Skip to main content
Log in

Rationale and Therapeutic Opportunities for Natriuretic Peptide System Augmentation in Heart Failure

  • Pharmacologic Therapy (WHW Tang, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

The natriuretic peptide system (NPS) is intimately involved in cardiorenal homeostasis in health, and dysregulation of the NPS plays an important role in the pathophysiology of heart failure (HF). Indeed, the diuretic, vasorelaxation, beneficial remodeling, and potent neurohumoral inhibition of the NPS support the therapeutic development of chronic augmentation of the NPS in symptomatic HF. Further, chronic augmentation of the protective NPS and in early stages of HF may ultimately prevent the progression of HF and reduced subsequent morbidity and mortality. In the current manuscript, we review the rationale for as well as previous and current efforts aimed at chronic therapeutic augmentation of the NPS in HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Jessup M, Abraham WT, Casey DE, et al. 2009 focused update: ACCF/AHA Guidelines for the Diagnosis and Management of Heart Failure in Adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation. 2009;119:1977–2016.

    Article  PubMed  Google Scholar 

  2. Yancy CW, Jessup M, Bozkurt B, et al. ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;62:e147–239.

    Article  PubMed  Google Scholar 

  3. Heidenreich PA, Albert NM, Allen LA, et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail. 2013;6:606–19.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Go AS, Mozaffarian D, Roger VL, et al. Executive summary: heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2014;129:399–410.

    Article  PubMed  Google Scholar 

  5. Dunlay SM, Shah ND, Shi Q, et al. Lifetime costs of medical care after heart failure diagnosis. Circ Cardiovasc Qual Outcome. 2011;4:68–75.

    Article  Google Scholar 

  6. Braunwald E. Heart failure. JACC Heart Fail. 2013;1:1–20.

    Article  PubMed  Google Scholar 

  7. Kangawa K, Matsuo H. Purification and complete amino acid sequence of alpha-human atrial natriuretic polypeptide (alpha-hANP). Biochem Biophys Res Commun. 1984;118:131–9.

    Article  CAS  PubMed  Google Scholar 

  8. Flynn TG, de Bold ML, de Bold AJ. The amino acid sequence of an atrial peptide with potent diuretic and natriuretic properties. Biochem Biophys Res Commun. 1983;117:859–65.

    Article  CAS  PubMed  Google Scholar 

  9. Hunter I, Rehfeld JF, Goetze JP. Measurement of the total proANP product in mammals by processing independent analysis. J Immunol Methods. 2011;370:104–10.

    Article  CAS  PubMed  Google Scholar 

  10. Ichiki T, Huntley BK, Heublein DM, et al. Corin is present in the normal human heart, kidney, and blood, with pro-B-type natriuretic peptide processing in the circulation. Clin Chem. 2011;57:40–7.

    Article  CAS  PubMed  Google Scholar 

  11. Burnett Jr JC, Granger JP, Opgenorth TJ. Effects of synthetic atrial natriuretic factor on renal function and renin release. Am J Physiol. 1984;247:F863–6.

    CAS  PubMed  Google Scholar 

  12. LR Potter, AR Yoder, DR Flora, LK Antos, DM Dickey. Natriuretic peptides: their structures, receptors, physiologic functions and therapeutic applications. Handb Exp Pharmacol 2009:341–66. A well written overview of the natriuretic peptide system.

  13. Huntley BK, Sandberg SM, Noser JA, et al. BNP-induced activation of cGMP in human cardiac fibroblasts: interactions with fibronectin and natriuretic peptide receptors. J Cell Physiol. 2006;209:943–9.

    Article  CAS  PubMed  Google Scholar 

  14. Lopez MJ, Wong SK, Kishimoto I, et al. Salt-resistant hypertension in mice lacking the guanylyl cyclase-A receptor for atrial natriuretic peptide. Nature. 1995;378:65–8.

    Article  CAS  PubMed  Google Scholar 

  15. Sudoh T, Minamino N, Kangawa K, Matsuo H. C-type natriuretic peptide (CNP): a new member of natriuretic peptide family identified in porcine brain. Biochem Biophys Res Commun. 1990;168:863–70.

