Skip to main content

Advertisement

Log in

Curing Chronic Myeloid Leukemia

  • Chronic Myeloid Leukemia (J Goldman, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

The use of tyrosine kinase inhibitors (TKIs) targeted against the BCR-ABL1 oncoprotein has proven remarkably successful in chronic myeloid leukemia (CML) and long-term survival has become a reality. Despite this outstanding progress, detection of minimal residual disease precludes therapy termination in most TKI-receiving patients. CML has thus turned into a chronic illness, raising concerns about long-term safety, medication adherence, and health care costs. Although treatment cessation may be feasible in few selected patients achieving deep molecular responses, a definitive cure remains elusive owing to the discovery that TKIs spare quiescent leukemic stem cells (LSC). Understanding mechanisms underlying LSC behavior in TKI-treated patients may provide important clues to develop an array of strategies that ensure the complete destruction of LSC reservoirs and thereby offer CML patients a definitive cure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Italian Cooperative Study Group on Chronic Myeloid Leukemia. Long-term follow-up of the Italian trial of interferon-α versus conventional chemotherapy in chronic myeloid leukemia. Blood. 1998;92:1541–8.

    Google Scholar 

  2. • O’Brien SG, Guilhot F, Larson RA, et al.: Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. New Engl J Med 2003, 348:994-1004. This study shows that imatinib is superior to previous treatment option interferon plus cytarabine as first-line therapy in patients with newly diagnosed CP-CML.

    Article  PubMed  Google Scholar 

  3. Roy L, Guilhot J, Krahnke T, et al. Survival advantage from imatinib compared with the combination interferon-alpha plus cytarabine in chronic-phase chronic myelogenous leukemia: historical comparison between two phase 3 trials. Blood. 2006;108:1478–84.

    Article  PubMed  CAS  Google Scholar 

  4. Baccarani M, Cortes J, Pane F, et al. Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. J Clin Oncol. 2009;27:6041–51.

    Article  PubMed  CAS  Google Scholar 

  5. Shah NP, Kantarjian HM, Kim DW, et al. Intermittent target inhibition with dasatinib 100 mg once daily preserves efficacy and improves tolerability in imatinib-resistant and -intolerant chronic-phase chronic myeloid leukemia. J Clin Oncol. 2008;26:3204–12.

    Article  PubMed  CAS  Google Scholar 

  6. Kantarjian HM, Giles F, Gattermann N, et al. Nilotinib (formerly AMN107), a highly selective BCR-ABL inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Blood. 2007;110:3540–6.

    Article  PubMed  CAS  Google Scholar 

  7. Kantarjian H, Shah NP, Hochhaus A, et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. New Eng J Med. 2010;362:2260–70.

    Article  PubMed  CAS  Google Scholar 

  8. Saglio G, Kim D-W, Issaragrisil S, et al. Nilotinib versus imatinib in newly diagnosed chronic myeloid leukemia. New Eng J Med. 2010;362:2251–9.

    Article  PubMed  CAS  Google Scholar 

  9. Cortes JE, Kim D-W, Pinilla-Ibarz J, et al. Initial findings from the PACE trial: a pivotal phase 2 study of ponatinib in patients with CML and Ph+ ALL resistant or intolerant to dasatinib or nilotinib, or with the T315I mutation. Blood (ASH annual Meeting Abstracts). 2011;118:109.

    Google Scholar 

  10. Björkholm M, Ohm L, Eloranta S, et al. Success story of targeted therapy in chronic myeloid leukemia: a population-based study of patients diagnosed in Sweden from 1973 to 2008. J Clin Oncol. 2011;29:2514–20.

    Article  PubMed  Google Scholar 

  11. Goldman J, Gordon M. Why do chronic myelogenous leukemia stem cells survive allogeneic stem cell transplantation or imatinib: does it really matter? Leuk Lymphoma. 2006;47:1–7.

