Skip to main content
Log in

Cerebral Impairment in Heart Failure

  • Comorbidities of Heart Failure (CE Angermann, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Patients with heart failure (HF) exhibit a wide range of symptoms, including dyspnea, sleep-disordered breathing, autonomic abnormalities, cognitive dysfunction, and neuropsychological disturbances. These symptoms, which affect quality of life and morbidity and mortality in the condition, are largely related to structural and functional changes in the brain. There are increasing reports of brain abnormalities in HF, but often the linkages between brain injury and common HF clinical symptomatology are not clearly described. In this review, we will discuss the current evidence of brain injury and the associated clinical symptoms in HF, focusing on those brain regions that are commonly damaged in the condition. We will also provide a brief exploration of some potential mechanisms for brain injury in HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2014;129(3):e28–292.

    Article  PubMed  Google Scholar 

  2. Miller LW, Missov ED. Epidemiology of heart failure. Cardiol Clin. 2001;19(4):547–55.

    Article  CAS  PubMed  Google Scholar 

  3. National Heart, Lung, and Blood Institute. Mortality and morbidity: 2000 chart book on cardiovascular, lung, and blood diseases. Bethesda: National Institutes of Health; 2000.

    Google Scholar 

  4. Opie LH. The neuroendocrinology of congestive heart failure. Cardiovasc J South Afr Off J South Afr Card Soc South Afr Soc Card Pract. 2002;13(4):171–8.

    Google Scholar 

  5. Almeida JR, Alves TC, Wajngarten M, et al. Late-life depression, heart failure and frontal white matter hyperintensity: a structural magnetic resonance imaging study. Braz J Med Biol Res. 2005;38(3):431–6.

    Article  CAS  PubMed  Google Scholar 

  6. Pressler SJ, Subramanian U, Kareken D, et al. Cognitive deficits in chronic heart failure. Nurs Res. 2010;59(2):127–39.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Jiang W, Kuchibhatla M, Clary GL, et al. Relationship between depressive symptoms and long-term mortality in patients with heart failure. Am Heart J. 2007;154(1):102–8.

    Article  PubMed  Google Scholar 

  8. Pressler SJ, Kim J, Riley P, et al. Memory dysfunction, psychomotor slowing, and decreased executive function predict mortality in patients with heart failure and low ejection fraction. J Card Fail. 2010;16(9):750–60.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Alosco ML, Brickman AM, Spitznagel MB, et al. Independent and interactive effects of blood pressure and cardiac function on brain volume and white matter hyperintensities in heart failure. J Am Soc Hypertens. 2013;7(5):336–43. This study shows that elevated blood pressure and reduced cardiac index are associated with a decrease in gray matter volume in heart failure patients.

    Article  PubMed  Google Scholar 

  10. Alosco ML, Brickman AM, Spitznagel MB, et al. Cerebral perfusion is associated with white matter hyperintensities in older adults with heart failure. Congest Heart Fail. 2013;19(4):E29–34.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Peiffer C, Poline JB, Thivard L, et al. Neural substrates for the perception of acutely induced dyspnea. Am J Respir Crit Care Med. 2001;163(4):951–7.

    Article  CAS  PubMed  Google Scholar 

  12. Parsons LM, Egan G, Liotti M, et al. Neuroimaging evidence implicating cerebellum in the experience of hypercapnia and hunger for air. Proc Natl Acad Sci U S A. 2001;98(4):2041–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Ogren JA, Macey PM, Kumar R, et al. Impaired cerebellar and limbic responses to the valsalva maneuver in heart failure. Cerebellum. 2012;11(4):931–8. This study shows the time course of abnormal brain responses in heart failure patients during autonomic challenge.

    Article  PubMed  Google Scholar 

  14. von Leupoldt A, Sommer T, Kegat S, et al. Dyspnea and pain share emotion-related brain network. Neuroimage. 2009;48(1):200–6.

    Article  Google Scholar 

  15. Woo MA, Kumar R, Macey PM, et al. Brain injury in autonomic, emotional, and cognitive regulatory areas in patients with heart failure. J Card Fail. 2009;15(3):214–23.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Almeida OP, Garrido GJ, Beer C, et al. Cognitive and brain changes associated with ischaemic heart disease and heart failure. Eur Heart J. 2012;33(14):1769–76. This cross-sectional study is one of the few to demonstrate memory impairment and gray matter loss in brain cognitive areas within the same group of heart failure patients.

