Skip to main content
Log in

Incorporating Common Biomarkers into the Clinical Management of Heart Failure

  • Biomarkers of Heart Failure (WHW Tang, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Heart failure is a prevalent and costly disease, and its management with polypharmacy is complex. Commonly available biomarkers primarily help to 1) establish or refute the diagnosis of heart failure; 2) help to determine the disease severity; and 3) identify adverse consequences of treatment. Although several of them are commonly ordered (such as electrolytes, renal and liver function), their use is primarily based on broad clinical experience rather than established evidence. The availability of cardiac-specific natriuretic peptide testing has provided an evidence-based breakthrough in our abilities to establish the diagnosis and severity of heart failure, yet the appropriate boundaries to guide management are still in refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. NIH Biomarkers Definition Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95.

    Article  Google Scholar 

  2. Januzzi Jr JL, Camargo CA, Anwaruddin S, et al. The N-terminal Pro-BNP investigation of dyspnea in the emergency department (PRIDE) study. Am J Cardiol. 2005;95(8):948–54.

    Article  PubMed  CAS  Google Scholar 

  3. Maisel AS, Krishnaswamy P, Nowak RM, et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med. 2002;347(3):161–7.

    Article  PubMed  CAS  Google Scholar 

  4. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA Guideline for the Management of Heart Failure: Executive Summary: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013. doi:10.1016/j.jacc.2013.05.020.

  5. • Kim HN, Januzzi Jr JL. Natriuretic peptide testing in heart failure. Circulation. 2011;123(18):2015–9. This paper summarizes the contemporary data regarding natriuretic peptide testing.

    Article  PubMed  Google Scholar 

  6. Maisel AS, Daniels LB. Breathing not properly 10 years later: what we have learned and what we still need to learn. J Am Coll Cardiol. 2012;60(4):277–82.

    Article  PubMed  Google Scholar 

  7. Tang WH, Girod JP, Lee MJ, et al. Plasma B-type natriuretic peptide levels in ambulatory patients with established chronic symptomatic systolic heart failure. Circulation. 2003;108(24):2964–6.

    Article  PubMed  CAS  Google Scholar 

  8. Chang AY, Abdullah SM, Jain T, et al. Associations among androgens, estrogens, and natriuretic peptides in young women: observations from the Dallas Heart Study. J Am Coll Cardiol. 2007;49(1):109–16.

    Article  PubMed  CAS  Google Scholar 

  9. Das SR, Abdullah SM, Leonard D, et al. Association between renal function and circulating levels of natriuretic peptides (from the Dallas Heart Study). Am J Cardiol. 2008;102(10):1394–8.

    Article  PubMed  CAS  Google Scholar 

  10. Das SR, Drazner MH, Dries DL, et al. Impact of body mass and body composition on circulating levels of natriuretic peptides: results from the Dallas Heart Study. Circulation. 2005;112(14):2163–8.

    Article  PubMed  CAS  Google Scholar 

  11. Galli E, Pingitore A, Iervasi G. The role of thyroid hormone in the pathophysiology of heart failure: clinical evidence. Heart Fail Rev. 2010;15(2):155–69.

    Article  PubMed  CAS  Google Scholar 

  12. Goldman S, McCarren M, Morkin E, et al. DITPA (3,5-Diiodothyropropionic Acid), a thyroid hormone analog to treat heart failure: phase II trial veterans affairs cooperative study. Circulation. 2009;119(24):3093–100.

    Article  PubMed  CAS  Google Scholar 

  13. Tang WH, Tong W, Jain A, Francis GS, Harris CM, Young JB. Evaluation and long-term prognosis of new-onset, transient, and persistent anemia in ambulatory patients with chronic heart failure. J Am Coll Cardiol. 2008;51(5):569–76.

    Article  PubMed  Google Scholar 

  14. Klip IT, Comin-Colet J, Voors AA, et al. Iron deficiency in chronic heart failure: an international pooled analysis. Am Heart J. 2013;165(4):575–582 e573.

    Article  PubMed  CAS  Google Scholar 

  15. Anker SD, Comin Colet J, Filippatos G, et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med. 2009;361(25):2436–48.

