista M, Andrade JM, Bengtsson M, et al. The real-time polymerase chain reaction. Mol Aspects Med. 2006;27(2-3):95–125.

    Article  CAS  PubMed  Google Scholar 

  24. Chou WC, Tang JL, Wu SJ, et al. Clinical implications of minimal residual disease monitoring by quantitative polymerase chain reaction in acute myeloid leukemia patients bearing nucleophosmin (NPM1) mutations. Leukemia. 2007;21(5):998–1004.

    CAS  PubMed  Google Scholar 

  25. Yin JA, O’Brien MA, Hills RK, et al. Minimal residual disease monitoring by RT-qPCR in core-binding factor AML allows risk-stratification and predicts relapse: results of the United Kingdom MRC AML-15 trial. Blood. 2012;120(14):2826–35.

    Article  CAS  PubMed  Google Scholar 

  26. Cilloni D, Renneville A, Hermitte F, et al. Real-time quantitative polymerase chain reaction detection of minimal residual disease by standardized WT1 assay to enhance risk stratification in acute myeloid leukemia: a European LeukemiaNet study. J Clin Oncol. 2009;27(31):5195–201.

    Article  CAS  PubMed  Google Scholar 

  27. Beillard E, Pallisgaard N, van der Velden VH, et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using ‘real-time’ quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR)—a Europe against cancer program. Leukemia. 2003;17(12):2474–86.

    Article  CAS  PubMed  Google Scholar 

  28. Ostergaard M, Nyvold CG, Jovanovic JV, et al. Development of standardized approaches to reporting of minimal residual disease data using a reporting software package designed within the European LeukemiaNet. Leukemia. 2011;25(7):1168–73. This quality control study reports on a software suitable for efficient handling of qPCR data, generation of MRD reports and harmonization of MRD data.

    Article  CAS  PubMed  Google Scholar 

  29. Grimwade D, Jovanovic JV, Hills RK, et al. Prospective minimal residual disease monitoring to predict relapse of acute promyelocytic leukemia and to direct pre-emptive arsenic trioxide therapy. J Clin Oncol. 2009;27(22):3650–8.

    Article  CAS  PubMed  Google Scholar 

  30. Sanz MA, Grimwade D, Tallman MS, et al. Management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood. 2009;113(9):1875–91.

    Article  CAS  PubMed  Google Scholar 

  31. Santamaría C, Chillón MC, Fernández C, et al. Using quantification of the PML-RARalpha transcript to stratify the risk of relapse in patients with acute promyelocytic leukemia. Haematologica. 2007;92(3):315–22.

    Article  PubMed  Google Scholar 

  32. Grimwade D, Jovanovic JV, Hills RK. Can we say farewell to monitoring minimal residual disease in acute promyelocytic leukaemia? Best Pract Res Clin Haematol. 2014;27(1):53–61.

    Article  PubMed  Google Scholar 

  33. Lo-Coco F, Avvisati G, Vignetti M, et al. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med. 2013;369(2):111–21.

    Article  CAS  PubMed  Google Scholar 

  34. Zhu HH, Zhang XH, Qin YZ, et al. MRD-directed risk stratification treatment may improve outcomes of t(8;21) AML in the first complete remission: results from the AML05 multicenter trial. Blood. 2013;121(20):4056–62. The authors evaluated a risk-directed therapy approach based on MRD in t(8;21)(q22;q22) AML patients.

    Article  CAS  PubMed  Google Scholar 

  35. Jourdan E, Boissel N, Chevret S, et al. Prospective evaluation of gene mutations and minimal residual disease in patients with core binding factor acute myeloid leukemia. Blood. 2013;121(12):2213–23. Results of a prospective MRD clinical study in core-binding leukemia.

    Article  CAS  PubMed  Google Scholar 

  36. Hoyos M, Nomdedeu JF, Esteve J, et al. Core binding factor acute myeloid leukemia: the impact of age, leukocyte count, molecular findings, and minimal residual disease. Eur J Haematol. 2013;91(3):209–18.

    Article  CAS  PubMed  Google Scholar 

  37. Leroy H, de Botton S, Grardel-Duflos N, et al. Prognostic value of real-time quantitative PCR (RQ-PCR) in AML with t(8;21). Leukemia. 2005;19(3):367–72.

    Article  CAS  PubMed  Google Scholar 

  38. Weisser M, Haferlach C, Hiddemann W, Schnittger S. The quality of molecular response to chemotherapy is predictive for the outcome of AML1-ETO-positive AML and is independent of pretreatment risk factors. Leukemia. 2007;21(6):1177–82.