    Article  CAS  PubMed  Google Scholar 

  16. Clavell AL, Stingo AJ, Wei CM, Heublein DM, Burnett Jr JC. C-type natriuretic peptide: a selective cardiovascular peptide. Am J Physiol. 1993;264:R290–5.

    CAS  PubMed  Google Scholar 

  17. Sangaralingham SJ, Huntley BK, Martin FL, et al. The aging heart, myocardial fibrosis, and its relationship to circulating C-type natriuretic Peptide. Hypertension. 2011;57:201–7.

    Article  CAS  PubMed  Google Scholar 

  18. Horio T, Tokudome T, Maki T, et al. Gene expression, secretion, and autocrine action of C-type natriuretic peptide in cultured adult rat cardiac fibroblasts. Endocrinology. 2003;144:2279–84.

    Article  CAS  PubMed  Google Scholar 

  19. Soeki T, Kishimoto I, Okumura H, et al. C-type natriuretic peptide, a novel antifibrotic and antihypertrophic agent, prevents cardiac remodeling after myocardial infarction. J Am Coll Cardiol. 2005;45:608–16.

    Article  CAS  PubMed  Google Scholar 

  20. Rubattu S, Sciarretta S, Morriello A, Calvieri C, Battistoni A, Volpe M. NPR-C: a component of the natriuretic peptide family with implications in human diseases. J Mol Med (Berl). 2010;88:889–97.

    Article  CAS  Google Scholar 

  21. Anand-Srivastava MB. Natriuretic peptide receptor-C signaling and regulation. Peptides. 2005;26:1044–59.

    Article  CAS  PubMed  Google Scholar 

  22. Charles CJ, Espiner EA, Nicholls MG, et al. Clearance receptors and endopeptidase 24.11: equal role in natriuretic peptide metabolism in conscious sheep. Am J Physiol. 1996;271:R373–80.

    CAS  PubMed  Google Scholar 

  23. Ralat LA, Guo Q, Ren M, et al. Insulin-degrading enzyme modulates the natriuretic peptide-mediated signaling response. J Biol Chem. 2011;286:4670–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Potter LR. Natriuretic peptide metabolism, clearance and degradation. FEBS J. 2011;278:1808–17.

    Article  CAS  PubMed  Google Scholar 

  25. Graf K, Koehne P, Grafe M, Zhang M, Auch-Schwelk W, Fleck E. Regulation and differential expression of neutral endopeptidase 24.11 in human endothelial cells. Hypertension. 1995;26:230–5.

    Article  CAS  PubMed  Google Scholar 

  26. Kerr MA, Kenny AJ. The purification and specificity of a neutral endopeptidase from rabbit kidney brush border. Biochem J. 1974;137:477–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Roques BP, Noble F, Dauge V, Fournie-Zaluski MC, Beaumont A. Neutral endopeptidase 24.11: structure, inhibition, and experimental and clinical pharmacology. Pharmacol Rev. 1993;45:87–146.

    CAS  PubMed  Google Scholar 

  28. Kenny AJ, Bourne A, Ingram J. Hydrolysis of human and pig brain natriuretic peptides, urodilatin, C-type natriuretic peptide and some C-receptor ligands by endopeptidase-24.11. Biochem J. 1993;291(Pt 1):83–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Vanneste Y, Michel A, Dimaline R, Najdovski T, Deschodt-Lanckman M. Hydrolysis of alpha-human atrial natriuretic peptide in vitro by human kidney membranes and purified endopeptidase-24.11. Evidence for a novel cleavage site. Biochem J. 1988;254:531–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Watanabe Y, Nakajima K, Shimamori Y, Fujimoto Y. Comparison of the hydrolysis of the three types of natriuretic peptides by human kidney neutral endopeptidase 24.11. Biochem Mol Med. 1997;61:47–51.

    Article  CAS  PubMed  Google Scholar 

  31. Dickey DM, Yoder AR, Potter LR. A familial mutation renders atrial natriuretic Peptide resistant to proteolytic degradation. J Biol Chem. 2009;284:19196–202.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. McKie PM, Cataliotti A, Boerrigter G, et al. A novel atrial natriuretic peptide based therapeutic in experimental angiotensin II mediated acute hypertension. Hypertension. 2010;56:1152–9.

