Skip to main content

Advertisement

Log in

Resistance to imatinib in chronic myelogenous leukemia: Mechanisms and clinical implications

  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

The introduction of imatinib represented a breakthrough in the treatment of chronic myelogenous leukemia (CML). However, about 20% of patients treated in early chronic-phase CML are off therapy after 6 years because of resistance or intolerance, and most patients taking imatinib remain BCR-ABL-positive at the molecular level, indicating primary refractoriness of a leukemic subpopulation. Patients with advanced disease often do not respond, or they eventually relapse. Resistance frequently is associated with mutations in the kinase domain of BCR-ABL. Other mechanisms leading to reactivation of BCR-ABL or preventing sufficient BCR-ABL inhibition also exist. Resistance of patients with continued BCR-ABL inhibition despite leukemic progression indicates clonal evolution triggered by BCR-ABL-independent mechanisms. Current efforts to optimize BCR-ABL-targeted treatment focus on the difficulty in reaching CML stem cells. Success will most likely depend on integration of combined treatment algorithms—whether they be a combination of molecules interfering with signaling pathways or additional immune-based treatment adjuncts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Wong S, Witte ON: The BCR-ABL story: bench to beside and back. Annu Rev Immunol 2004, 22:247–306.

    Article  PubMed  CAS  Google Scholar 

  2. Deininger M, Buchdunger E, Druker BJ: The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 2005, 105:2640–2653.

    Article  PubMed  CAS  Google Scholar 

  3. Druker BJ, Guilhot F, O’Brien SG, et al.: Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006, 355:2408–2417.

    Article  PubMed  CAS  Google Scholar 

  4. Hochhaus A, Druker B, Sawyers C, et al.: Favorable long-term follow-up results over 6 years for response, survival, and safety with imatinib mesylate therapy in chronic-phase chronic myeloid leukemia after failure of interferon-alpha treatment. Blood 2008, 111:1039–1043.

    Article  PubMed  CAS  Google Scholar 

  5. Cortes J, O’Brien S, Kantarjian H: Discontinuation of imatinib therapy after achieving a molecular response. Blood 2004, 104:2204–2205.

    Article  PubMed  CAS  Google Scholar 

  6. Hughes TP, Kaeda J, Branford S, et al.: Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med 2003, 349:1423–1432.

    Article  PubMed  CAS  Google Scholar 

  7. Baccarani M, Saglio G, Goldman J, et al.: Evolving concepts in the management of chronic myeloid leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 2006, 108:1809–1820.

    Article  PubMed  CAS  Google Scholar 

  8. Branford S, Seymour JF, Grigg A, et al.: BCR-ABL messenger RNA levels continue to decline in patients with chronic phase chronic myeloid leukemia treated with imatinib for more than 5 years and approximately half of all first-line treated patients have stable undetectable BCR-ABL using strict sensitivity criteria. Clin Cancer Res 2007, 13:7080–7085.

    Article  PubMed  CAS  Google Scholar 

  9. Hughes T, Deininger M, Hochhaus A, et al.: Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood 2006, 108:28–37.

    Article  PubMed  CAS  Google Scholar 

  10. Talpaz M, Silver RT, Druker BJ, et al.: Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood 2002, 99:1928–1937.

    Article  PubMed  CAS  Google Scholar 

  11. Sawyers CL, Hochhaus A, Feldman E, et al.: Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood 2002, 99:3530–3539.

    Article  PubMed  CAS  Google Scholar 

  12. White D, Saunders V, Grigg A, et al.: Measurement of in vivo BCR-ABL kinase inhibition to monitor imatinib-induced target blockade and predict response in chronic myeloid leukemia. J Clin Oncol 2007, 25:4445–4451.

    Article  PubMed  CAS  Google Scholar 

  13. Hochhaus A, Kreil S, Corbin AS, et al.: Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 2002, 16:2190–2196.

    Article  PubMed  CAS  Google Scholar 

  14. Gorre ME, Mohammed M, Ellwood K, et al.: Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001, 293:876–880.

    Article  PubMed  CAS  Google Scholar 

  15. Schindler T, Bornmann W, Pellicena P, et al.: Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 2000, 289:1938–1942.

    Article  PubMed  CAS  Google Scholar 

  16. von Bubnoff N, Schneller F, Peschel C, Duyster J: BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukaemia to STI571: a prospective study. Lancet 2002, 359:487–491.

    Article  Google Scholar 

  17. Branford S, Rudzki Z, Walsh S, et al.: High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia who develop imatinib (STI571) resistance. Blood 2002, 99:3472–3475.

    Article  PubMed  CAS  Google Scholar 

  18. Branford S, Rudzki Z, Walsh S, et al.: The detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood 2003, 102:276–283.

    Article  PubMed  CAS  Google Scholar 

  19. Hochhaus A, Kreil S, Corbin A, et al.: Roots of clinical resistance to STI-571 cancer therapy. Science 2001, 293:2163.

