Skip to main content

Advertisement

Log in

An Appraisal of Biomarker-Based Risk-Scoring Models in Chronic Heart Failure: Which One Is Best?

  • Biomarkers of Heart Failure (J. Grodin & W.H.W. Tang, Section Editors)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

While prediction models incorporating biomarkers are used in heart failure, these have shown wide-ranging discrimination and calibration. This review will discuss externally validated biomarker-based risk models in chronic heart failure patients assessing their quality and relevance to clinical practice.

Recent Findings

Biomarkers may help in determining prognosis in chronic heart failure patients as they reflect early pathologic processes, even before symptoms or worsening disease. We present the characteristics and describe the performance of 10 externally validated prediction models including at least one biomarker among their predictive factors. Very few models report adequate discrimination and calibration. Some studies evaluated the additional predictive value of adding a biomarker to a model. However, these have not been routinely assessed in subsequent validation studies.

Summary

New and existing prediction models should include biomarkers, which improve model performance. Ongoing research is needed to assess the performance of models in contemporary patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Bleumink GS, Knetsch AM, Sturkenboom MC, Straus SM, Hofman A, Deckers JW, et al. Quantifying the heart failure epidemic: prevalence, incidence rate, lifetime risk and prognosis of heart failure: the Rotterdam study. Eur Heart J. 2004;25(18):1614–9. https://doi.org/10.1016/j.ehj.2004.06.038.

    Article  PubMed  Google Scholar 

  2. Alba AC, Braga J, Gewarges M, Walter SD, Guyatt GH, Ross HJ. Predictors of mortality in patients with an implantable cardiac defibrillator: a systematic review and meta-analysis. Can J Cardiol. 2013;29(12):1729–40. https://doi.org/10.1016/j.cjca.2013.09.024.

    Article  PubMed  Google Scholar 

  3. Alba AC, Agoritsas T, Jankowski M, Courvoisier D, Walter SD, Guyatt GH, et al. Risk prediction models for mortality in ambulatory patients with heart failure: a systematic review. Circ Heart Fail. 2013;6(5):881–9. https://doi.org/10.1161/CIRCHEARTFAILURE.112.000043.

    Article  PubMed  Google Scholar 

  4. Berger R, Huelsman M, Strecker K, Bojic A, Moser P, Stanek B, et al. B-type natriuretic peptide predicts sudden death in patients with chronic heart failure. Circulation. 2002;105(20):2392–7. https://doi.org/10.1161/01.CIR.0000016642.15031.34.

    Article  PubMed  Google Scholar 

  5. Horwich TB, Patel J, MacLellan R, Fonarow GC. Cardiac troponin I is associated with impaired hemodynamics, progressive left ventricular dysfunction, and increased mortality rates in advanced heart failure. Circulation. 2003;108(7):833–8. https://doi.org/10.1161/01.CIR.0000084543.79097.34.

    Article  CAS  PubMed  Google Scholar 

  6. Hudson MP, O’Connor CM, Gattis WA, Tasissa G, Hasselblad V, Holleman CM, et al. Implications of elevated cardiac troponin T in ambulatory patients with heart failure: a prospective analysis. Am Heart J. 2004;147(3):546–52. https://doi.org/10.1016/j.ahj.2003.10.014.

    Article  CAS  PubMed  Google Scholar 

  7. Dries DL, Exner DV, Domanski MJ, Greenberg B, Stevenson LW. The prognostic implications of renal insufficiency in asymptomatic and symptomatic patients with left ventricular dysfunction. J Am Coll Cardiol. 2000;35(3):681–9. https://doi.org/10.1016/S0735-1097(99)00608-7.

    Article  CAS  PubMed  Google Scholar 

  8. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95. https://doi.org/10.1067/mcp.2001.113989.

    Article  Google Scholar 

  9. Chow SL, Maisel AS, Anand I, Bozkurt B, de Boer RA, Felker GM, et al. Role of biomarkers for the prevention, assessment, and management of heart failure: a scientific statement from the American Heart Association. Circulation. 2017;135(22):e1054–91. https://doi.org/10.1161/CIR.0000000000000490.

    Article  CAS  PubMed  Google Scholar 

  10. Cowie MR, Struthers AD, Wood DA, Coats AJ, Thompson SG, Poole-Wilson PA, et al. Value of natriuretic peptide in assessment of patients with possible new heart failure in primary care. Lancet. 1997;350(9088):1349–53. https://doi.org/10.1016/S0140-6736(97)06031-5.