    Article  CAS  PubMed  Google Scholar 

  33. Burnett Jr JC, Kao PC, Hu DC, et al. Atrial natriuretic peptide elevation in congestive heart failure in the human. Science. 1986;231:1145–7.

    Article  PubMed  Google Scholar 

  34. Maisel AS, Krishnaswamy P, Nowak RM, et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med. 2002;347:161–7.

    Article  CAS  PubMed  Google Scholar 

  35. Davis M, Espiner E, Richards G, et al. Plasma brain natriuretic peptide in assessment of acute dyspnoea. Lancet. 1994;343:440–4.

    Article  CAS  PubMed  Google Scholar 

  36. McKie PM, Burnett Jr JC. B-type natriuretic peptide as a biomarker beyond heart failure: speculations and opportunities. Mayo Clin Proc. 2005;80:1029–36.

    Article  CAS  PubMed  Google Scholar 

  37. Koglin J, Pehlivanli S, Schwaiblmair M, Vogeser M, Cremer P, von Scheidt W. Role of brain natriuretic peptide in risk stratification of patients with congestive heart failure. J Am Coll Cardiol. 2001;38:1934–41.

    Article  CAS  PubMed  Google Scholar 

  38. Hartmann F, Packer M, Coats AJ, et al. Prognostic impact of plasma N-terminal pro-brain natriuretic peptide in severe chronic congestive heart failure: a substudy of the Carvedilol Prospective Randomized Cumulative Survival (COPERNICUS) trial. Circulation. 2004;110:1780–6.

    Article  CAS  PubMed  Google Scholar 

  39. Miller WL, Hartman KA, Burritt MF, et al. Serial biomarker measurements in ambulatory patients with chronic heart failure: the importance of change over time. Circulation. 2007;116:249–57.

    Article  CAS  PubMed  Google Scholar 

  40. Hawkridge AM, Heublein DM, Bergen 3rd HR, Cataliotti A, Burnett Jr JC, Muddiman DC. Quantitative mass spectral evidence for the absence of circulating brain natriuretic peptide (BNP-32) in severe human heart failure. Proc Natl Acad Sci U S A. 2005;102:17442–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Niederkofler EE, Kiernan UA, O’Rear J, et al. Detection of endogenous B-type natriuretic peptide at very low concentrations in patients with heart failure. Circ Heart Fail. 2008;1:258–64.

    Article  CAS  PubMed  Google Scholar 

  42. Waldo SW, Beede J, Isakson S, et al. Pro-B-type natriuretic peptide levels in acute decompensated heart failure. J Am Coll Cardiol. 2008;51:1874–82.

    Article  CAS  PubMed  Google Scholar 

  43. Macheret F, Boerrigter G, McKie P, et al. Pro-B-type natriuretic peptide(1–108) circulates in the general community: plasma determinants and detection of left ventricular dysfunction. J Am Coll Cardiol. 2011;57:1386–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Lam CS, Burnett Jr JC, Costello-Boerrigter L, Rodeheffer RJ, Redfield MM. Alternate circulating pro-B-type natriuretic peptide and B-type natriuretic peptide forms in the general population. J Am Coll Cardiol. 2007;49:1193–202.

    Article  CAS  PubMed  Google Scholar 

  45. Nishikimi T, Kuwahara K, Nakagawa Y, Kangawa K, Minamino N, Nakao K. Complexity of molecular forms of B-type natriuretic peptide in heart failure. Heart. 2013;99:677–9.

    Article  CAS  PubMed  Google Scholar 

  46. Miller WL, Phelps MA, Wood CM, et al. Comparison of mass spectrometry and clinical assay measurements of circulating fragments of B-type natriuretic peptide in patients with chronic heart failure. Circ Heart Fail. 2011;4:355–60.

    Article  CAS  PubMed  Google Scholar 

  47. Liang F, O’Rear J, Schellenberger U, et al. Evidence for functional heterogeneity of circulating B-type natriuretic peptide. J Am Coll Cardiol. 2007;49:1071–8.

    Article  CAS  PubMed  Google Scholar 

  48. Heublein DM, Huntley BK, Boerrigter G, et al. Immunoreactivity and guanosine 3′,5′-cyclic monophosphate activating actions of various molecular forms of human B-type natriuretic peptide. Hypertension. 2007;49:1114–9.