    Article  PubMed  Google Scholar 

  17. Kumar R, Woo MA, Macey PM, et al. Brain axonal and myelin evaluation in heart failure. J Neurol Sci. 2011;307(1–2):106–13.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Cheng DT, Knight DC, Smith CN, et al. Functional MRI of human amygdala activity during Pavlovian fear conditioning: stimulus processing versus response expression. Behav Neurosci. 2003;117(1):3–10.

    Article  PubMed  Google Scholar 

  19. von Leupoldt A, Sommer T, Kegat S, et al. The unpleasantness of perceived dyspnea is processed in the anterior insula and amygdala. Am J Respir Crit Care Med. 2008;177(9):1026–32.

    Article  Google Scholar 

  20. Banzett RB, Mulnier HE, Murphy K, et al. Breathlessness in humans activates insular cortex. Neuroreport. 2000;11(10):2117–20.

    Article  CAS  PubMed  Google Scholar 

  21. Henderson LA, Gandevia SC, Macefield VG. Somatotopic organization of the processing of muscle and cutaneous pain in the left and right insula cortex: a single-trial fMRI study. Pain. 2007;128(1–2):20–30.

    Article  CAS  PubMed  Google Scholar 

  22. Henderson LA, Rubin TK, Macefield VG. Within-limb somatotopic representation of acute muscle pain in the human contralateral dorsal posterior insula. Hum Brain Mapp. 2011;32(10):1592–601.

    Article  PubMed  Google Scholar 

  23. Lieber C, Mohsenin V. Cheyne-Stokes respiration in congestive heart failure. Yale J Biol Med. 1992;65(1):39–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Javaheri S, Shukla R, Zeigler H, et al. Central sleep apnea, right ventricular dysfunction, and low diastolic blood pressure are predictors of mortality in systolic heart failure. J Am Coll Cardiol. 2007;49(20):2028–34.

    Article  PubMed  Google Scholar 

  25. Bradley TD, Floras JS. Sleep apnea and heart failure: part II: central sleep apnea. Circulation. 2003;107(13):1822–6.

    Article  PubMed  Google Scholar 

  26. Woo MA, Macey PM, Fonarow GC, et al. Regional brain gray matter loss in heart failure. J Appl Physiol. 2003;95(2):677–84.

    PubMed  Google Scholar 

  27. Ben-Tal A, Shamailov SS, Paton JF. Evaluating the physiological significance of respiratory sinus arrhythmia: looking beyond ventilation-perfusion efficiency. J Physiol. 2012;590(Pt 8):1989–2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Woo MA, Macey PM, Keens PT, et al. Aberrant central nervous system responses to the Valsalva maneuver in heart failure. Congest Heart Fail. 2007;13(1):29–35.

    Article  PubMed  Google Scholar 

  29. Xu F, Frazier DT. Role of the cerebellar deep nuclei in respiratory modulation. Cerebellum. 2002;1(1):35–40.

    Article  PubMed  Google Scholar 

  30. Oppenheimer SM, Kedem G, Martin WM. Left-insular cortex lesions perturb cardiac autonomic tone in humans. Clin Auton Res. 1996;6(3):131–40.

    Article  CAS  PubMed  Google Scholar 

  31. Nagai M, Hoshide S, Kario K. The insular cortex and cardiovascular system: a new insight into the brain-heart axis. J Am Soc Hypertens. 2010;4(4):174–82.

    Article  PubMed  Google Scholar 

  32. Benarroch EE. The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin Proc. 1993;68(10):988–1001.

    Article  CAS  PubMed  Google Scholar 

  33. Cechetto DF, Ciriello J, Calaresu FR. Afferent connections to cardiovascular sites in the amygdala: a horseradish peroxidase study in the cat. J Auton Nerv Syst. 1983;8(2):97–110.

    Article  CAS  PubMed  Google Scholar 

  34. Allen GV, Cechetto DF. Functional and anatomical organization of cardiovascular pressor and depressor sites in the lateral hypothalamic area. II. Ascending projections. J Comp Neurol. 1993;330(3):421–38.

    Article  CAS  PubMed  Google Scholar 

  35. Laowattana S, Zeger SL, Lima JA, et al. Left insular stroke is associated with adverse cardiac outcome. Neurology. 2006;66(4):477–83. discussion 63.