    Article  PubMed  CAS  Google Scholar 

  16. Ambrosy AP, Vaduganathan M, Huffman MD, et al. Clinical course and predictive value of liver function tests in patients hospitalized for worsening heart failure with reduced ejection fraction: an analysis of the EVEREST trial. Eur J Heart Fail. 2012;14(3):302–11.

    Article  PubMed  CAS  Google Scholar 

  17. Givertz MM, Mann DL, Lee KL, et al. Xanthine oxidase inhibition for hyperuricemic heart failure patients: design and rationale of the EXACT-HF study. Circ Heart Fail. 2013;6(4):862–8.

    Article  PubMed  Google Scholar 

  18. Hare JM, Mangal B, Brown J, et al. Impact of oxypurinol in patients with symptomatic heart failure. Results of the OPT-CHF study. J Am Coll Cardiol. 2008;51(24):2301–9.

    Article  PubMed  CAS  Google Scholar 

  19. Cleland JG, McMurray JJ, Kjekshus J, et al. Plasma concentration of amino-terminal pro-brain natriuretic peptide in chronic heart failure: prediction of cardiovascular events and interaction with the effects of rosuvastatin: a report from CORONA (Controlled Rosuvastatin Multinational Trial in Heart Failure). J Am Coll Cardiol. 2009;54(20):1850–9.

    Article  PubMed  CAS  Google Scholar 

  20. Nagarajan V, Hernandez AV, Tang WH. Prognostic value of cardiac troponin in chronic stable heart failure: a systematic review. Heart. 2012;98(24):1778–86.

    Article  PubMed  Google Scholar 

  21. Francis GS, Tang WH. Cardiac troponins in renal insufficiency and other non-ischemic cardiac conditions. Prog Cardiovasc Dis. 2004;47(3):196–206.

    Article  PubMed  CAS  Google Scholar 

  22. • Takashio S, Yamamuro M, Izumiya Y, et al. Coronary microvascular dysfunction and diastolic load correlate with cardiac troponin T release measured by a highly sensitive assay in patients with nonischemic heart failure. J Am Coll Cardiol. 2013;62(7):632–40. This paper provides direct evidence that cardiac troponin release in heart failure is largely reflective of underlying myocardial ischemia and load rather than impaired clearance.

    Article  PubMed  CAS  Google Scholar 

  23. Miller WL, Hartman KA, Burritt MF, Grill DE, Jaffe AS. Profiles of serial changes in cardiac troponin T concentrations and outcome in ambulatory patients with chronic heart failure. J Am Coll Cardiol. 2009;54(18):1715–21.

    Article  PubMed  CAS  Google Scholar 

  24. Masson S, Anand I, Favero C, et al. Serial measurement of cardiac troponin T using a highly sensitive assay in patients with chronic heart failure: data from 2 large randomized clinical trials. Circulation. 2012;125(2):280–8.

    Article  PubMed  CAS  Google Scholar 

  25. Blair JE, Pang PS, Schrier RW, et al. Changes in renal function during hospitalization and soon after discharge in patients admitted for worsening heart failure in the placebo group of the EVEREST trial. Eur Heart J. 2011;32(20):2563–72.

    Article  PubMed  Google Scholar 

  26. Brisco MA, Coca SG, Chen J, et al. Blood urea nitrogen/creatinine ratio identifies a high-risk but potentially reversible form of renal dysfunction in patients with decompensated heart failure. Circ Heart Fail. 2013;6(2):233–9.

    Article  PubMed  CAS  Google Scholar 

  27. Testani JM, Cappola TP, McCauley BD, et al. Impact of worsening renal function during the treatment of decompensated heart failure on changes in renal function during subsequent hospitalization. Am Heart J. 2011;161(5):944–9. An important distinction between worsening renal funciton and outcomes as it reflects underlying intrinsic renal impairment rather than true acute kidney injury.

    Article  PubMed  Google Scholar 

  28. Aghel A, Shrestha K, Mullens W, Borowski A, Tang WH. Serum neutrophil gelatinase-associated lipocalin (NGAL) in predicting worsening renal function in acute decompensated heart failure. J Card Fail. 2010;16(1):49–54.

    Article  PubMed  CAS  Google Scholar 

  29. Damman K, van Veldhuisen DJ, Navis G, Voors AA, Hillege HL. Urinary neutrophil gelatinase associated lipocalin (NGAL), a marker of tubular damage, is increased in patients with chronic heart failure. Eur J Heart Fail. 2008;10(10):997–1000.