    Article  CAS  PubMed  Google Scholar 

  49. Costello-Boerrigter LC, Boerrigter G, Redfield MM, et al. Amino-terminal pro-B-type natriuretic peptide and B-type natriuretic peptide in the general community: determinants and detection of left ventricular dysfunction. J Am Coll Cardiol. 2006;47:345–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Tonne JM, Campbell JM, Cataliotti A, et al. Secretion of glycosylated pro-B-type natriuretic peptide from normal cardiomyocytes. Clin Chem. 2011;57:864–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Schellenberger U, O’Rear J, Guzzetta A, Jue RA, Protter AA, Pollitt NS. The precursor to B-type natriuretic peptide is an O-linked glycoprotein. Arch Biochem Biophys. 2006;451:160–6.

    Article  CAS  PubMed  Google Scholar 

  52. Ibebuogu UN, Gladysheva IP, Houng AK, Reed GL. Decompensated heart failure is associated with reduced corin levels and decreased cleavage of pro-atrial natriuretic peptide. Circ Heart Fail. 2011;4:114–20.

    Article  CAS  PubMed  Google Scholar 

  53. Gomez N, Touihri K, Matheeussen V, et al. Dipeptidyl peptidase IV inhibition improves cardiorenal function in overpacing-induced heart failure. Eur J Heart Fail. 2012;14:14–21.

    Article  CAS  PubMed  Google Scholar 

  54. Gladysheva IP, Wang D, McNamee RA, et al. Corin overexpression improves cardiac function, heart failure, and survival in mice with dilated cardiomyopathy. Hypertension. 2013;61:327–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. McKie PM, Schirger JA, Costello-Boerrigter LC, et al. Impaired natriuretic and renal endocrine response to acute volume expansion in pre-clinical systolic and diastolic dysfunction. J Am Coll Cardiol. 2011;58:2095–103.

    Article  CAS  PubMed  Google Scholar 

  56. Colucci WS, Elkayam U, Horton DP, et al. Intravenous nesiritide, a natriuretic peptide, in the treatment of decompensated congestive heart failure. Nesiritide Study Group. N Engl J Med. 2000;343:246–53.

    Article  CAS  PubMed  Google Scholar 

  57. Intravenous nesiritide vs nitroglycerin for treatment of decompensated congestive heart failure: a randomized controlled trial. JAMA 2002;287:1531–40.

  58. Sackner-Bernstein JD, Skopicki HA, Aaronson KD. Risk of worsening renal function with nesiritide in patients with acutely decompensated heart failure. Circulation. 2005;111:1487–91.

    Article  CAS  PubMed  Google Scholar 

  59. Sackner-Bernstein JD, Kowalski M, Fox M, Aaronson K. Short-term risk of death after treatment with nesiritide for decompensated heart failure: a pooled analysis of randomized controlled trials. JAMA. 2005;293:1900–5.

    Article  CAS  PubMed  Google Scholar 

  60. O’Connor CM, Starling RC, Hernandez AF, et al. Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med. 2011;365:32–43.

    Article  PubMed  Google Scholar 

  61. Chen HH, Anstrom KJ, Givertz MM, et al. Low-dose dopamine or low-dose nesiritide in acute heart failure with renal dysfunction: the ROSE acute heart failure randomized trial. JAMA. 2013;310:2533–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128:e240–327.

    Article  PubMed  Google Scholar 

  63. Hata N, Seino Y, Tsutamoto T, et al. Effects of carperitide on the long-term prognosis of patients with acute decompensated chronic heart failure: the PROTECT multicenter randomized controlled study. Circ J. 2008;72:1787–93.

    Article  CAS  PubMed  Google Scholar 

  64. Morita Y, Kohsaka S, Oshima K, Yoshikawa T, Fukuda K. Use of carperitide infusion for acutely decompensated heart failure. Crit Care. 2012;16:406.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Chen HH, Glockner JF, Schirger JA, Cataliotti A, Redfield MM, Burnett Jr JC. Novel protein therapeutics for systolic heart failure: chronic subcutaneous B-type natriuretic peptide. J Am Coll Cardiol. 2012;60:2305–12. The first study to describe the cardiorenal effects of chronic BNP administration in human heart failure.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. PM McKie, JA Schirger, A Cataliotti et al. Asymptomatic Left Ventricular Systolic Dysfunction (Stage B Heart Failure) and Response to Chronic Protein Therapy With SQ BNP. Circulation 2013;128.