    Article  CAS  PubMed  Google Scholar 

  36. Cechetto DF, Hachinski V. Cardiovascular consequence of experimental stroke. Bailliere Clin Neurol. 1997;6(2):297–308.

    CAS  Google Scholar 

  37. Oppenheimer SM, Gelb A, Girvin JP, et al. Cardiovascular effects of human insular cortex stimulation. Neurology. 1992;42(9):1727–32.

    Article  CAS  PubMed  Google Scholar 

  38. Bannister R, Sever P, Gross M. Cardiovascular reflexes and biochemical responses in progressive autonomic failure. Brain. 1977;100(2):327–44.

    Article  CAS  PubMed  Google Scholar 

  39. Harper RM, Gozal D, Bandler R, et al. Regional brain activation in humans during respiratory and blood pressure challenges. Clin Exp Pharmacol Physiol. 1998;25(6):483–6.

    Article  CAS  PubMed  Google Scholar 

  40. Parisi AF, Harrington JJ, Askenazi J, et al. Echocardiographic evaluation of the Valsalva Maneuver in healthy subjects and patients with and without heart failure. Circulation. 1976;54(6):921–7.

    Article  CAS  PubMed  Google Scholar 

  41. Woo MA, Macey PM, Keens PT, et al. Functional abnormalities in brain areas that mediate autonomic nervous system control in advanced heart failure. J Card Fail. 2005;11(6):437–46.

    Article  PubMed  Google Scholar 

  42. Vogels RL, Oosterman JM, van Harten B, et al. Neuroimaging and correlates of cognitive function among patients with heart failure. Dement Geriatr Cogn Disord. 2007;24(6):418–23.

    Article  PubMed  Google Scholar 

  43. Almeida OP, Garrido GJ, Etherton-Beer C, et al. Brain and mood changes over 2 years in healthy controls and adults with heart failure and ischaemic heart disease. Eur J Heart Fail. 2013;15(8):850–8. In this longitudinal study, heart failure patients showed an increase in severity of symptoms of anxiety and depression over a two-year period, and also showed subtle gray matter loss in areas such as the thalamus and cingulate, which are known to play a significant role in depression.

    Article  PubMed  Google Scholar 

  44. Sairafian K, Ogren JA, Macey PM, et al. Depression correlates with right amygdala damage in heart failure patients. ESC Heart Failure Congress. 2013; Lisbon, Portugal, May 17-20.

  45. Pan A, Kumar R, Macey PM, et al. Visual assessment of brain magnetic resonance imaging detects injury to cognitive regulatory sites in patients with heart failure. J Card Fail. 2013;19(2):94–100. Like many other studies, this shows brain injury in heart failure in areas regulating cognition and mood. However, unlike previous studies, this establishes that the structural injury is extensive enough so as to be detectable through visual, as opposed to quantitative, assessment of MRI.

    Article  PubMed  Google Scholar 

  46. Lutherer LO, Lutherer BC, Dormer KJ, et al. Bilateral lesions of the fastigial nucleus prevent the recovery of blood pressure following hypotension induced by hemorrhage or administration of endotoxin. Brain Res. 1983;269(2):251–7.

    Article  CAS  PubMed  Google Scholar 

  47. Moruzzi G. Paleocerebellar inhibition of vasomotor and respiratory carotid sinus reflexes. J Neurophysiol. 1940;3(1):20–32.

    Google Scholar 

  48. Shamsham F, Mitchell J. Essentials of the diagnosis of heart failure. Am Fam Physician. 2000;61(5):1319–28.

    CAS  PubMed  Google Scholar 

  49. Rutledge T, Reis VA, Linke SE, et al. Depression in heart failure a meta-analytic review of prevalence, intervention effects, and associations with clinical outcomes. J Am Coll Cardiol. 2006;48(8):1527–37.

    Article  PubMed  Google Scholar 

  50. Hwang B, Moser DK, Dracup K. knowledge is insufficient for self-care among heart failure patients with psychological distress. Health Psychol 2014;33(7):588–98.

  51. Hastings RS, Parsey RV, Oquendo MA, et al. Volumetric analysis of the prefrontal cortex, amygdala, and hippocampus in major depression. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2004;29(5):952–9.