    Article  PubMed  CAS  Google Scholar 

  12. Van Rhee F, Szydlo RM, Hermans J, et al. Long term results after allogeneic transplantation for chronic myelogenous leukemia in chronic phase: a report from the chronic leukemia working party of the European group for blood and marrow transplantation. Bone Marrow Transplant. 1997;20:553–60.

    Article  PubMed  Google Scholar 

  13. Pavlu J, Szydlo R, Goldman JM, Apperley JF. Three decades of transplantation for chronic myeloid leukemia: what have we learned? Blood. 2011;117:755–63.

    Article  PubMed  CAS  Google Scholar 

  14. Kaeda J, O’Shea D, Szydlo RM, et al. Serial measurement of BCR-ABL transcripts in the peripheral blood after allogeneic stem cell transplantation for chronic myeloid leukemia: an attempt to define patients who may not require further therapy. Blood. 2006;107:4171–6.

    Article  PubMed  CAS  Google Scholar 

  15. Radich JP, Gooley T, Bryant E, et al. The significance of bcr-abl molecular detection in chronic myeloid leukemia patients “late”, 18 months or more after transplantation. Blood. 2001;98:1701–7.

    Article  PubMed  CAS  Google Scholar 

  16. Mahon FX, Delbrel X, Cony-Makhoul P, et al. Follow-up of complete cytogenetic remission in patients with chronic myeloid leukemia after cessation of interferon alfa. J Clin Oncol. 2001;20:214–20.

    Article  Google Scholar 

  17. Hughes TP, Hochhaus A, Branford S, et al. Long-term prognostic significance of early molecular response to imatinib in newly diagnosed chronic myeloid leukemia: an analysis from the International Randomized Study of Interferon and STI571 (IRIS). Blood. 2010;116:3758–65.

    Article  PubMed  CAS  Google Scholar 

  18. Cortes J, O’Brien S, Kantarjian H. Discontinuation of imatinib therapy after achieving a molecular response. Blood. 2004;104:2204–5.

    Article  PubMed  CAS  Google Scholar 

  19. Mauro MJ, Druker BJ, Marziaz RT. Divergent clinical outcome in twp CML patients who discontinued imatinib therapy after achieving a molecular remission. Leuk Res. 2004;28S1:S71–3.

    Article  Google Scholar 

  20. Merante S, Orlandi E, Bernasconi P, et al. Outcome of four patients with chronic myeloid leukemia after imatinib mesylate discontinuation. Haematologica. 2005;90:979–81.

    PubMed  Google Scholar 

  21. Guastafierro S, Falcone U, Celentano M, et al. Is it possible to discontinue imatinib mesylate therapy in chronic myeloid leukemia patients with undetectable BCR/ABL? A case report and a review of the literature. Leuk Res. 2009;33:1079–81.

    Article  PubMed  CAS  Google Scholar 

  22. Rousselot P, Huguet F, Rea D, et al. Imatinib mesylate discontinuation in patients with chronic myelogenous leukemia in complete molecular remission for more than 2 years. Blood. 2007;109:58–60.

    Article  PubMed  CAS  Google Scholar 

  23. •• Mahon FX, Rea D, Guilhot J, et al.: Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre, Stop IMatinib (STIM) trial. Lancet Oncol. 2010, 11:1029-1035. STIM is the first large-scale clinical trial which has addressed the feasibility of imatinib discontinuation in patients with long-lasting undetectable BCR-ABL transcripts.

    Article  PubMed  CAS  Google Scholar 

  24. • Ross DM, Branford S, Seymour JF, et al.: Patients with chronic myeloid leukemia who maintain a complete molecular response after stopping imatinib treatment have evidence of persistent leukemia by DNA PCR. Leukemia 2010, 24:1719-1724. This study shows that most patients with undetectable BCR-ABL transcripts on imatinib have detectable BCR-ABL DNA, even those who discontinue imatinib and do not need to resume therapy, suggesting that treatment discontinuation does not require leukemic cell eradication.