  67. Ahmad T, Felker GM. Subcutaneous B-type natriuretic peptide for treatment of heart failure: a dying therapy reborn? J Am Coll Cardiol. 2012;60:2313–5.

    Article  CAS  PubMed  Google Scholar 

  68. Cataliotti A, Schirger JA, Martin FL, et al. Oral human brain natriuretic peptide activates cyclic guanosine 3′,5′-monophosphate and decreases mean arterial pressure. Circulation. 2005;112:836–40.

    Article  CAS  PubMed  Google Scholar 

  69. Martin FL, Stevens TL, Cataliotti A, et al. Natriuretic and antialdosterone actions of chronic oral NEP inhibition during progressive congestive heart failure. Kidney Int. 2005;67:1723–30.

    Article  CAS  PubMed  Google Scholar 

  70. Chen HH, Schirger JA, Chau WL, et al. Renal response to acute neutral endopeptidase inhibition in mild and severe experimental heart failure. Circulation. 1999;100:2443–8.

    Article  CAS  PubMed  Google Scholar 

  71. Northridge DB, Currie PF, Newby DE, et al. Placebo-controlled comparison of candoxatril, an orally active neutral endopeptidase inhibitor, and captopril in patients with chronic heart failure. Eur J Heart Fail. 1999;1:67–72.

    Article  CAS  PubMed  Google Scholar 

  72. Northridge DB, Newby DE, Rooney E, Norrie J, Dargie HJ. Comparison of the short-term effects of candoxatril, an orally active neutral endopeptidase inhibitor, and frusemide in the treatment of patients with chronic heart failure. Am Heart J. 1999;138:1149–57.

    Article  CAS  PubMed  Google Scholar 

  73. Newby DE, McDonagh T, Currie PF, Northridge DB, Boon NA, Dargie HJ. Candoxatril improves exercise capacity in patients with chronic heart failure receiving angiotensin converting enzyme inhibition. Eur Heart J. 1998;19:1808–13.

    Article  CAS  PubMed  Google Scholar 

  74. Kentsch M, Otter W, Drummer C, Notges A, Gerzer R, Muller-Esch G. Neutral endopeptidase 24.11 inhibition may not exhibit beneficial haemodynamic effects in patients with congestive heart failure. Eur J Clin Pharmacol. 1996;51:269–72.

    Article  CAS  PubMed  Google Scholar 

  75. McDowell G, Coutie W, Shaw C, Buchanan KD, Struthers AD, Nicholls DP. The effect of the neutral endopeptidase inhibitor drug, candoxatril, on circulating levels of two of the most potent vasoactive peptides. Br J Clin Pharmacol. 1997;43:329–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Cleland JG, Swedberg K. Lack of efficacy of neutral endopeptidase inhibitor ecadotril in heart failure. The International Ecadotril Multi-centre Dose-ranging Study Investigators. Lancet. 1998;351:1657–8.

    Article  CAS  PubMed  Google Scholar 

  77. Ferro CJ, Spratt JC, Haynes WG, Webb DJ. Inhibition of neutral endopeptidase causes vasoconstriction of human resistance vessels in vivo. Circulation. 1998;97:2323–30.

    Article  CAS  PubMed  Google Scholar 

  78. Andreatta-van Leyen S, Romero MF, Khosla MC, Douglas JG. Modulation of phospholipase A2 activity and sodium transport by angiotensin-(1–7). Kidney Int. 1993;44:932–6.

    Article  CAS  PubMed  Google Scholar 

  79. DelliPizzi AM, Hilchey SD, Bell-Quilley CP. Natriuretic action of angiotensin(1–7). Br J Pharmacol. 1994;111:1–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Handa RK, Ferrario CM, Strandhoy JW. Renal actions of angiotensin-(1–7): in vivo and in vitro studies. Am J Physiol. 1996;270:F141–7.