    Article  Google Scholar 

  52. Malykhin NV, Carter R, Hegadoren KM, et al. Fronto-limbic volumetric changes in major depressive disorder. J Affect Disord. 2012;136(3):1104–13.

    Article  PubMed  Google Scholar 

  53. Pannekoek JN, van der Werff SJ, van den Bulk BG, et al. Reduced anterior cingulate gray matter volume in treatment-naive clinically depressed adolescents. NeuroImage Clin. 2014;4:336–42.

    Article  PubMed Central  PubMed  Google Scholar 

  54. Lorenzetti V, Allen NB, Fornito A, et al. Structural brain abnormalities in major depressive disorder: a selective review of recent MRI studies. J Affect Disord. 2009;117(1–2):1–17.

    Article  PubMed  Google Scholar 

  55. Bernstein HG, Klix M, Dobrowolny H, et al. A postmortem assessment of mammillary body volume, neuronal number and densities, and fornix volume in subjects with mood disorders. Eur Arch Psychiatry Clin Neurosci. 2012;262(8):637–46.

    Article  PubMed  Google Scholar 

  56. Young KA, Holcomb LA, Yazdani U, et al. Elevated neuron number in the limbic thalamus in major depression. Am J Psychiatry. 2004;161(7):1270–7.

    Article  PubMed  Google Scholar 

  57. Serber SL, Kumar R, Woo MA, et al. Cognitive test performance and brain pathology. Nurs Res. 2008;57(2):75–83.

    Article  PubMed  Google Scholar 

  58. Alves TC, Rays J, Fraguas Jr R, et al. Association between major depressive symptoms in heart failure and impaired regional cerebral blood flow in the medial temporal region: a study using 99 m Tc-HMPAO single photon emission computerized tomography (SPECT). Psychol Med. 2006;36(5):597–608.

    Article  PubMed  Google Scholar 

  59. Menteer J, Macey PM, Woo MA, et al. Central nervous system changes in pediatric heart failure: a volumetric study. Pediatr Cardiol. 2010;31(7):969–76.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Kumar R, Woo MA, Birrer BV, et al. Mammillary bodies and fornix fibers are injured in heart failure. Neurobiol Dis. 2009;33(2):236–42.

    Article  PubMed Central  PubMed  Google Scholar 

  61. Almeida OP, Flicker L. The mind of a failing heart: a systematic review of the association between congestive heart failure and cognitive functioning. Intern Med J. 2001;31(5):290–5.

    Article  CAS  PubMed  Google Scholar 

  62. Cacciatore F, Abete P, Ferrara N, et al. Congestive heart failure and cognitive impairment in an older population. Osservatorio Geriatrico Campano Study Group. J Am Geriatr Soc. 1998;46(11):1343–8.

    CAS  PubMed  Google Scholar 

  63. Callegari S, Majani G, Giardini A, et al. Relationship between cognitive impairment and clinical status in chronic heart failure patients. Monaldi Arch Chest Dis. 2002;58(1):19–25.

    CAS  PubMed  Google Scholar 

  64. Cohen MB, Mather PJ. A review of the association between congestive heart failure and cognitive impairment. Am J Geriatr Cardiol. 2007;16(3):171–4.

    Article  PubMed  Google Scholar 

  65. Bennett SJ, Sauve MJ. Cognitive deficits in patients with heart failure: a review of the literature. J Cardiovasc Nurs. 2003;18(3):219–42.

    Article  PubMed  Google Scholar 

  66. Petrucci RJ, Truesdell KC, Carter A, et al. Cognitive dysfunction in advanced heart failure and prospective cardiac assist device patients. Ann Thorac Surg. 2006;81(5):1738–44.

    Article  PubMed  Google Scholar 

  67. Riegel B, Bennett JA, Davis A, et al. Cognitive impairment in heart failure: issues of measurement and etiology. Am J Crit Care. 2002;11(6):520–8.

    PubMed  Google Scholar 

  68. Zuccala G, Cattel C, Manes-Gravina E, et al. Left ventricular dysfunction: a clue to cognitive impairment in older patients with heart failure. J Neurol Neurosurg Psychiatry. 1997;63(4):509–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Bennett SJ, Sauve MJ, Shaw RM. A conceptual model of cognitive deficits in chronic heart failure. J Nurs Scholarsh. 2005;37(3):222–8.

