Skip to main content

Advertisement

Log in

The Role of TGF—β Signaling in Cardiomyocyte Proliferation

  • Translational Research in Heart Failure (J. Backs and M. van den Hoogenhof, Section Editors)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The loss of contractile function after heart injury remains one of the major healthcare issues of our time. One strategy to deal with this problem would be to increase the number of cardiomyocytes to enhance cardiac function. In the last couple of years, reactivation of cardiomyocyte proliferation has repeatedly demonstrated to aid in functional recovery after cardiac injury.

Recent Findings

The Tgf-β superfamily plays key roles during development of the heart and populating the embryonic heart with cardiomyocytes. In this review, we discuss the role of Tgf-β signaling in regulating cardiomyocyte proliferation during development and in the setting of cardiac regeneration.

Summary

Although various pathways to induce cardiomyocyte proliferation have been established, the extent to which cardiomyocyte proliferation requires or involves activation of the Tgf-β superfamily is not entirely clear. More research is needed to better understand cross-talk between pathways that regulate cardiomyocyte proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Benjamin EJ, Muntner P, Bittencourt MS. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019;139(10):e56–e528.

    PubMed  Google Scholar 

  2. Konkel L. Assessing a medley of metals: combined exposures and incident coronary heart disease. Environ Health Perspect. 2018;126(3):034002.

    PubMed  PubMed Central  Google Scholar 

  3. Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011;123(8):933–44.

    PubMed  Google Scholar 

  4. Schaufelberger M, Swedberg K, Köster M, Rosén M, Rosengren A. Decreasing one-year mortality and hospitalization rates for heart failure in Sweden: data from the Swedish hospital discharge registry 1988 to 2000. Eur Heart J. 2004;25(4):300–7.

    PubMed  Google Scholar 

  5. Van Berlo JH, Kanisicak O, Maillet M, Vagnozzi RJ, Karch J, Lin S-CJ, et al. C-kit+ cells minimally contribute cardiomyocytes to the heart. Nature. 2014;509(7500):337–41.

    PubMed  PubMed Central  Google Scholar 

  6. Neidig LE, Weinberger F, Palpant NJ, Mignone J, Martinson AM, Sorensen DW, et al. Evidence for minimal cardiogenic potential of stem cell antigen 1–positive cells in the adult mouse heart. Circulation. 2018;138(25):2960–2.

    PubMed  PubMed Central  Google Scholar 

  7. Weinberger F, Eschenhagen T. Heart Regeneration: From Mouse to Human. Current Opinion in Physiology. 2019.

  8. Kretzschmar K, Post Y, Bannier-Hélaouët M, Mattiotti A, Drost J, Basak O, et al. Profiling proliferative cells and their progeny in damaged murine hearts. Proc Natl Acad Sci. 2018;115(52):E12245–E54.

    CAS  PubMed  Google Scholar 

  9. Uygur A, Lee RT. Mechanisms of cardiac regeneration. Dev Cell. 2016;36(4):362–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Foglia MJ, Poss KD. Building and re-building the heart by cardiomyocyte proliferation. Development. 2016;143(5):729–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Liao S, Dong W, Lv L, Guo H, Yang J, Zhao H, et al. Heart regeneration in adult Xenopus tropicalis after apical resection. Cell Biosci. 2017;7(1):70.

    PubMed  PubMed Central  Google Scholar 

  12. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, et al. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331(6020):1078–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Mollova M, Bersell K, Walsh S, Savla J, Das LT, Park S-Y, et al. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci. 2013;110(4):1446–51.

    CAS  PubMed  Google Scholar 

  14. Bersell K, Arab S, Haring B, Kühn B. Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell. 2009;138(2):257–70.

    CAS  PubMed  Google Scholar 

  15. von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM, Buck JN, et al. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci. 2012;109(7):2394–9.