    Article  CAS  PubMed  Google Scholar 

  11. Hobbs FDR, Davis RC, Roalfe AK, Hare R, Davies MK. Reliability of N-terminal proBNP assay in diagnosis of left ventricular systolic dysfunction within representative and high risk populations. Heart. 2004;90(8):866–70. https://doi.org/10.1136/hrt.2003.014258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim HN, Januzzi JL. Natriuretic peptide testing in heart failure. Circulation. 2011;123(18):2015–9. https://doi.org/10.1161/CIRCULATIONAHA.110.979500.

    Article  PubMed  Google Scholar 

  13. Balion C, Don-Wauchope A, Hill S, Santaguida PL, Booth R, Brown JA, et al. Use of natriuretic peptide measurement in the management of heart failure. Comparative effectiveness review no. 126. (prepared by the McMaster University evidence-based practice center under contract no. 290–2007-10060-I.) AHRQ publication no. 13(14)-EHC118-EF. Rockville, MD: Agency for Healthcare Research and Quality; November 2013. www.effectivehealthcare.ahrq.gov/reports/final.cfm.

  14. Booth RA, Hill SA, Don-Wauchope A, Santaguida PL, Oremus M, McKelvie R, et al. Performance of BNP and NT-proBNP for diagnosis of heart failure in primary care patients: a systematic review. Heart Fail Rev. 2014;19(4):439–51. https://doi.org/10.1007/s10741-014-9445-8.

    Article  CAS  PubMed  Google Scholar 

  15. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Colvin MM, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines and the Heart Failure Society of America. J Card Fail. 2017;23(8):628–51. https://doi.org/10.1016/j.cardfail.2017.04.014.

    Article  PubMed  Google Scholar 

  16. Anand IS, Fisher LD, Chiang YT, Latini R, Masson S, Maggioni AP, et al. Changes in brain natriuretic peptide and norepinephrine over time and mortality and morbidity in the valsartan heart failure trial (Val-HeFT). Circulation. 2003;107(9):1278–83. https://doi.org/10.1161/01.CIR.0000054164.99881.00.

    Article  CAS  PubMed  Google Scholar 

  17. Richards AM, Doughty R, Nicholls MG, MacMahon S, Sharpe N, Murphy J, et al. Plasma N-terminal pro-brain natriuretic peptide and adrenomedullin: prognostic utility and prediction of benefit from cardvedilol in chronic ischemic left ventricular dysfunction Australia-New Zealand Heart Failure Group. J Am Coll Cardiol. 2001;37(7):1781–7. https://doi.org/10.1016/S0735-1097(01)01269-4.

    Article  CAS  PubMed  Google Scholar 

  18. Doust JA, Pietrzak E, Dobson A, Glasziou P. How well does B-type natriuretic peptide predict death and cardiac events in patients with heart failure: systematic review. BMJ. 2005;330(7492):625–0. https://doi.org/10.1136/bmj.330.7492.625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. van Boven N, Akkerhuis KM, Anroedh SS, Battes LC, Caliskan K, Yassi W, et al. In search of an efficient strategy to monitor disease status of chronic heart failure outpatients: added value of blood biomarkers to clinical assessment. Neth Heart J. 2017;25(11):634–42. https://doi.org/10.1007/s12471-017-1040-x.

    Article  PubMed  PubMed Central  Google Scholar 

  20. • Troughton RW, Frampton CM, Brunner-La Rocca HP, Pfisterer M, Eurlings LW, Erntell H, et al. Effect of B-type natriuretic peptide-guided treatment of chronic heart failure on total mortality and hospitalization: an individual patient meta-analysis. Eur Heart J. 2014;35(23):1559–67. https://doi.org/10.1093/eurheartj/ehu090. This is a meta-analysis of eight randomized controlled trials evaluating natriuretic peptide-guided treatment versus clinically-guided care in chronic heart failure. All-cause mortality, heart failure hospitalizations, and cardiovascular admissions were reduced in the natriuretic peptide-guided treatment arm.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kociol RD, Pang PS, Gheorghiade M, Fonarow GC, O’Connor CM, Felker GM. Troponin elevation in heart failure: prevalence, mechanisms, and clinical implications. J Am Coll Cardiol. 2010;56(14):1071–8. https://doi.org/10.1016/j.jacc.2010.06.016.

    Article  CAS  PubMed  Google Scholar 

  22. Braunwald E. Biomarkers in heart failure. N Engl J Med. 2008;358(20):2148–59. https://doi.org/10.1056/NEJMra0800239.

    Article  CAS  PubMed  Google Scholar 

  23. Logeart D, Beyne P, Cusson C, Tokmakova M, Leban M, Guiti C, et al. Evidence of cardiac myolysis in severe nonischemic heart failure and the potential role of increased wall strain. Am Heart J. 2001;141(2):247–53. https://doi.org/10.1067/mhj.2001.111767.