    Article  CAS  PubMed  Google Scholar 

  39. Schlenk RF, Benner A, Krauter J, et al. Individual patient data-based meta-analysis of patients aged 16 to 60 years with core binding factor acute myeloid leukemia: a survey of the German Acute Myeloid Leukemia Intergroup. J Clin Oncol. 2004;22(18):3741–50.

    Article  CAS  PubMed  Google Scholar 

  40. Nguyen S, Leblanc T, Fenaux P, et al. A white blood cell index as the main prognostic factor in t(8;21) acute myeloid leukemia (AML): a survey of 161 cases from the French AML Intergroup. Blood. 2002;99(10):3517–23.

    Article  CAS  PubMed  Google Scholar 

  41. Schoch C, Haase D, Haferlach T, et al. Fifty-one patients with acute myeloid leukemia and translocation t(8;21)(q22;q22): an additional deletion in 9q is an adverse prognostic factor. Leukemia. 1996;10(8):1288–95.

    CAS  PubMed  Google Scholar 

  42. Schnittger S, Kohl TM, Haferlach T, et al. KIT-D816 mutations in AML1-ETO-positive AML are associated with impaired event-free and overall survival. Blood. 2006;107(5):1791–9.

    Article  CAS  PubMed  Google Scholar 

  43. Cairoli R, Beghini A, Grillo G, et al. Prognostic impact of c-KIT mutations in core binding factor leukemias: an Italian retrospective study. Blood. 2006;107(9):3463–8.

    Article  CAS  PubMed  Google Scholar 

  44. Boissel N, Leroy H, Brethon B, et al. Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia. 2006;20(6):965–70.

    Article  CAS  PubMed  Google Scholar 

  45. Paschka P, Marcucci G, Ruppert AS, et al. Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a Cancer and Leukemia Group B Study. J Clin Oncol. 2006;24(24):3904–11.

    Article  CAS  PubMed  Google Scholar 

  46. Allen C, Hills RK, Lamb K, et al. The importance of relative mutant level for evaluating impact on outcome of KIT, FLT3 and CBL mutations in core-binding factor acute myeloid leukemia. Leukemia. 2013;27(9):1891–901.

    Article  CAS  PubMed  Google Scholar 

  47. Prebet T, Bertoli S, Delaunay J, et al. Anthracycline dose intensification improves molecular response and outcome of patients treated for core binding factor acute myeloid leukemia. Haematologica. 2014;99:e185–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Corbacioglu A, Scholl C, Schlenk RF, et al. Prognostic impact of minimal residual disease in CBFB-MYH11-positive acute myeloid leukemia. J Clin Oncol. 2010;28(23):3724–9.

    Article  CAS  PubMed  Google Scholar 

  49. Schnittger S, Weisser M, Schoch C, Hiddemann W, Haferlach T, Kern W. New score predicting for prognosis in PML-RARA+, AML1-ETO+, or CBFBMYH11+ acute myeloid leukemia based on quantification of fusion transcripts. Blood. 2003;102(8):2746–55.

    Article  CAS  PubMed  Google Scholar 

  50. Krauter J, Görlich K, Ottmann O, et al. Prognostic value of minimal residual disease quantification by real-time reverse transcriptase polymerase chain reaction in patients with core binding factor leukemias. J Clin Oncol. 2003;21(23):4413–22.

    Article  CAS  PubMed  Google Scholar 

  51. Forestier E, Heim S, Blennow E, et al. Cytogenetic abnormalities in childhood acute myeloid leukaemia: a Nordic series comprising all children enrolled in the NOPHO-93-AML trial between 1993 and 2001. Br J Haematol. 2003;121(4):566–77.

    Article  PubMed  Google Scholar 

  52. Byrd JC, Mrózek K, Dodge RK, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood. 2002;100(13):4325–36.

    Article  CAS  PubMed  Google Scholar 

  53. Krauter J, Wagner K, Schäfer I, et al. Prognostic factors in adult patients up to 60 years old with acute myeloid leukemia and translocations of chromosome band 11q23: individual patient data-based meta-analysis of the German Acute Myeloid Leukemia Intergroup. J Clin Oncol. 2009;27(18):3000–6.

    Article  PubMed  Google Scholar 

  54. Scholl C, Breitinger H, Schlenk RF, et al. Development of a real-time RT-PCR assay for the quantification of the most frequent MLL/AF9 fusion types resulting from translocation t(9;11)(p22;q23) in acute myeloid leukemia. Genes, Chromosomes Cancer. 2003;38(3):274–80.