    Google Scholar 

  16. Xin M, Kim Y, Sutherland LB, Qi X, McAnally J, Schwartz RJ, et al. Regulation of insulin-like growth factor signaling by Yap governs cardiomyocyte proliferation and embryonic heart size. Sci Signal. 2011;4(196):ra70.

    PubMed  PubMed Central  Google Scholar 

  17. Mohamed TM, Ang Y-S, Radzinsky E, Zhou P, Huang Y, Elfenbein A, et al. Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration. Cell. 2018;173(1):104–16 e12.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Todorovic V, Jurukovski V, Chen Y, Fontana L, Dabovic B, Rifkin D. Latent TGF-β binding proteins. Int J Biochem Cell Biol. 2005;37(1):38–41.

    CAS  PubMed  Google Scholar 

  19. Shi M, Zhu J, Wang R, Chen X, Mi L, Walz T, et al. Latent TGF-β structure and activation. Nature. 2011;474(7351):343–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang YE, Newfeld SJ. Meeting report–TGF-β superfamily: signaling in development and disease. The Company of Biologists Ltd; 2013.

  21. Moustakas A, Heldin C-H. The regulation of TGFβ signal transduction. Development. 2009;136(22):3699–714.

    CAS  PubMed  Google Scholar 

  22. Zhang YE. Non-Smad signaling pathways of the TGF-β family. Cold Spring Harb Perspect Biol. 2017;9(2):a022129.

    PubMed  PubMed Central  Google Scholar 

  23. Uribe V, Ramadass R, Dogra D, Rasouli SJ, Gunawan F, Nakajima H, et al. In vivo analysis of cardiomyocyte proliferation during trabeculation. Development. 2018;145(14):dev164194.

    PubMed  Google Scholar 

  24. Wu C-C, Kruse F, Vasudevarao MD, Junker JP, Zebrowski DC, Fischer K, et al. Spatially resolved genome-wide transcriptional profiling identifies BMP signaling as essential regulator of zebrafish cardiomyocyte regeneration. Dev Cell. 2016;36(1):36–49.

    PubMed  Google Scholar 

  25. Prados B, Gómez-Apiñániz P, Papoutsi T, Luxán G, Zaffran S, Pérez-Pomares JM, et al. Myocardial Bmp2 gain causes ectopic EMT and promotes cardiomyocyte proliferation and immaturity. Cell Death Dis. 2018;9(3):1–15.

    CAS  Google Scholar 

  26. Ebelt H, Hillebrand I, Arlt S, Zhang Y, Kostin S, Neuhaus H, et al. Treatment with bone morphogenetic protein 2 limits infarct size after myocardial infarction in mice. Shock. 2013;39(4):353–60.

    CAS  PubMed  Google Scholar 

  27. Chakraborty S, Sengupta A, Yutzey KE. Tbx20 promotes cardiomyocyte proliferation and persistence of fetal characteristics in adult mouse hearts. J Mol Cell Cardiol. 2013;62:203–13.

    CAS  PubMed  Google Scholar 

  28. Chen H, Shi S, Acosta L, Li W, Lu J, Bao S, et al. BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development. 2004;131(9):2219–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Heldin C-H, Moustakas A. Signaling receptors for TGF-β family members. Cold Spring Harb Perspect Biol. 2016;8(8):a022053.

    PubMed  PubMed Central  Google Scholar 

  30. Ten Dijke P, Goumans MJ, Itoh F, Itoh S. Regulation of cell proliferation by Smad proteins. J Cell Physiol. 2002;191(1):1–16.

    PubMed  Google Scholar 

  31. Kennedy BA, Deatherage DE, Gu F, Tang B, Chan MW, Nephew KP, et al. ChIP-seq defined genome-wide map of TGFβ/SMAD4 targets: implications with clinical outcome of ovarian cancer. PLoS One. 2011;6(7):e22606.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Timberlake AT, Choi J, Zaidi S, Lu Q, Nelson-Williams C, Brooks ED, et al. Two locus inheritance of non-syndromic midline craniosynostosis via rare SMAD6 and common BMP2 alleles. Elife. 2016;5:e20125.