    Article  CAS  PubMed  Google Scholar 

  24. Latini R, Masson S, Anand IS, Missov E, Carlson M, Vago T, et al. Prognostic value of very low plasma concentrations of troponin T in patients with stable chronic heart failure. Circulation. 2007;116(11):1242–9. https://doi.org/10.1161/CIRCULATIONAHA.106.655076.

    Article  CAS  PubMed  Google Scholar 

  25. Grodin JL, Neale S, Wu Y, Hazen SL, Tang WHW. Prognostic comparison of different sensitivity cardiac troponin assays in stable heart failure. Am J Med. 2015;128(3):276–82. https://doi.org/10.1016/j.amjmed.2014.09.029.

    Article  PubMed  Google Scholar 

  26. Damman K, Valente MA, Voors AA, O’Connor CM, Van Veldhuisen DJ, Hillege HL. Renal impairment, worsening renal function, and outcome in patients with heart failure: an updated meta-analysis. Eur Heart J. 2014;35(7):455–69. https://doi.org/10.1093/eurheartj/eht386.

    Article  PubMed  Google Scholar 

  27. Damman K, Testani JM. The kidney in heart failure: an update. Eur Heart J. 2015;36(23):1437–44. https://doi.org/10.1093/eurheartj/ehv010.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shlipak MG, Massie BM. The clinical challenge of cardiorenal syndrome. Circulation. 2004;110(12):1514–7. https://doi.org/10.1161/01.CIR.0000143547.55093.17.

    Article  PubMed  Google Scholar 

  29. Hillege HL, Girbes AR, de Kam PJ, Boomsma F, de Zeeuw D, Charlesworth A, et al. Renal function, neurohormonal activation, and survival in patients with chronic heart failure. Circulation. 2000;102(2):203–10. https://doi.org/10.1161/01.CIR.102.2.203.

    Article  CAS  PubMed  Google Scholar 

  30. Akhter MW, Aronson D, Bitar F, Khan S, Singh H, Singh RP, et al. Effect of elevated admission serum creatinine and its worsening on outcome in hospitalized patients with decompensated heart failure. Am J Cardiol. 2004;94(7):957–60. https://doi.org/10.1016/j.amjcard.2004.06.041.

    Article  CAS  PubMed  Google Scholar 

  31. Pimentel R, Couto M, Laszczynska O, Frioes F, Bettencourt P, Azevedo A. Prognostic value of worsening renal function in outpatients with chronic heart failure. Eur J Intern Med. 2014;25(7):662–8. https://doi.org/10.1016/j.ejim.2014.06.002.

    Article  PubMed  Google Scholar 

  32. Klein L, Massie BM, Leimberger JD, O’Connor CM, Pina IL, Adams KF, et al. Admission or changes in renal function during hospitalization for worsening heart failure predict postdischarge survival: results from the outcomes of a prospective trial of intravenous milrinone fo exacerbations of chronic heart failure (OPTIME-CHF). 2008;1:25–33. https://doi.org/10.1161/CIRCHEARTFAILURE.107.746933.

  33. Klein L, O’Connor CM, Leimberger JD, Gattis-Stough W, Pina IL, Felker GM, et al. Lower serum sodium is associated with increased short-term mortality in hospitalized patients with worsening heart failure: results from the outcomes of a prospective trial of intravenous milrinone fo exacerbations of chronic heart failure (OPTIME-CHF). Circulation. 2005;111(19):2454–60. https://doi.org/10.1161/01/CIR.0000165065.82609.3D.

    Article  CAS  PubMed  Google Scholar 

  34. Gheorghiade M, Abraham WT, Albert NM, Stough WG, Greenberg BH, O’Connor CM, et al. Relationship between admission serum sodium concentration and clinical outcomes in patients hospitalized for heart failure: an analysis from the OPTIME-HF registry. Eur Heart J. 2007;28(8):980–8. https://doi.org/10.1093/eurheartj/ehl542.

    Article  CAS  PubMed  Google Scholar 

  35. Ky B, French B, McCloskey K, Rame E, McIntosh E, Shahi P, et al. High-sensitivity ST2 for prediction of adverse outcomes in chronic heart failure. Circ Heart Fail. 2011;4(2):180–7. https://doi.org/10.1161/CIRCHEARTFAILURE.110.958223.

    Article  PubMed  Google Scholar 

  36. Villacorta H, Maisel AS. Soluble ST2 testing: a promising biomarker in the management of heart failure. Arq Bras Cardiol. 2016;106(2):145–52. https://doi.org/10.5935/abc.20150151.