    Article  PubMed  CAS  Google Scholar 

  25. Rea D, Raffoux E, Cayuela JM, et al. Sustained major molecular response in the absence of any antileukaemic therapy after dasatinib treatment and autologous peripheral blood stem cell transplantation in a patient with imatinib-resistant myeloblastic-phase chronic myeloid leukaemia. Leukemia. 2009;23:1158–9.

    Article  PubMed  CAS  Google Scholar 

  26. Ross DM, Bartley PA, Goyne J, et al. Durable complete molecular remission of chronic myeloid leukemia following dasatinib cessation, despite adverse disease features. Haematologica. 2011;96:1720–2.

    Article  PubMed  Google Scholar 

  27. Rea D, Rousselot P, Nicolini FE, et al. Discontinuation of dasatinib or nilotinib in chronic myeloid leukemia patients with stable undetectable Bcr-Abl transcripts: results from the French CML group (FILMC). Blood (ASH Annual Meeting Abstracts). 2011;118:604.

    Google Scholar 

  28. Chomel J-C, Bonnet M-L, Sorel N, et al. Leukemic stem cell persistence in chronic myeloid leukemia patients with sustained undetectable molecular residual disease. Blood. 2011;118:3657–60.

    Article  PubMed  CAS  Google Scholar 

  29. Mahon F-X, Rea D, Guilhot J, et al. Discontinuation of imatinib in patients with chronic myeloid leukemia who have maintained complete molecular response: update results of the STIM study. Blood (ASH Annual Meeting Abstracts). 2011;118:603.

    Google Scholar 

  30. Bose S, Deininger M, Gora-Tybor J, et al. The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood. 1998;92:3362–7.

    PubMed  CAS  Google Scholar 

  31. Hughes TP, Lipton JH, Leber B, et al. Complete molecular response (CMR) rate with nilotinib in patients with chronic myeloid leukemia in chronic phase without CMR ≥ 2 years on imatinib: preliminary results from the randomized ENESTcmr trial of nilotinib 400 mg twice daily (BID) vs imatinib. Blood (ASH Annual Meeting Abstracts). 2011;118:606.

    Google Scholar 

  32. Chu S, McDonald T, Lin A, et al. Persistence of leukemia stem cells in chronic myelogenous leukemia patients in prolonged remission with imatinib treatment. Blood. 2011;118:5565–72.

    Article  PubMed  CAS  Google Scholar 

  33. Graham SM, Jorgensen HG, Allan E, et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood. 2002;99:319–25.

    Article  PubMed  CAS  Google Scholar 

  34. Copland M, Hamilton A, Elrick LJ, et al. Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood. 2006;107:4532–9.

    Article  PubMed  CAS  Google Scholar 

  35. Jorgensen HG, Allan EK, Jordanides NE, et al. Nilotinib exerts equipotent antiproliferative effects to imatinib and does not induce apoptosis in CD34+ CML cells. Blood. 2007;109:4016–9.

    Article  PubMed  CAS  Google Scholar 

  36. Corbin AS, Agarwal A, Loriaux M, et al. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest. 2011;121:396–409.

    Article  PubMed  CAS  Google Scholar 

  37. Hamilton A, Helgason GV, Schemionek M, et al. Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival. Blood. 2012;119:1501–10.

    Article  PubMed  CAS  Google Scholar 

  38. Nair RR, Tolentino J, Hazlehurst LA. The bone marrow microenvironment as a sanctuary for minimal residual disease in CML. Biochem Pharmacol. 2010;80:602–12.

    Article  PubMed  CAS  Google Scholar 

  39. Konopleva MY, Jordan CT. Leukemia stem cells and microenvironment: biology and therapeutic targeting. J Clin Oncol. 2011;29:591–9.

    Article  PubMed  Google Scholar 

  40. Lemoli RM, Salvestrini V, Bianchi E, et al. Molecular and functional analysis of the stem cell compartment of chronic myelogenous leukemia reveals the presence of a CD34- cell population with intrinsic resistance to imatinib. Blood. 2009;114:5191–200.