    Article  CAS  PubMed  Google Scholar 

  55. Scholl C, Schlenk RF, Eiwen K, et al. The prognostic value of MLL-AF9 detection in patients with t(9;11)(p22;q23)-positive acute myeloid leukemia. Haematologica. 2005;90(12):1626–34.

    CAS  PubMed  Google Scholar 

  56. Abildgaard L, Ommen HB, Lausen B, Hasle H, Nyvold CG. A novel RT-qPCR assay for quantification of the MLL-MLLT3 fusion transcript in acute myeloid leukaemia. Eur J Haematol. 2013;91(5):394–8.

    Article  CAS  PubMed  Google Scholar 

  57. Falini B, Sportoletti P, Martelli MP. Acute myeloid leukemia with mutated NPM1: diagnosis, prognosis and therapeutic perspectives. Curr Opin Oncol. 2009;21(6):573–81.

    Article  PubMed  Google Scholar 

  58. Gorello P, Cazzaniga G, Alberti F, et al. Quantitative assessment of minimal residual disease in acute myeloid leukemia carrying nucleophosmin (NPM1) gene mutations. Leukemia. 2006;20(6):1103–8.

    Article  CAS  PubMed  Google Scholar 

  59. Schnittger S, Kern W, Tschulik C, et al. Minimal residual disease levels assessed by NPM1 mutation-specific RQ-PCR provide important prognostic information in AML. Blood. 2009;114(11):2220–31.

    Article  CAS  PubMed  Google Scholar 

  60. Krönke J, Bullinger L, Teleanu V, et al. Clonal evolution in relapsed NPM1-mutated acute myeloid leukemia. Blood. 2013;122(1):100–8.

    Article  PubMed  Google Scholar 

  61. Krönke J, Schlenk RF, Jensen KO, et al. Monitoring of minimal residual disease in NPM1-mutated acute myeloid leukemia: a study from the German-Austrian acute myeloid leukemia study group. J Clin Oncol. 2011;29(19):2709–16.

    Article  PubMed  Google Scholar 

  62. Hubmann M, Köhnke T, Hoster E, et al. Molecular response assessment by quantitative real-time polymerase chain reaction after induction therapy in NPM1-mutated patients identifies those at high risk of relapse. Haematologica. 2014;99(8):1317–25.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Lambert J, Lambert J, Nibourel O, et al. MRD assessed by WT1 and NPM1 transcript levels identifies distinct outcomes in AML patients and is influenced by gemtuzumab ozogamicin. Oncotarget. 2014;5((15):628–6288. This is one of the first randomized studies indicating that MRD-assessment may serve as a surrogate for survival endpoints for the treatment under investigation.

    Google Scholar 

  64. Shayegi N, Kramer M, Bornhäuser M, et al. The level of residual disease based on mutant NPM1 is an independent prognostic factor for relapse and survival in AML. Blood. 2013;122(1):83–92.

    Article  CAS  PubMed  Google Scholar 

  65. Kayser S, Levis MJ. FLT3 tyrosine kinase inhibitors in acute myeloid leukemia: clinical implications and limitations. Leuk Lymphoma. 2014;55(2):243–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Schnittger S, Schoch C, Kern W, Hiddemann W, Haferlach T. FLT3 length mutations as marker for follow-up studies in acute myeloid leukaemia. Acta Haematol. 2004;112(1-2):68–78.

    Article  CAS  PubMed  Google Scholar 

  67. Palmisano M, Grafone T, Ottaviani E, et al. NPM1 mutations are more stable than FLT3 mutations during the course of disease in patients with acute myeloid leukemia. Haematologica. 2007;92(9):1268–9.

    Article  PubMed  Google Scholar 

  68. Shih LY, Huang CF, Wu JH, et al. Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia: a comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. Blood. 2002;100(7):2387–92.

    Article  CAS  PubMed  Google Scholar 

  69. Kottaridis PD, Gale RE, Langabeer SE, et al. Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood. 2002;100(7):2393–8.

    Article  CAS  PubMed  Google Scholar 

  70. Cloos J, Goemans BF, Hess CJ, et al. Stability and prognostic influence of FLT3 mutations in paired initial and relapsed AML samples. Leukemia. 2006;20(7):1217–20.