    PubMed  PubMed Central  Google Scholar 

  37. Pascual-Figal DA, Ordonez-Llanos J, Tornel PL, Vazquez R, Puig T, Valdes M, et al. Soluble ST2 for predicting sudden cardiac death in patients with chronic heart failure and left ventricular systolic dysfunction. J Am Coll Cardiol. 2009;54(23):2174–9. https://doi.org/10.1016/j.jacc.2009.07.041.

    Article  CAS  PubMed  Google Scholar 

  38. Huehnergarth KV, Mozaffarian D, Sullivan MD, Crane BA, Wilkinson CW, Lawler RL, et al. Usefulness of relative lymphocyte count as an independent predictor of death/urgent transplant in heart failure. Am J Cardiol. 2005;95(12):1492–5. https://doi.org/10.1016/j.amjcard.2005.02.022.

    Article  PubMed  Google Scholar 

  39. Nunez J, Nunez E, Minana G, Sanchis J, Bodi V, Rumiz E, et al. Effectiveness of the relative lymphocyte count to predict one-year mortality in patients with acute heart failure. Am J Cardiol. 2011;107(7):1034–9. https://doi.org/10.1016/j.amjcard.2010.11.029.

    Article  PubMed  Google Scholar 

  40. Groenveld HF, Januzzi JL, Damman K, van Wijngaarden J, Hillege HL, van Veldhuisen DJ, et al. Anemia and mortality in heart failure patients a systematic review and meta-analysis. J Am Coll Cardiol. 2008;52(10):818–27. https://doi.org/10.1016/j.jacc.2008.04.061.

    Article  PubMed  Google Scholar 

  41. Ather S, Chan W, Bozkurt B, Aguilar D, Ramasubbu K, Zachariah AA, et al. Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction. J Am Coll Cardiol. 2012;59(11):998–1005. https://doi.org/10.1016/j.jacc.2011.11.040.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Moe GW, Ezekowitz JA, O’Meara E, Lepage S, Howlett JG, Fremes S, et al. The 2014 Canadian cardiovascular society heart failure management guidelines focus update: anemia, biomarkers, and recent therapeutic trial implications. Can J Cardiol. 2015;31(1):3–16. https://doi.org/10.1016/j.cjca.2014.10.022.

    Article  PubMed  Google Scholar 

  43. Sharma R, Francis DP, Pitt B, Poole-Wilson PA, Coats AJS, Anker SD. Haemoglobin predicts survival in patients with chronic heart failure: a substudy of the ELITE II trial. Eur Heart J. 2004;25(12):1021–8. https://doi.org/10.1016/j.ehj.2004.04.023.

    Article  CAS  PubMed  Google Scholar 

  44. Mozaffarian D, Nye R, Levy WC. Anemia predicts mortality in severe heart failure: The Prospective Randomized Amlodipine Survival Evaluation (PRAISE). J Am Coll Cardiol. 2003;41(11):1933–9. https://doi.org/10.1016/S0735-1097(03)00425-X.

    Article  PubMed  Google Scholar 

  45. Rauchhaus M, Clark AL, Doehner W, Davos C, Bolger A, Sharma R, et al. The relationship between cholesterol and survival in patients with chronic heart failure. J Am Coll Cardiol. 2003;42(11):1933–40. https://doi.org/10.1016/j.jacc.2003.07.016.

    Article  CAS  PubMed  Google Scholar 

  46. Horwich TB, Hamilton MA, Maclellan WR, Fonarow GC. Low serum total cholesterol is associated with marked increase in mortality in advanced heart failure. J Card Fail. 2002;8(4):216–24. https://doi.org/10.1054/jcaf.2002.126519.

    Article  CAS  PubMed  Google Scholar 

  47. Mozaffarian D, Nye R, Levy WC. Statin therapy is associated with lower mortality among patients with severe heart failure. Am J Cardiol. 2004;93(9):1124–9. https://doi.org/10.1016/j.amjcard.2004.01.039.

    Article  CAS  PubMed  Google Scholar 

  48. Leyva F, Chua TP, Anker SD, Coats AJ. Uric acid in chronic heart failure: a measure of the anaerobic threshold. Metabolism. 1998;47(9):1156–9. https://doi.org/10.1016/S0026-0495(98)90293-1.

    Article  CAS  PubMed  Google Scholar 

  49. Leyva F, Anker SD, Godsland IF, Teixeira M, Hellewell PG, Kox WJ, et al. Uric acid in chronic heart failure: a marker of chronic inflammation. Eur Heart J. 1998;19(12):1814–22. https://doi.org/10.1053/euhj.1998.1188.

    Article  CAS  PubMed  Google Scholar 

  50. Anker SD, Doehner W, Rauchhaus M, Sharma R, Francis D, Knosalla C, et al. Uric acid and survival in chronic heart failure: validation and application in metabolic, functional, and hemodynamic staging. Circulation. 2003;107(15):1991–7. https://doi.org/10.1161/01.CIR.0000065637.10517.A0.