    Article  PubMed  CAS  Google Scholar 

  30. Maisel AS, Mueller C, Fitzgerald R, et al. Prognostic utility of plasma neutrophil gelatinase-associated lipocalin in patients with acute heart failure: the NGAL EvaLuation Along with B-type NaTriuretic Peptide in acutely decompensated heart failure (GALLANT) trial. Eur J Heart Fail. 2011;13(8):846–51.

    Article  PubMed  CAS  Google Scholar 

  31. Dupont M, Wu Y, Hazen SL, Tang WH. Cystatin C identifies patients with stable chronic heart failure at increased risk for adverse cardiovascular events. Circ Heart Fail. 2012;5(5):602–9.

    Article  PubMed  CAS  Google Scholar 

  32. Lassus J, Harjola VP, Sund R, et al. Prognostic value of cystatin C in acute heart failure in relation to other markers of renal function and NT-proBNP. Eur Heart J. 2007;28(15):1841–7.

    Article  PubMed  CAS  Google Scholar 

  33. Shlipak MG, Katz R, Fried LF, et al. Cystatin-C and mortality in elderly persons with heart failure. J Am Coll Cardiol. 2005;45(2):268–71.

    Article  PubMed  CAS  Google Scholar 

  34. Tang WH, Van Lente F, Shrestha K, et al. Impact of myocardial function on cystatin C measurements in chronic systolic heart failure. J Card Fail. 2008;14(5):394–9.

    Article  PubMed  CAS  Google Scholar 

  35. •• Dupont M, Shrestha K, Singh D, et al. Lack of significant renal tubular injury despite acute kidney injury in acute decompensated heart failure. Eur J Heart Fail. 2012;14(6):597–604. One of few papers to challenge the contemporary concept that rise in serum creatinine reflects acute kidney injury when renal injury markers are far lower in levels than expected.

    Article  PubMed  CAS  Google Scholar 

  36. Gopal DM, Kommineni M, Ayalon N, et al. Relationship of plasma galectin-3 to renal function in patients with heart failure: effects of clinical status, pathophysiology of heart failure, and presence or absence of heart failure. J Am Heart Assoc. 2012;1(5):e000760.

    Article  PubMed  Google Scholar 

  37. Ho JE, Liu C, Lyass A, et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol. 2012;60(14):1249–56.

    Article  PubMed  CAS  Google Scholar 

  38. O’Seaghdha CM, Hwang SJ, Ho JE, Vasan RS, Levy D, Fox CS. Elevated Galectin-3 Precedes the Development of CKD. J Am Soc Nephrol. 2013;24(9):1470–7.

    Google Scholar 

  39. Tang WH, Shrestha K, Shao Z, et al. Usefulness of plasma galectin-3 levels in systolic heart failure to predict renal insufficiency and survival. Am J Cardiol. 2011;108(3):385–90.

    Article  PubMed  CAS  Google Scholar 

  40. Motiwala SR, Szymonifka J, Belcher A, et al. Serial measurement of galectin-3 in patients with chronic heart failure: results from the ProBNP Outpatient Tailored Chronic Heart Failure Therapy (PROTECT) study. Eur J Heart Fail. 2013;15(10):1157–63.

    Google Scholar 

  41. Fonarow GC, Adams Jr KF, Abraham WT, Yancy CW, Boscardin WJ. Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis. JAMA. 2005;293(5):572–80.

    Article  PubMed  CAS  Google Scholar 

  42. Gottlieb SS, Stebbins A, Voors AA, et al. Effects of nesiritide and predictors of urine output in acute decompensated heart failure: Results from ASCEND-HF. J Am Coll Cardiol. 2013;62(13):1177–83.

    Google Scholar 

  43. Mentz RJ, Hernandez AF, Stebbins A, et al. Predictors of early dyspnoea relief in acute heart failure and the association with 30-day outcomes: findings from ASCEND-HF. Eur J Heart Fail. 2013;15(4):456–64.

    Article  PubMed  Google Scholar 

  44. O'Connor CM, Mentz RJ, Cotter G, et al. The PROTECT in-hospital risk model: 7-day outcome in patients hospitalized with acute heart failure and renal dysfunction. Eur J Heart Fail. 2012;14(6):605–12.