    CAS  PubMed  Google Scholar 

  81. Sampaio WO, Nascimento AA, Santos RA. Systemic and regional hemodynamic effects of angiotensin-(1–7) in rats. Am J Physiol Heart Circ Physiol. 2003;284:H1985–94.

    CAS  PubMed  Google Scholar 

  82. Ren Y, Garvin JL, Carretero OA. Vasodilator action of angiotensin-(1–7) on isolated rabbit afferent arterioles. Hypertension. 2002;39:799–802.

    Article  CAS  PubMed  Google Scholar 

  83. Maki T, Nasa Y, Tanonaka K, Takahashi M, Takeo S. Beneficial effects of sampatrilat, a novel vasopeptidase inhibitor, on cardiac remodeling and function of rats with chronic heart failure following left coronary artery ligation. J Pharmacol Exp Ther. 2003;305:97–105.

    Article  CAS  PubMed  Google Scholar 

  84. Allikmets K. Sampatrilat Shire. Curr Opin Investig Drugs. 2002;3:578–81.

    CAS  PubMed  Google Scholar 

  85. Wallis EJ, Ramsay LE, Hettiarachchi J. Combined inhibition of neutral endopeptidase and angiotensin-converting enzyme by sampatrilat in essential hypertension. Clin Pharmacol Ther. 1998;64:439–49.

    Article  CAS  PubMed  Google Scholar 

  86. Trippodo NC, Robl JA, Asaad MM, Fox M, Panchal BC, Schaeffer TR. Effects of omapatrilat in low, normal, and high renin experimental hypertension. Am J Hypertens. 1998;11:363–72.

    Article  CAS  PubMed  Google Scholar 

  87. Weber MA. Vasopeptidase inhibitors. Lancet. 2001;358:1525–32.

    Article  CAS  PubMed  Google Scholar 

  88. Chen HH, Cataliotti A, Burnett Jr JC. Role of the natriuretic peptides in the cardiorenal and humoral actions of omapatrilat: insights from experimental heart failure. Curr Hypertens Rep. 2001;3 Suppl 2:S15–21.

    Article  PubMed  Google Scholar 

  89. Troughton RW, Rademaker MT, Powell JD, et al. Beneficial renal and hemodynamic effects of omapatrilat in mild and severe heart failure. Hypertension. 2000;36:523–30.

    Article  CAS  PubMed  Google Scholar 

  90. Rouleau JL, Pfeffer MA, Stewart DJ, et al. Comparison of vasopeptidase inhibitor, omapatrilat, and lisinopril on exercise tolerance and morbidity in patients with heart failure: IMPRESS randomised trial. Lancet. 2000;356:615–20.

    Article  CAS  PubMed  Google Scholar 

  91. Packer M, Califf RM, Konstam MA, et al. Comparison of omapatrilat and enalapril in patients with chronic heart failure: the Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE). Circulation. 2002;106:920–6.

    Article  CAS  PubMed  Google Scholar 

  92. Kostis JB, Packer M, Black HR, Schmieder R, Henry D, Levy E. Omapatrilat and enalapril in patients with hypertension: the Omapatrilat Cardiovascular Treatment vs. Enalapril (OCTAVE) trial. Am J Hypertens. 2004;17:103–11.

    Article  CAS  PubMed  Google Scholar 

  93. Fryer RM, Segreti J, Banfor PN, et al. Effect of bradykinin metabolism inhibitors on evoked hypotension in rats: rank efficacy of enzymes associated with bradykinin-mediated angioedema. Br J Pharmacol. 2008;153:947–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Adam A, Cugno M, Molinaro G, Perez M, Lepage Y, Agostoni A. Aminopeptidase P in individuals with a history of angio-oedema on ACE inhibitors. Lancet. 2002;359:2088–9.

    Article  CAS  PubMed  Google Scholar 

  95. von Lueder TG, Sangaralingham SJ, Wang BH, et al. Renin-angiotensin blockade combined with natriuretic peptide system augmentation: novel therapeutic concepts to combat heart failure. Circ Heart Fail. 2013;6:594–605.

    Article  Google Scholar 

  96. Gu J, Noe A, Chandra P, et al. Pharmacokinetics and pharmacodynamics of LCZ696, a novel dual-acting angiotensin receptor-neprilysin inhibitor (ARNi). J Clin Pharmacol. 2010;50:401–14.