    Article  PubMed  Google Scholar 

  51. Wu AH, Ghali JK, Neuberg GW, O’Connor CM, Carson PE, Levy WC. Uric acid level and allopurinol use as risk markers of mortality and morbidity in systolic heart failure. Am Heart J. 2010;160(5):928–33. https://doi.org/10.1016/j.ahj.2010.08.006.

    Article  CAS  PubMed  Google Scholar 

  52. Shale BW, Owen AJ, Chin KL, Reid CM. Risk prediction models for incident heart failure: a systematic review of methodology and model performance. J Cardiac Fail. 2017;23(9):680–7. https://doi.org/10.1016/j.cardfail.2017.03.005.

    Article  Google Scholar 

  53. DeFilippis AP, Young R, Carrubba CJ, McEvoy JW, Budoff MJ, Blumenthal RS, et al. An analysis of calibration and discrimination among multiple cardiovascular risk scores in a modern multiethnic cohort. Ann Intern Med. 2015;162(4):266–75. https://doi.org/10.7326/M14-1281.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Aaronson KD, Schwartz JS, Chen TM, Wong KL, Goin JE, Mancini DM. Development and prospective validation of a clinical index to predict survival in ambulatory patients referred for cardiac transplant evaluation. Circulation. 1997;95:2260–7. https://doi.org/10.1161/01/CIR.95.12.2660.

    Article  Google Scholar 

  55. Levy WC, Mozaffarian D, Linker DT, Sutradhar SC, Anker SD, Cropp AB, et al. The Seattle heart failure model: prediction of survival in heart failure. Circulation. 2006;113(11):1424–33. https://doi.org/10.1161/CIRCULATIONAHA.105.584102.

    Article  PubMed  Google Scholar 

  56. Bilchick KC, Stukenborg GJ, Kamath S, Cheng A. Prediction of mortality in clinical practice for medicare patients undergoing defibrillator implantation for primary prevention of sudden cardiac death. J Am Coll Cardiol. 2012;60(17):1647–55. https://doi.org/10.1016/j.jacc.2012.07.028.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pocock SJ, Ariti CA, McMurray JJ, Maggioni A, Kober L, Squire IB, et al. Predicting survival in heart failure: a risk score based on 39 372 patients from 30 studies. Eur Heart J. 2013;34(19):1404–13. https://doi.org/10.1093/eurheartj/ehs337.

    Article  PubMed  Google Scholar 

  58. Agostoni P, Corra U, Cattadori G, Veglia F, La Gioia R, Scardovi AB, et al. Metabolic exercise test data combined with cardiac and kidney indexes, the MECKI score: a multiparametric approach to heart failure prognosis. Int J Cardiol. 2013;167(6):2710–8. https://doi.org/10.1016/j.ijcard.2012.06.113.

    Article  PubMed  Google Scholar 

  59. • Chyu J, Fonarow GC, Tseng CH, Horwich TB. Four-variable risk model in men and women with heart failure. Circ Heart Fail. 2014;7(1):88–95. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000404. Recently published prediction model that has been externally validated. Both discrimination and calibration were reported.

    Article  CAS  PubMed  Google Scholar 

  60. • Alba AC, Walter SD, Guyatt GH, Levy WC, Fang J, Ross HJ, et al. Predicting survival in heart failure patients with implantable cardioverter-defibrillators: the heart failure meta-score. J Cardiac Fail. 2017. https://doi.org/10.1016/j.cardfail.2017.11.002. Recently published prediction model that has been externally validated. Both discrimination and calibration were reported.

  61. Frankenstein L, Goode K, Ingle L, Remppis A, Schellberg D, Nelles M, et al. Derivation and validation of a simple clinical risk-model in heart failure based on 6 minute walk test performance and NT-proBNP status – do we need specificity for sex and beta-blockers? Int J Cardiol. 2011;147(1):74–8. https://doi.org/10.1016/j.ijcard.2009.08.005.

    Article  CAS  PubMed  Google Scholar 

  62. Kramer DB, Friedman PA, Kallinen LM, Morrison TB, Crusan DJ, Hodge DO, et al. Development and validation of a risk score to predict early mortality in recipients of implantable cardioverter-defibrillators. Heart Rhythm. 2012;9(1):42–6. https://doi.org/10.1016/j.hrthm.2011.08.031.