    Article  PubMed  CAS  Google Scholar 

  41. Chen Y, Peng C, Sullivan C, et al. Critical molecular pathways in cancer stem cells of chronic myeloid leukemia. Leukemia. 2010;24:1545–54.

    Article  PubMed  CAS  Google Scholar 

  42. Chomel J-C, Turhan AG. Chronic myeloid leukemia stem cells in the era of targeted therapies: resistance, persistence and long-term dormancy. Oncotarget. 2011;2:713–27.

    PubMed  Google Scholar 

  43. Hegde S, Kaushal N, Ravindra KC, et al. Δ12-prostaglandin J3, an omega-3 fatty acid-derived metabolite, selectively ablates leukemia stem cells inmice. Blood. 2011;118:6909–19.

    Article  PubMed  CAS  Google Scholar 

  44. Naka K, Hoshii T, Hirao A. Novel therapeutic approach to eradicate tyrosine kinase inhibitor resistant chronic myeloid leukemia stem cells. Cancer Sci. 2010;101:1577–81.

    Article  PubMed  CAS  Google Scholar 

  45. Cilloni D, Saglio G: Molecular pathways: BCR-ABL. Clin Cancer Res Published OnlineFirst December 8, 2011; doi:10.1158/1078-0432.CCR-10-1613.

  46. Bocchia M, Gentili S, Abruzzese E, et al. Effect of a p210 multipeptide vaccine associated with imatinib or interferon in patients with chronic myeloid leukaemia and persistent residual disease: a multicenter observational trial. Lancet. 2005;365:657–62.

    PubMed  CAS  Google Scholar 

  47. Drummond MW, Heaney N, Kaeda J, et al. A pilot study of continuous imatinib vs pulsed imatinib with or without G-CSF in CML patients who have achieved a complete cytogenetic response. Leukemia. 2009;23:1199–201.

    Article  PubMed  CAS  Google Scholar 

  48. Bellodi C, Lidonnici MR, Hamilton A, et al. Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest. 2009;119:1109–23.

    Article  PubMed  CAS  Google Scholar 

  49. Low JA, de Sauvage FJ. Clinical experience with Hedgehog pathway inhibitors. J Clin Oncol. 2010;28:5321–6.

    Article  PubMed  CAS  Google Scholar 

  50. Preudhomme C, Guilhot J, Nicolini FE, et al. Imatinib plus peginterferon alfa-2a in chronic myeloid leukemia. New Engl J Med. 2010;363:2511–21.

    Article  PubMed  CAS  Google Scholar 

  51. Sato T, Onai N, Yishihara H, et al. Interferon regulatory factor-2 protects quiescent hematopoietic stem cells from type I interferon-dependent exhaustion. Nat Med. 2009;15:696–700.

    Article  PubMed  CAS  Google Scholar 

  52. Essers MAG, Offner S, Blanco-Bose WE, et al. IFNα activates dormant haematopoietic stem cells in vivo. Nature. 2009;458:904–8.

    Article  PubMed  CAS  Google Scholar 

  53. Bhattacharya S, Zheng H, Tzimas C, et al. Bcr-abl signals to desensitize chronic myeloid leukemia cells to IFNα via accelerating the degradation of its receptor. Blood. 2011;118:4179–87.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

D. Rea: board membership for Novartis Pharma and Bristol-Myers Squibb, consultant and speakers’ bureaus for Novartis Pharma; P. Rousselot: board membership for Pfizer and speakers’ bureaus for Bristol-Myers Squibb; J. Guilhot: none; F. Guilhot: none; F. X. Mahon: board membership for Novartis Pharma, BMS, and Pfizer and consultant to Novartis Pharma and BMS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delphine Rea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rea, D., Rousselot, P., Guilhot, J. et al. Curing Chronic Myeloid Leukemia. Curr Hematol Malig Rep 7, 103–108 (2012). https://doi.org/10.1007/s11899-012-0117-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-012-0117-2

Keywords

Navigation