    Article  CAS  PubMed  Google Scholar 

  71. Levis M. FLT3 mutations in acute myeloid leukemia: what is the best approach in 2013? Hematology Am Soc Hematol Educ Program. 2013;2013:220–6.

    Article  PubMed  Google Scholar 

  72. Schiller J, Praulich I, Krings Rocha C, Kreuzer KA. Patient-specific analysis of FLT3 internal tandem duplications for the prognostication and monitoring of acute myeloid leukemia. Eur J Haematol. 2012;89(1):53–62.

    Article  CAS  PubMed  Google Scholar 

  73. Grunwald MR, Tseng LH, Lin MT, et al. Improved FLT3 internal tandem duplication PCR assay predicts outcome after allogeneic transplant for acute myeloid leukemia. Biol Blood Marrow Transplant. 2014;20(12):1989–95.

    Article  CAS  PubMed  Google Scholar 

  74. Lin MT, Tseng LH, Beierl K, et al. Tandem duplication PCR: an ultrasensitive assay for the detection of internal tandem duplications of the FLT3 gene. Diagn Mol Pathol. 2013;22(3):149–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Thol F, Kölking B, Damm F, et al. Next-generation sequencing for minimal residual disease monitoring in acute myeloid leukemia patients with FLT3-ITD or NPM1 mutations. Genes, Chromosomes Cancer. 2012;51(7):689–95.

    Article  CAS  PubMed  Google Scholar 

  76. Mardis ER. The $1,000 genome, the $100,000 analysis? Genome Med. 2010;2:84.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Ley T, Ding L, Walter M, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363(25):2424–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Yan XJ, Xu J, Gu ZH, et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet. 2011;43(4):309–15.

    Article  CAS  PubMed  Google Scholar 

  79. Shlush LI, Zandi S, Mitchell A, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014;506(7488):328–33. Identification of the very first mutation in the process of leukemia development.

    Article  CAS  PubMed  Google Scholar 

  80. Jaiswal S, Fontanillas P, Flannick J, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488–98.

    Article  CAS  PubMed  Google Scholar 

  81. Genovese G, Kähler AK, Handsaker RE, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371(26):2477–87.

    Article  CAS  PubMed  Google Scholar 

  82. Gaidzik VI, Schlenk RF, Paschka P, et al. Clinical impact of DNMT3A mutations in younger adult patients with acute myeloid leukemia: results of the AML Study Group (AMLSG). Blood. 2013;121(23):4769–77.

    Article  CAS  PubMed  Google Scholar 

  83. Marcucci G, Metzeler KH, Schwind S, et al. Age-related prognostic impact of different types of DNMT3A mutations in adults with primary cytogenetically normal acute myeloid leukemia. J Clin Oncol. 2012;30(7):742–50.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Hou HA, Kuo YY, Liu CY, et al. DNMT3A mutations in acute myeloid leukemia: stability during disease evolution and clinical implications. Blood. 2012;119(2):559–68.

    Article  CAS  PubMed  Google Scholar 

  85. Pløen GG, Nederby L, Guldberg P, et al. Persistence of DNMT3A mutations at long-term remission in adult patients with AML. Br J Haematol. 2014;167(4):478–86.

    Article  PubMed  Google Scholar 

  86. Lasa A, Carricondo M, Estivill C, et al. WT1 monitoring in core binding factor AML: comparison with specific chimeric products. Leuk Res. 2009;33(12):1643–9.

    Article  CAS  PubMed  Google Scholar 

  87. Cilloni D, Gottardi E, Fava M, et al. Usefulness of quantitative assessment of the WT1 gene transcript as a marker for minimal residual disease detection. Blood. 2003;102(2):773–4.

    Article  CAS  PubMed  Google Scholar 

  88. Cilloni D, Messa F, Arruga F, et al. Early prediction of treatment outcome in acute myeloid leukemia by measurement of WT1 transcript levels in peripheral blood samples collected after chemotherapy. Haematologica. 2008;93(6):921–4.

    Article  PubMed  Google Scholar 

  89. Nowakowska-Kopera A, Sacha T, Florek I, Zawada M, Czekalska S, Skotnicki AB. Wilms’ tumor gene 1 expression analysis by real-time quantitative polymerase chain reaction for monitoring of minimal residual disease in acute leukemia. Leuk Lymphoma. 2009;50(8):1326–32.

    Article  CAS  PubMed  Google Scholar 

  90. Rubnitz JE, Inaba H, Dahl G, et al. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. Lancet Oncol. 2010;11(6):543–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Sockel K, Wermke M, Radke J, et al. Minimal residual disease-directed preemptive treatment with azacitidine in patients with NPM1-mutant acute myeloid leukemia and molecular relapse. Haematologica. 2011;96(10):1568–70.