    Article  PubMed  Google Scholar 

  63. Oh C, Chang HJ, Sung JM, Kim JY, Yang W, Shim J, et al. Prognostic estimation of advanced heart failure with low left ventricular ejection fraction and wide QRS interval. Korean Circ J. 2012;42(10):659–67. https://doi.org/10.4070/kcj.2012.42.10.659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kearney MT, Nolan J, Lee AJ, Brooksby PW, Prescott R, Shah AM, et al. A prognostic index to predict long-term mortality in patients with mild to moderate chronic heart failure stabilised on angiotensin converting enzyme inhibitors. Eur J Heart Fail. 2003;5(4):489–97. https://doi.org/10.1016/S1388-9842(03)00053-9.

    Article  CAS  PubMed  Google Scholar 

  65. Adlam D, Silcocks P, Sparrow N. Using BNP to develop a risk score for heart failure in primary care. Eur Heart J. 2005;26(11):1086–93. https://doi.org/10.1093/eurheartj/ehi178.

    Article  CAS  PubMed  Google Scholar 

  66. Huynh BC, Rovner A, Rich MW. Identification of older patients with heart failure who may be candidates for hospice care: development of a simple four-item risk score. J Am Geriatr Soc. 2008;56(6):1111–5. https://doi.org/10.1111/j.1532-5415.2008.01756.x.

    Article  PubMed  Google Scholar 

  67. Wedel H, McMurray JJ, Lindberg M, Wikstrand J, Cleland JG, Cornel JH, et al. Predictors of fatal and non-fatal outcomes in the controlled Rosuvastatin multinational trial in heart failure (CORONA): incremental value of apolipoprotein A-1, high-sensitivity C-reactive peptide and N-terminal pro B-type natriuretic peptide. Eur J Heart Fail. 2009;11(3):281–91. https://doi.org/10.1093/eurjhf/hfn046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Leyva F, Foley PW, Stegemann B, Ward JA, Ng LL, Frenneaux MP, et al. Development and validation of a clinical index to predict survival after cardiac resynchronization therapy. Heart. 2009;95(19):1619–25. https://doi.org/10.1136/hrt.2009.173880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vazquez R, Bayes-Genis A, Cygankiewicz I, Pascual-Figal D, Grigorian-Shamagian L, Pavon R, et al. The MUSIC risk score: a simple method for predicting mortality in ambulatory patients with chronic heart failure. Eur Heart J. 2009;30(9):1088–96. https://doi.org/10.1093/eurheartj/ehp032.

    Article  PubMed  Google Scholar 

  70. Komajda M, Carson PE, Hetzel S, McKelvie R, McMurray J, Ptaszynska A, et al. Factors associated with outcome in heart failure with preserved ejection fraction: findings from the Irbesartan in heart failure with preserved ejection fraction study (I-PRESERVE). Circ Heart Fail. 2011;4(1):27–35. https://doi.org/10.1161/CIRCHEARTFAILURE.109.932996.

    Article  CAS  PubMed  Google Scholar 

  71. Subramanian D, Subramanian V, Deswal A, Mann DL. New predictive models of heart failure mortality using time-series measurements and ensemble models. Circ Heart Fail. 2011;4(4):456–62. https://doi.org/10.1161/CIRCHEARTFAILURE.110.958496.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Herrmann R, Sandek A, von Haehling S, Doehner W, Schmidt HB, Anker SD, et al. Risk stratification in patients with chronic heart failure based on metabolic-immunological, functional, and haemodynamic parameters. Int J Cardiol. 2012;156(1):62–8. https://doi.org/10.1016/j.ijcard.2010.10.028.

    Article  PubMed  Google Scholar 

  73. Scrutinio D, Passantino A, Catanzaro R, Guida P. Clinical utility of different estimates of renal function for predicting mortality in chronic heart failure. Int J Cardiol. 2012;157(1):24–30. https://doi.org/10.1016/j.ijcard.2010.10.131.

    Article  PubMed  Google Scholar 

  74. Lupon J, de Antonio M, Vila J, Penafiel J, Galan A, Zamora E, et al. Development of a novel heart failure risk tool: the Barcelona bio-heart failure risk calculator (BCN bio-HF calculator). PLoS One. 2014;9(1):e85466. https://doi.org/10.1371/journal.pone.0085466.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lee DS, Austin PC, Rouleau JL, Liu PP, Naimark D, JV T. Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model. JAMA. 2003;290(19):2581–7. https://doi.org/10.1001/jama.290.19.2581.

    Article  CAS  PubMed  Google Scholar 

  76. Fonarow GC, Adams KF, Abraham WT, Yancy CW, Boscardin WJ. For the ADHERE scientific advisory committee, study group, and investigators. Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis. JAMA. 2005;293(5):572–80. https://doi.org/10.1001/jama.293.5.572.

    Article  CAS  PubMed  Google Scholar 

  77. Wang TJ, Gona P, Larson MG, Tofler GH, Levy D, Newton-Cheh C, et al. Multiple biomarkers for the prediction of first major cardiovascular events and death. N Engl J Med. 2006;355(25):2631–9. https://doi.org/10.1056/NEJMoa055373.