    Article  PubMed  CAS  Google Scholar 

  20. Shah NP, Nicoll JM, Nagar B, et al.: Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2002, 2:117–125.

    Article  PubMed  CAS  Google Scholar 

  21. Apperley JF: Part I: mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol 2007, 8:1018–1029.

    Article  PubMed  CAS  Google Scholar 

  22. O’Hare T, Eide CA, Deininger MW: Bcr-Abl kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia. Blood 2007, 110:2242–2249.

    Article  PubMed  CAS  Google Scholar 

  23. Jabbour E, Kantarjian H, Jones D, et al.: Frequency and clinical significance of BCR-ABL mutations in patients with chronic myeloid leukemia treated with imatinib mesylate. Leukemia 2006, 20:1767–1773.

    Article  PubMed  CAS  Google Scholar 

  24. Soverini S, Colarossi S, Gnani A, et al.: Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of Philadelphia-positive patients: by the GIMEMA Working Party on Chronic Myeloid Leukemia. Clin Cancer Res 2006, 12:7374–7379.

    Article  PubMed  CAS  Google Scholar 

  25. Barnes DJ, Palaiologou D, Panousopoulou E, et al.: Bcr-Abl expression levels determine the rate of development of resistance to imatinib mesylate in chronic myeloid leukemia. Cancer Res 2005, 65:8912–8919.

    Article  PubMed  CAS  Google Scholar 

  26. Koptyra M, Falinski R, Nowicki MO, et al.: BCR/ABL kinase induces self-mutagenesis via reactive oxygen species to encode imatinib resistance. Blood 2006, 108:319–327.

    Article  PubMed  CAS  Google Scholar 

  27. Weisberg E, Manley PW, Breitenstein W, et al.: Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 2005, 7:129–141. [Published erratum appears in Cancer Cell 2005, 7:399.]

    Article  PubMed  CAS  Google Scholar 

  28. Shah NP, Tran C, Lee FY, et al.: Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 2004, 305:399–401.

    Article  PubMed  CAS  Google Scholar 

  29. Weisberg E, Manley PW, Cowan-Jacob SW, et al.: Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer 2007, 7:345–356.

    Article  PubMed  CAS  Google Scholar 

  30. Corbin AS, La Rosée P, Stoffregen EP, et al.: Several Bcr-Abl kinase domain mutants associated with imatinib mesylate resistance remain sensitive to imatinib. Blood 2003, 101:4611–4614.

    Article  PubMed  CAS  Google Scholar 

  31. Griswold IJ, MacPartlin M, Bumm T, et al.: Kinase domain mutants of Bcr-Abl exhibit altered transformation potency, kinase activity, and substrate utilization, irrespective of sensitivity to imatinib. Mol Cell Biol 2006, 26:6082–6093.

    Article  PubMed  CAS  Google Scholar 

  32. Azam M, Latek RR, Daley GQ: Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-ABL. Cell 2003, 112:831–843.

    Article  PubMed  CAS  Google Scholar 

  33. von Bubnoff N, Barwisch S, Speicher MR, et al.: A cell-based screening strategy that predicts mutations in oncogenic tyrosine kinases: implications for clinical resistance in targeted cancer treatment. Cell Cycle 2005, 4:400–406.

    Google Scholar 

  34. Bradeen HA, Eide CA, O’Hare T, et al.: Comparison of imatinib mesylate, dasatinib (BMS-354825), and nilotinib (AMN107) in an N-ethyl-N-nitrosourea (ENU)-based mutagenesis screen: high efficacy of drug combinations. Blood 2006, 108:2332–2338.

    Article  PubMed  CAS  Google Scholar 

  35. Roche-Lestienne C, Soenen-Cornu V, Grardel-Duflos N, et al.: Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment. Blood 2002, 100:1014–1018.

    Article  PubMed  CAS  Google Scholar 

  36. Ernst T, Erben P, Müller MC, et al.: Dynamics of BCR-ABL mutated clones prior to hematologic or cytogenetic resistance to imatinib. Haematologica 2008, 93:186–192.

    Article  PubMed  Google Scholar 

  37. Branford S, Rudzki Z, Parkinson I, et al.: Real-time quantitative PCR analysis can be used as a primary screen to identify patients with CML treated with imatinib who have BCR-ABL kinase domain mutations. Blood 2004, 104:2926–2932.

    Article  PubMed  CAS  Google Scholar 

  38. Sherbenou DW, Wong MJ, Humayun A, et al.: Mutations of the BCR-ABL-kinase domain occur in a minority of patients with stable complete cytogenetic response to imatinib. Leukemia 2007, 21:489–493.

    Article  PubMed  CAS  Google Scholar 

  39. Khorashad JS, Anand M, Marin D, et al.: The presence of a BCR-ABL mutant allele in CML does not always explain clinical resistance to imatinib. Leukemia 2006, 20:658–663.