    Article  PubMed Central  PubMed  Google Scholar 

  92. Greiner J, Ono Y, Hofmann S, et al. Mutated regions of nucleophosmin 1 elicit both CD4(+) and CD8(+) T-cell responses in patients with acute myeloid leukemia. Blood. 2012;120(6):1282–9.

    Article  CAS  PubMed  Google Scholar 

  93. Hofmann S, Götz M, Schneider V, et al. Donor lymphocyte infusion induces polyspecific CD8(+) T-cell responses with concurrent molecular remission in acute myeloid leukemia with NPM1 mutation. J Clin Oncol. 2013;31(3):e44–7.

    Article  PubMed  Google Scholar 

  94. Bastos-Oreiro M, Perez-Corral A, Martínez-Laperche C, et al. Prognostic impact of minimal residual disease analysis by flow cytometry in patients with acute myeloid leukemia before and after allogeneic hemopoietic stem cell transplantation. Eur J Haematol. 2014;93(3):239–46.

    PubMed  Google Scholar 

  95. Leung W, Pui CH, Coustan-Smith E, et al. Detectable minimal residual disease before hematopoietic cell transplantation is prognostic but does not preclude cure for children with very-high-risk leukemia. Blood. 2012;120(2):468–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Wheatley K, Burnett AK, Goldstone AH, et al. A simple, robust, validated and highly predictive index for the determination of risk-directed therapy in acute myeloid leukaemia derived from the MRC AML 10 trial United Kingdom Medical Research Council’s Adult and Childhood Leukaemia Working Parties. Brit J Haematol. 1999;107(1):69–79.

    Article  CAS  Google Scholar 

  97. Kern W, Haferlach T, Schoch C, et al. Early blast clearance by remission induction therapy is a major independent prognostic factor for both achievement of complete remission and long-term outcome in acute myeloid leukemia: data from the German AML Cooperative Group (AMLCG) 1992 Trial. Blood. 2003;101(1):64–70.

    Article  CAS  PubMed  Google Scholar 

  98. Freeman SD, Virgo P, Couzens S, et al. Prognostic relevance of treatment response measured by flow cytometric residual disease detection in older patients with acute myeloid leukemia. J Clin Oncol. 2013;31(32):4123–31.

    Article  PubMed  Google Scholar 

  99. San Miguel JF, Vidriales MB, López-Berges C, et al. Early immunophenotypical evaluation of minimal residual disease in acute myeloid leukemia identifies different patient risk groups and may contribute to postinduction treatment stratification. Blood. 2001;98:1746–51.

    Article  CAS  PubMed  Google Scholar 

  100. Burnett AK, Russell NH, Hills RK, et al. Optimization of chemotherapy for younger patients with acute myeloid leukemia: results of the medical research council AML15 trial. J Clin Oncol. 2013;31(27):3360–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

S.K. gratefully acknowledges extramural funding from the University of Heidelberg.

R.F.S. gratefully acknowledges grants from the Else Kröner-Fresenius-Stiftung (P80/08 // A65/08), from the German Bundesministerium für Bildung und Forschung (01GI9981, 01KG0605, 01KG1004), and the Deutsche José Carreras Leukämie-Stiftung (DJCLS H 09/22). R.B.W. is a Leukemia & Lymphoma Society Scholar in Clinical Research.

We thank Dr. Farhad Ravandi for reviewing the manuscript.

Financial Support

R.B.W. is a Leukemia & Lymphoma Society Scholar in Clinical Research.

Author Contributions

S.K. and R.F.S. were responsible for the concept of this review, contributed to the literature search data collection/quality assessment, analyzed and interpreted data, and wrote the manuscript. R.B.W. and W.S. analyzed and interpreted data and critically revised the manuscript.

Compliance with Ethics Guidelines

Conflict of interest

Sabine Kayser, Roland B. Walter, Wendy Stock, and Richard F. Schlenk each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Kayser.

Additional information

This article is part of the Topical Collection on Acute Myeloid Leukemias

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayser, S., Walter, R.B., Stock, W. et al. Minimal Residual Disease in Acute Myeloid Leukemia—Current Status and Future Perspectives. Curr Hematol Malig Rep 10, 132–144 (2015). https://doi.org/10.1007/s11899-015-0260-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-015-0260-7

Keywords

Navigation