    Article  CAS  PubMed  Google Scholar 

  78. Goda A, Lund LH, Mancini DM. Comparison across races of peak oxygen consumption and heart failure survival score for selection for cardiac transplantation. Am J Cardiol. 2010;105(10):1439–44. https://doi.org/10.1016/j.amjcard.2009.12.067.

    Article  PubMed  Google Scholar 

  79. Goda A, William P, Mancini D, Lund LH. Selecting patients for heart transplantation: comparison of the heart failure survival score (HFSS) and the Seattle heart failure model (SHFM). J Heart Lung Transplant. 2011;30(11):1236–43. https://doi.org/10.1016/j.healun.2011.05.012.

    Article  PubMed  Google Scholar 

  80. Goda A, Lund LH, Mancini DM. The heart failure survival score outperforms the peak oxygen consumption for heart transplantation selection in the era of device therapy. J Heart Lung Transplant. 2011;30(3):315–25. https://doi.org/10.1016/j.healun.2010.09.007.

    Article  PubMed  Google Scholar 

  81. Gorodeski EZ, Chu EC, Chow CH, Levy WC, Hsich E, Starling R. Application of the Seattle heart failure model in ambulatory patients presented to an advanced heart failure therapeutics committee. Circ Heart Fail. 2010;3(6):706–14. https://doi.org/10.1161/CIRCHEARTFAILURE.110.944280.

    Article  PubMed  Google Scholar 

  82. Koelling TM, Joseph S, Aaronson KD. Heart Failure Survival Score continues to predict clinical outcomes in patients with heart failure receiving β-blockers. J Heart Lung Transplant. 2004;23(12):1414–22. https://doi.org/10.1016/j.healun.2003.10.002.

    Article  PubMed  Google Scholar 

  83. Melin M, Hagerman I, Gonon A, Gustafsson T, Rullman E. Variability in physical activity assessed with accelerometer is an independent predictor of mortality in CHF patients. PLoS One. 2016;11(4):e0153036. https://doi.org/10.1371/journal.pone.0153036.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Parikh MN, Lund LH, Goda A, Mancini D. Usefulness of peak exercise oxygen consumption and the Heart Failure Survival Score to predict survival in patients >65 years of age with heart failure. 2009;103:998–1002. https://doi.org/10.1016/j.amjcard.2008.12.010.

  85. Zugck C, Kruger C, Kell R, Korber S, Schellberg D, Kubler W, et al. Risk stratification in middle-aged patients with congestive heart failure: prospective comparison of the heart failure survival score (HFSS) and a simplified two-variable model. Eur J Heart Fail. 2001;3(5):577–85. https://doi.org/10.1016/S1388-9842(01)00167-2.

    Article  CAS  PubMed  Google Scholar 

  86. Agostoni P, Paolillo S, Mapelli M, Gentile P, Salvioni E, Veglia F, et al. Multiparametric prognostic scores in chronic heart failure with reduced ejection fraction: a long-term comparison. Eur J Heart Fail. 2017; https://doi.org/10.1002/ejhf.989.

  87. Allen LA, Yager JE, Funk MJ, Levy WC, Tulsky JA, Bowers MT, et al. Discordance between patient-predicted and model-predicted life expectancy among ambulatory heart failure patients. JAMA. 2008;299(21):2533–42. https://doi.org/10.1001/jama.299.21.2533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dardas T, Li Y, Reed SD, O’Connor CM, Whellan DJ, Ellis SJ, et al. Incremental and independent value of cardiopulmonary exercise test measures and the Seattle heart failure model for prediction of risk in patients with heart failure. J Heart Lung Transplant. 2015;34(8):1017–23. https://doi.org/10.1016/j.healun.2015.03.017.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Fu S, Xie L, Li D, Ye P, Luo L. The predictive capacity and additional prognostic power of N-terminal pro-B-type natriuretic peptide in Chinese elderly with chronic heart failure. Clin Interv Aging. 2015;10:359–65. https://doi.org/10.2147/CIA.S77417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Giamouzis G, Kalogeropoulos AP, Georgiopoulou VV, Agha SA, Rashad MA, Laskar SR, et al. Incremental value of renal function in risk prediction with the Seattle heart failure model. Am Heart J. 2009;157(2):299–305. https://doi.org/10.1016/j.ahj.2008.10.007.

    Article  PubMed  Google Scholar 

  91. Haga K, Murray S, Reid J, Ness A, O’Donnell M, Yellowlees D, et al. Identifying community based chronic heart failure patients in the last year of life: a comparison of the hold standards framework prognostic indicators guide and the Seattle heart failure model. Heart. 2012;98(7):579–83. https://doi.org/10.1136/heartjnl-2011-301021.