    Article  PubMed  CAS  Google Scholar 

  40. Kantarjian H, Talpaz M, O’Brien S, et al.: High-dose imatinib mesylate therapy in newly diagnosed Philadelphia chromosome-positive chronic phase chronic myeloid leukemia. Blood 2004, 103:2873–2878.

    Article  PubMed  CAS  Google Scholar 

  41. Holtz MS, Slovak ML, Zhang F, et al.: Imatinib mesylate (STI571) inhibits growth of primitive malignant progenitors in chronic myelogenous leukemia through reversal of abnormally increased proliferation. Blood 2002, 99:3792–3800.

    Article  PubMed  CAS  Google Scholar 

  42. Wu EQ, Feng W, Johnson S, et al.: Medical costs associated with imatinib (IM) non-compliance in chronic myeloid leukemia (CML) patients (pts) [abstract 17514]. Presented at the 2007 ASCO Annual Meeting. Chicago: May 30–June 3, 2007.

  43. Mahon FX, Deininger MW, Schultheis B, et al.: Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood 2000, 96:1070–1079.

    PubMed  CAS  Google Scholar 

  44. Brendel C, Scharenberg C, Dohse M, et al.: Imatinib mesylate and nilotinib (AMN107) exhibit high-affinity interaction with ABCG2 on primitive hematopoietic stem cells. Leukemia 2007, 21:1267–1275.

    Article  PubMed  CAS  Google Scholar 

  45. Thomas J, Wang L, Clark RE, Primohamed M: Active transport of imatinib into and out of cells: implications for drug resistance. Blood 2004, 104:3739–3745.

    Article  PubMed  CAS  Google Scholar 

  46. White DL, Saunders VA, Dang P, et al.: OCT-1-mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib. Blood 2006, 108:697–704.

    Article  PubMed  CAS  Google Scholar 

  47. Jiang X, Zhao Y, Smith C, et al.: Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia 2007, 21:926–935.

    PubMed  CAS  Google Scholar 

  48. Picard S, Titier K, Etienne G, et al.: Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood 2007, 109:3496–3499.

    Article  PubMed  CAS  Google Scholar 

  49. O’Dwyer ME, Mauro MJ, Kurilik G, et al.: The impact of clonal evolution on response to imatinib mesylate (STI571) in accelerated phase CML. Blood 2002, 100:1628–1633.

    Article  PubMed  CAS  Google Scholar 

  50. Wendel HG, de Stanchina E, Cepero E, et al.: Loss of p53 impedes the antileukemic response to BCR-ABL inhibition. Proc Natl Acad Sci U S A 2006, 103:7444–7449.

    Article  PubMed  CAS  Google Scholar 

  51. Wang Y, Cai D, Brendel C, et al.: Adaptive secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF) mediates imatinib and nilotinib resistance in BCR/ABL+ progenitors via JAK-2/STAT-5 pathway activation. Blood 2007, 109:2147–2155.

    Article  PubMed  CAS  Google Scholar 

  52. Chu S, Holtz M, Gupta M, Bhatia R: BCR/ABL kinase inhibition by imatinib mesylate enhances MAP kinase activity in chronic myelogenous leukemia CD34+ cells. Blood 2004, 103:3167–3174.

    Article  PubMed  CAS  Google Scholar 

  53. Burchert A, Wang Y, Cai D, et al.: Compensatory PI3-kinase/Akt/mTor activation regulates imatinib resistance development. Leukemia 2005, 19:1774–1782.

    Article  PubMed  CAS  Google Scholar 

  54. Donato NJ, Wu JY, Stapley J, et al.: BCR-ABL independence and LYN kinase overexpression in chronic myelogenous leukemia cells selected for resistance to STI571. Blood 2003, 101:690–698.

    Article  PubMed  CAS  Google Scholar 

  55. Chu S, Xu H, Shah NP, et al.: Detection of BCR-ABL kinase mutations in CD34+ cells from chronic myelogenous leukemia patients in complete cytogenetic remission on imatinib mesylate treatment. Blood 2005, 105:2093–2098.

    Article  PubMed  CAS  Google Scholar 

  56. Graham SM, Jorgensen HG, Allan E, et al.: Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 2002, 99:319–325.

    Article  PubMed  CAS  Google Scholar 

  57. Rousselot P, Huguet F, Rea D, et al.: Imatinib mesylate discontinuation in patients with chronic myelogenous leukemia in complete molecular remission for more than 2 years. Blood 2007, 109:58–60.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Hochhaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosée, P.L., Hochhaus, A. Resistance to imatinib in chronic myelogenous leukemia: Mechanisms and clinical implications. Curr Hematol Malig Rep 3, 72–79 (2008). https://doi.org/10.1007/s11899-008-0012-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-008-0012-z

Keywords

Navigation