    PubMed  PubMed Central  Google Scholar 

  33. Engel FB, Hsieh PC, Lee RT, Keating MT. FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Acad Sci. 2006;103(42):15546–51.

    CAS  PubMed  Google Scholar 

  34. Maillet M, Purcell NH, Sargent MA, York AJ, Bueno OF, Molkentin JD. DUSP6 (MKP3) null mice show enhanced ERK1/2 phosphorylation at baseline and increased myocyte proliferation in the heart affecting disease susceptibility. J Biol Chem. 2008;283(45):31246–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Khalil N. TGF-β: from latent to active. Microbes Infect. 1999;1(15):1255–63.

    CAS  PubMed  Google Scholar 

  36. Bettinger DA, Yager DR, Diegelmann RF, Cohen IK. The effect of TGF-beta on keloid fibroblast proliferation and collagen synthesis. Plast Reconstr Surg. 1996;98(5):827–33.

    CAS  PubMed  Google Scholar 

  37. Saltis J, Agrotis A, Bobik A. TGF-beta 1 potentiates growth factor-stimulated proliferation of vascular smooth muscle cells in genetic hypertension. Am J Phys Cell Phys. 1992;263(2):C420–C8.

    CAS  Google Scholar 

  38. Huang SS, Huang JS. TGF-β control of cell proliferation. J Cell Biochem. 2005;96(3):447–62.

    CAS  PubMed  Google Scholar 

  39. Takehara K, LeRoy EC, Grotendorst GR. TGF-β inhibition of endothelial cell proliferation: alteration of EGF binding and EGF-induced growth-regulatory (competence) gene expression. Cell. 1987;49(3):415–22.

    CAS  PubMed  Google Scholar 

  40. Bujak M, Frangogiannis NG. The role of TGF-β signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res. 2007;74(2):184–95.

    CAS  PubMed  Google Scholar 

  41. Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature. 1992;359(6397):693–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Proetzel G, Pawlowski SA, Wiles MV, Yin M, Boivin GP, Howles PN, et al. Transforming growth factor–β3 is required for secondary palate fusion. Nat Genet. 1995;11(4):409–14.

    CAS  PubMed  Google Scholar 

  43. Kaartinen V, Voncken JW, Shuler C, Warburton D, Bu D, Heisterkamp N, et al. Abnormal lung development and cleft palate in mice lacking TGF–β3 indicates defects of epithelial–mesenchymal interaction. Nat Genet. 1995;11(4):415–21.

    CAS  PubMed  Google Scholar 

  44. Stanford L, Ormsby I, Gittenberger-de Groot A, Sariola H, Friedman R. TGFb2 knockout mice have multiple developmental defects that are non-overlapping with other TGFb phenotypes. Development. 1997;124:2569–670.

    Google Scholar 

  45. McKoy G, Bicknell KA, Patel K, Brooks G. Developmental expression of myostatin in cardiomyocytes and its effect on foetal and neonatal rat cardiomyocyte proliferation. Cardiovasc Res. 2007;74(2):304–12.

    CAS  PubMed  Google Scholar 

  46. Cohn RD, Liang H-Y, Shetty R, Abraham T, Wagner KR. Myostatin does not regulate cardiac hypertrophy or fibrosis. Neuromuscul Disord. 2007;17(4):290–6.

    PubMed  PubMed Central  Google Scholar 

  47. Heineke J, Auger-Messier M, Xu J, Sargent M, York A, Welle S, et al. Genetic deletion of myostatin from the heart prevents skeletal muscle atrophy in heart failure. Circulation. 2010;121(3):419–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sridurongrit S, Larsson J, Schwartz R, Ruiz-Lozano P, Kaartinen V. Signaling via the Tgf-β type I receptor Alk5 in heart development. Dev Biol. 2008;322(1):208–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Inman GJ, Nicolás FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, et al. SB-431542 is a potent and specific inhibitor of transforming growth factor-β superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol. 2002;62(1):65–74.