    Article  PubMed  Google Scholar 

  92. Kalogeropoulos AP, Georgiopoulou VV, Giamouzis G, Smith AL, Agha SA, Waheed S, et al. Utility of the Seattle heart failure model in patients with advanced heart failure. J Am Coll Cardiol. 2009;53(4):334–42. https://doi.org/10.1016/j.jacc.2008.10.023.

    Article  PubMed  Google Scholar 

  93. Levy WC, Mozaffarian D, Linker DT, Farrar DJ, Miller LW. On behalf of the REMATCH investigators. Can the Seattle heart failure model be used to risk-stratify heart failure patients for potential left ventricular assist device therapy? J Heart Lung Transplant. 2009;28(3):231–6. https://doi.org/10.1016/j.healun.2008.12.015.

    Article  PubMed  Google Scholar 

  94. May HT, Horne BD, Levy WC, Kfoury AG, Rasmusson KD, Linker DT, et al. Validation of the Seattle heart failure model in a community-based heart failure population and enhancement by adding B-type natriuretic peptide. Am J Cardiol. 2007;100(4):697–700. https://doi.org/10.1016/j.amjcard.2007.03.083.

    Article  CAS  PubMed  Google Scholar 

  95. Perrotta L, Ricciardi G, Pieragnoli P, Chiostri M, Pontecorboli G, de Santo T, et al. Application of the Seattle heart failure model in patients on cardiac resynchronization therapy. PACE. 2012;35(1):88–94. https://doi.org/10.1111/j.1540-8159.2011.03258.x.

    Article  PubMed  Google Scholar 

  96. Regoli F, Scopigni F, Leyva F, Landolina M, Ghio S, Tritto M, et al. Validation of Seattle heart failure model for mortality risk prediction in patients treated with cardiac resynchronization therapy. Eur J Heart Fail. 2013;15(2):211–20. https://doi.org/10.1093/eurjhf/hfs162.

    Article  PubMed  Google Scholar 

  97. Smith T, Levy WC, Schaer BA, Balk AHHM, Sticherling C, Jordaens L, et al. Performance of the Seattle heart failure model in implantable defibrillator patients treated with cardiac resynchronization therapy. Am J Cardiol. 2012;110(3):398–402. https://doi.org/10.1016/j.amjcard.2012.03.038.

    Article  PubMed  Google Scholar 

  98. Sartipy U, Dahlstrom U, Edner M, Lund LH. Predicting survival in heart failure: validation of the MAGGIC heart failure risk score in 51 043 patients from the Swedish heart failure registry. Eur J Heart Fail. 2014;16(2):173–9. https://doi.org/10.1111/ejhf.32.

    Article  PubMed  Google Scholar 

  99. Corra U, Agostoni P, Giordano A, Cattadori G, Battaia E, La Gioia R, et al. The metabolic exercise test data combined with cardiac and kidney indexes (MECKI) score and prognosis in heart failure: a validation study. Int J Cardiol. 2016;203:1067–72. https://doi.org/10.1016/j.ijcard.2015.11.075.

    Article  PubMed  Google Scholar 

  100. Sartipy U, Goda A, Dm M, Lund LH. Assessment of a University of California, Los Angeles 4-variable risk score for advanced heart failure. J Am Heart Assoc. 2014;3(3):e000998. https://doi.org/10.1161/JAHA.114.000998.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Gaggin HK, Januzzi JL. (2015) Cardiac biomarkers and heart failure: expert analysis. http://www.acc.org/latest-in-cardiology/articles/2015/02/09/13/00/cardiac-biomarkers-and-heart-failure. Accessed 2 Dec 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara S. Doumouras.

Ethics declarations

Conflict of Interest

Barbara S. Doumouras, Douglas S. Lee, and Ana C. Alba declare no conflicts of interest.

Wayne C. Levy reports grants and personal fees from Novartis, Inc., personal fees from GE Healthcare, personal fees from EBR Systems, Inc., grants from Amgen, grants from Resmed, personal fees from CardioMems (Abbott), personal fees from Biotronik, outside the submitted work; and The University of Washington has received licensing fees for the Seattle Heart Failure Model from various healthcare related entities for use in clinical trials and in patient EHRs. He has not received any royalties.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Biomarkers of Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doumouras, B.S., Lee, D.S., Levy, W.C. et al. An Appraisal of Biomarker-Based Risk-Scoring Models in Chronic Heart Failure: Which One Is Best?. Curr Heart Fail Rep 15, 24–36 (2018). https://doi.org/10.1007/s11897-018-0375-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-018-0375-y

Keywords

Navigation