    Article  PubMed  Google Scholar 

  70. Rozzini R, Sabatini T, Trabucchi M. Cognitive impairment and mortality in elderly patients with heart failure. Am J Med. 2004;116(2):137–8. author reply 8.

    Article  PubMed  Google Scholar 

  71. Trojano L, Antonelli Incalzi R, Acanfora D, et al. Cognitive impairment: a key feature of congestive heart failure in the elderly. J Neurol. 2003;250(12):1456–63.

    Article  PubMed  Google Scholar 

  72. Narkiewicz K, Somers VK. Sympathetic nerve activity in obstructive sleep apnoea. Acta Physiol Scand. 2003;177(3):385–90.

    Article  CAS  PubMed  Google Scholar 

  73. Burch GE. The role of the central nervous system in chronic congestive heart failure. Am Heart J. 1978;95(2):255–61.

    Article  CAS  PubMed  Google Scholar 

  74. Ogren JA, Abouzeid CM, Macey PM, et al. Regional hippocampal damage in heart failure. In Preparation.

  75. Ogren JA, Macey PM, Kumar R, et al. Hippocampal volume reductions correlate with impaired memory performance in heart failure. 42nd Annual Meeting of the Society for Neuroscience, New Orleans, LA. Soc Neurosci Abstracts. 2012; 194.23/XX9.

  76. Kumar R, Nguyen HD, Ogren JA, et al. Global and regional putamen volume loss in patients with heart failure. Eur J Heart Fail. 2011;13(6):651–5.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Hanninen SA, Darling PB, Sole MJ, et al. The prevalence of thiamin deficiency in hospitalized patients with congestive heart failure. J Am Coll Cardiol. 2006;47(2):354–61.

    Article  CAS  PubMed  Google Scholar 

  78. Langlais PJ, Savage LM. Thiamine deficiency in rats produces cognitive and memory deficits on spatial tasks that correlate with tissue loss in diencephalon, cortex and white matter. Behav Brain Res. 1995;68(1):75–89.

    Article  CAS  PubMed  Google Scholar 

  79. Briones TL, Therrien B. Behavioral effects of transient cerebral ischemia. Biol Res Nurs. 2000;1(4):276–86.

    Article  CAS  PubMed  Google Scholar 

  80. Jefferson AL, Himali JJ, Au R, et al. Relation of left ventricular ejection fraction to cognitive aging (from the Framingham Heart Study). Am J Cardiol. 2011;108(9):1346–51.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2(2):161–92.

    CAS  PubMed  Google Scholar 

  82. Georgiadis D, Sievert M, Cencetti S, et al. Cerebrovascular reactivity is impaired in patients with cardiac failure. Eur Heart J. 2000;21(5):407–13.

    Article  CAS  PubMed  Google Scholar 

  83. Kumar R, Woo MA, Wang DJ, et al. Regional reduction in cerebral blood flow in patients with heart failure. International Society for Magnetic Resonance in Medicine Annual Meeting (#2028), Melbourne, Australia, May 5-11, 2012. 2012.

  84. Endres M. Statins and stroke. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2005;25(9):1093–110.

    Article  CAS  Google Scholar 

  85. Nybo L, Moller K, Volianitis S, et al. Effects of hyperthermia on cerebral blood flow and metabolism during prolonged exercise in humans. J Appl Physiol. 2002;93(1):58–64.

    PubMed  Google Scholar 

  86. Erickson KI, Voss MW, Prakash RS, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108(7):3017–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Pressler SJ, Therrien B, Riley PL, et al. Nurse-Enhanced Memory Intervention in Heart Failure: the MEMOIR study. J Card Fail. 2011;17(10):832–43.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Jennifer A. Ogren declares that she has no conflict of interest.

Gregg C. Fonarow has received support through grants from Gambro, NIH/AQRO, and the Ahmanson Foundation, and has received compensation for service as a consultant from Johnson & Johnson, Medtronic, Novartis, Takeda, and The Medicines Company.

Mary A. Woo declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary A. Woo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogren, J.A., Fonarow, G.C. & Woo, M.A. Cerebral Impairment in Heart Failure. Curr Heart Fail Rep 11, 321–329 (2014). https://doi.org/10.1007/s11897-014-0211-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-014-0211-y

Keywords

Navigation