    CAS  PubMed  Google Scholar 

  50. Chablais F, Jaźwińska A. The regenerative capacity of the zebrafish heart is dependent on TGFβ signaling. Development. 2012;139(11):1921–30.

    CAS  PubMed  Google Scholar 

  51. Pfefferli C, Jaźwińska A. The careg element reveals a common regulation of regeneration in the zebrafish myocardium and fin. Nat Commun. 2017;8(1):1–16.

    Google Scholar 

  52. Snider P, Standley KN, Wang J, Azhar M, Doetschman T, Conway SJ. Origin of cardiac fibroblasts and the role of periostin. Circ Res. 2009;105(10):934–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kühn B, Del Monte F, Hajjar RJ, Chang Y-S, Lebeche D, Arab S, et al. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med. 2007;13(8):962–9.

    PubMed  Google Scholar 

  54. Lorts A, Schwanekamp JA, Elrod JW, Sargent MA, Molkentin JD. Genetic manipulation of periostin expression in the heart does not affect myocyte content, cell cycle activity, or cardiac repair. Circ Res. 2009;104(1):e1–7.

    CAS  PubMed  Google Scholar 

  55. López-Novoa JM, Bernabeu C. The physiological role of endoglin in the cardiovascular system. Am J Phys Heart Circ Phys. 2010;299(4):H959–H74.

    Google Scholar 

  56. Arthur HM, Ure J, Smith AJ, Renforth G, Wilson DI, Torsney E, et al. Endoglin, an ancillary TGFβ receptor, is required for extraembryonic angiogenesis and plays a key role in heart development. Dev Biol. 2000;217(1):42–53.

    CAS  PubMed  Google Scholar 

  57. Dogra D, Ahuja S, Kim H-T, Rasouli SJ, Stainier DY, Reischauer S. Opposite effects of Activin type 2 receptor ligands on cardiomyocyte proliferation during development and repair. Nat Commun. 2017;8(1):1–15.

    CAS  Google Scholar 

  58. Yang J, Wang J, Zeng Z, Qiao L, Zhuang L, Jiang L, et al. Smad4 is required for the development of cardiac and skeletal muscle in zebrafish. Differentiation. 2016;92(4):161–8.

    CAS  PubMed  Google Scholar 

  59. Qi X, Yang G, Yang L, Lan Y, Weng T, Wang J, et al. Essential role of Smad4 in maintaining cardiomyocyte proliferation during murine embryonic heart development. Dev Biol. 2007;311(1):136–46.

    CAS  PubMed  Google Scholar 

  60. Zhao M, New L, Kravchenko VV, Kato Y, Gram H, Di Padova F, et al. Regulation of the MEF2 family of transcription factors by p38. Mol Cell Biol. 1999;19(1):21–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen S, Qiong Y, Gardner DG. A role for p38 mitogen-activated protein kinase and c-myc in endothelin-dependent rat aortic smooth muscle cell proliferation. Hypertension. 2006;47(2):252–8.

    CAS  PubMed  Google Scholar 

  62. Balakrishnan S, Sadasivam M, Kannan A, Panneerselvam A, Prahalathan C. Glucose modulates Pax6 expression through the JNK/p38 MAP kinase pathway in pancreatic beta-cells. Life Sci. 2014;109(1):1–7.

    CAS  PubMed  Google Scholar 

  63. Matsumoto-Ida M, Takimoto Y, Aoyama T, Akao M, Takeda T, Kita T. Activation of TGF-β1-TAK1-p38 MAPK pathway in spared cardiomyocytes is involved in left ventricular remodeling after myocardial infarction in rats. Am J Phys Heart Circ Phys. 2006;290(2):H709–H15.