    Article  CAS  PubMed  Google Scholar 

  97. Ruilope LM, Dukat A, Bohm M, Lacourciere Y, Gong J, Lefkowitz MP. Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study. Lancet. 2010;375:1255–66. A large study which assesses the effects of LCZ696 in human hypertensive disease.

    Article  CAS  PubMed  Google Scholar 

  98. McMurray JJ, Packer M, Desai AS, et al. Dual angiotensin receptor and neprilysin inhibition as an alternative to angiotensin-converting enzyme inhibition in patients with chronic systolic heart failure: rationale for and design of the Prospective comparison of ARNI with ACEI to Determine Impact on Global Mortality and morbidity in Heart Failure trial (PARADIGM-HF). Eur J Heart Fail. 2013;15:1062–73. This methods paper lays the groundwork for the upcoming PARADIGM-HF paper to be published in late 2014 or early 2015.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Solomon SD, Zile M, Pieske B, et al. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet. 2012;380:1387–95. This study assesses the effects of LCZ696 in heart failure with preserved ejection fraction and demonstrates promising results including a reduction in NT-proBNP levels.

    Article  CAS  PubMed  Google Scholar 

  100. Newton-Cheh C, Larson MG, Vasan RS, et al. Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure. Nat Genet. 2009;41:348–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Cannone V, Boerrigter G, Cataliotti A, et al. A genetic variant of the atrial natriuretic peptide gene is associated with cardiometabolic protection in the general community. J Am Coll Cardiol. 2011;58:629–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. McKie PM, Cataliotti A, Huntley BK, Martin FL, Olson TM, Burnett Jr JC. A human atrial natriuretic peptide gene mutation reveals a novel peptide with enhanced blood pressure-lowering, renal-enhancing, and aldosterone-suppressing actions. J Am Coll Cardiol. 2009;54:1024–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Lisy O, Huntley BK, McCormick DJ, Kurlansky PA, Burnett Jr JC. Design, synthesis, and actions of a novel chimeric natriuretic peptide: CD-NP. J Am Coll Cardiol. 2008;52:60–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. McKie PM, Sangaralingham SJ, Burnett Jr JC. CD-NP: an innovative designer natriuretic peptide activator of particulate guanylyl cyclase receptors for cardiorenal disease. Curr Heart Fail Rep. 2010;7:93–9.

    Article  CAS  PubMed  Google Scholar 

  105. CY Lee, G Boerrigter, HH Chen et al. Cardiorenal and Neurohumoral Actions of a Novel Designer Natriuretic Peptide, CU-NP, In Canine Experimental Heart Failure. Circulation 2008;118:S293.

  106. Pan SC, Chen HH, Dickey DM, et al. Biodesign of a renal-protective peptide based on alternative splicing of B-type natriuretic peptide. Proc Natl Acad Sci U S A. 2009;106:11282–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  107. McKie PM, Cataliotti A, Ichiki T, Sangaralingham SJ, Chen HH, Burnett Jr JC. M-atrial natriuretic peptide and nitroglycerin in a canine model of experimental acute hypertensive heart failure: differential actions of 2 cGMP activating therapeutics. J Am Heart Assoc. 2014;3:e000206.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  108. Cataliotti A, Chen HH, Schirger JA, et al. Chronic Actions of a Novel Oral B-Type Natriuretic Peptide Conjugate in Normal Dogs and Acute Actions in Angiotensin II-Mediated Hypertension. Circulation. 2008;118:1729–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Paul M. McKie declares that he has no conflict of interest.

John C. Burnett, Jr., has received compensation from Capricor Therapeutics, Bayer, Novartis, Theravance, and AstraZeneca for service as a consultant. Mayo Clinic has licensed cenderitide to Capricor Therapeutics and MANP to Zumbro Discovery, for which Dr. Burnett is Chief Scientific Officer.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. McKie.

Additional information

This article is part of the Topical Collection on Pharmacologic Therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McKie, P.M., Burnett, J.C. Rationale and Therapeutic Opportunities for Natriuretic Peptide System Augmentation in Heart Failure. Curr Heart Fail Rep 12, 7–14 (2015). https://doi.org/10.1007/s11897-014-0235-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-014-0235-3

Keywords

Navigation