    CAS  Google Scholar 

  64. Uosaki H, Magadum A, Seo K, Fukushima H, Takeuchi A, Nakagawa Y, et al. Identification of chemicals inducing cardiomyocyte proliferation in developmental stage–specific manner with pluripotent stem cells. Circ Cardiovasc Genet. 2013;6(6):624–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Engel FB, Schebesta M, Duong MT, Lu G, Ren S, Madwed JB, et al. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev. 2005;19(10):1175–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Mebratu Y, Tesfaigzi Y. How ERK1/2 activation controls cell proliferation and cell death: is subcellular localization the answer? Cell Cycle. 2009;8(8):1168–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Li P, Cavallero S, Gu Y, Chen TH, Hughes J, Hassan AB, et al. IGF signaling directs ventricular cardiomyocyte proliferation during embryonic heart development. Development. 2011;138(9):1795–805.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Tan L, Bogush N, Naib H, Perry J, Calvert JW, Martin DI, et al. Redox activation of JNK2α2 mediates thyroid hormone-stimulated proliferation of neonatal murine cardiomyocytes. Sci Rep. 2019;9(1):1–15.

    Google Scholar 

  69. Hough C, Radu M, Doré JJ. Tgf-beta induced Erk phosphorylation of smad linker region regulates smad signaling. PLoS One. 2012;7(8):e42513.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Umbarkar P, Singh AP, Gupte M, Verma VK, Galindo CL, Guo Y, et al. Cardiomyocyte SMAD4-dependent TGF-β signaling is essential to maintain adult heart homeostasis. JACC: Basic to Translational Science. 2019;4(1):41–53.

    PubMed  Google Scholar 

  71. Harvey CD, Ehrhardt AG, Cellurale C, Zhong H, Yasuda R, Davis RJ, et al. A genetically encoded fluorescent sensor of ERK activity. Proc Natl Acad Sci. 2008;105(49):19264–9.

    CAS  PubMed  Google Scholar 

  72. de la Cova C, Townley R, Regot S, Greenwald I. A real-time biosensor for ERK activity reveals signaling dynamics during C. elegans cell fate specification. Dev Cell. 2017;42(5):542–53 e4.

    PubMed  PubMed Central  Google Scholar 

  73. Heallen T, Zhang M, Wang J, Bonilla-Claudio M, Klysik E, Johnson RL, et al. Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science. 2011;332(6028):458–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Heallen T, Morikawa Y, Leach J, Tao G, Willerson JT, Johnson RL, et al. Hippo signaling impedes adult heart regeneration. Development. 2013;140(23):4683–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Yao M, Wang Y, Zhang P, Chen H, Xu Z, Jiao J, et al. BMP2-SMAD signaling represses the proliferation of embryonic neural stem cells through YAP. J Neurosci. 2014;34(36):12039–48.

    PubMed  PubMed Central  Google Scholar 

  76. Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K, Larsen BG, et al. The crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-β-SMAD pathway. Dev Cell. 2010;19(6):831–44.

    CAS  PubMed  Google Scholar 

  77. Attisano L, Wrana JL. Signal integration in TGF-β, WNT, and Hippo pathways. F1000prime reports. 2013;5.

  78. Hanna A, Frangogiannis NG. The role of the TGF-beta superfamily in myocardial infarction. Front Cardiovasc Med. 2019;6:140.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

DWS is supported by National Institutes of Health grant T32GM113846, and JHvB is supported by NIH (HL130072), Regenerative Medicine Minnesota (RMM102516-009), and an Individual Biomedical Research Scholarship from The Hartwell Foundation. Illustrations were provided by L. Sorensen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jop H. van Berlo.

Ethics declarations

Conflict of Interest

Daniel Sorensen and Jop van Berlo declare that they have no conflict of interests. This article does not contain any studies with human or animal subjects performed by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Translational Research in Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorensen, D.W., van Berlo, J.H. The Role of TGF—β Signaling in Cardiomyocyte Proliferation. Curr Heart Fail Rep 17, 225–233 (2020). https://doi.org/10.1007/s11897-020-00470-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-020-00470-2

Keywords

Navigation