    Article  PubMed  Google Scholar 

  45. Felker GM, Leimberger JD, Califf RM, et al. Risk stratification after hospitalization for decompensated heart failure. J Card Fail. 2004;10(6):460–6.

    Article  PubMed  Google Scholar 

  46. Gheorghiade M, Abraham WT, Albert NM, et al. Relationship between admission serum sodium concentration and clinical outcomes in patients hospitalized for heart failure: an analysis from the OPTIMIZE-HF registry. Eur Heart J. 2007;28(8):980–8.

    Article  PubMed  CAS  Google Scholar 

  47. Gheorghiade M, Rossi JS, Cotts W, et al. Characterization and prognostic value of persistent hyponatremia in patients with severe heart failure in the ESCAPE Trial. Arch Intern Med. 2007;167(18):1998–2005.

    Article  PubMed  Google Scholar 

  48. Schrier RW, Fassett RG. Pathogenesis of sodium and water retention in cardiac failure. Ren Fail. 1998;20(6):773–81.

    Article  PubMed  CAS  Google Scholar 

  49. Konstam MA, Gheorghiade M, Burnett Jr JC, et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST Outcome Trial. JAMA. 2007;297(12):1319–31.

    Article  PubMed  CAS  Google Scholar 

  50. Schrier RW, Gross P, Gheorghiade M, et al. Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med. 2006;355(20):2099–112.

    Article  PubMed  CAS  Google Scholar 

  51. Bozkurt B, Mann DL, Deswal A. Biomarkers of inflammation in heart failure. Heart Fail Rev. 2010;15(4):331–41.

    Article  PubMed  CAS  Google Scholar 

  52. Hartupee J, Mann DL. Positioning of inflammatory biomarkers in the heart failure landscape. J Cardiovasc Transl Res. 2013;6(4):485–92.

    Article  PubMed  Google Scholar 

  53. Kalogeropoulos AP, Georgiopoulou VV, Butler J. From risk factors to structural heart disease: the role of inflammation. Heart Fail Clin. 2012;8(1):113–23.

    Article  PubMed  Google Scholar 

  54. Wood P. The erythrocyte sedimentation rate in diseases of the heart. Q J Med. 1936;5(1):1–20.

    Google Scholar 

  55. Haber HL, Leavy JA, Kessler PD, Kukin ML, Gottlieb SS, Packer M. The erythrocyte sedimentation rate in congestive heart failure. N Engl J Med. 1991;324(6):353–8.

    Article  PubMed  CAS  Google Scholar 

  56. Sharma R, Rauchhaus M, Ponikowski PP, et al. The relationship of the erythrocyte sedimentation rate to inflammatory cytokines and survival in patients with chronic heart failure treated with angiotensin-converting enzyme inhibitors. J Am Coll Cardiol. 2000;36(2):523–8.

    Article  PubMed  CAS  Google Scholar 

  57. Daniels LB, Clopton P, Iqbal N, Tran K, Maisel AS. Association of ST2 levels with cardiac structure and function and mortality in outpatients. Am Heart J. 2010;160(4):721–8.

    Article  PubMed  CAS  Google Scholar 

  58. Elster SK, Braunwald E, Wood HF. A study of C-reactive protein in the serum of patients with congestive heart failure. Am Heart J. 1956;51(4):533–41.

    Article  PubMed  CAS  Google Scholar 

  59. Ky B, French B, McCloskey K, et al. High-sensitivity ST2 for prediction of adverse outcomes in chronic heart failure. Circ Heart Fail. 2011;4(2):180–7.

    Article  PubMed  Google Scholar 

  60. Reichlin T, Socrates T, Egli P, et al. Use of myeloperoxidase for risk stratification in acute heart failure. Clin Chem. 2010;56(6):944–51.

    Article  PubMed  CAS  Google Scholar 

  61. Shah SJ, Marcus GM, Gerber IL, et al. High-sensitivity C-reactive protein and parameters of left ventricular dysfunction. J Card Fail. 2006;12(1):61–5.

    Article  PubMed  CAS  Google Scholar 

  62. Tang WH, Shrestha K, Van Lente F, et al. Usefulness of C-reactive protein and left ventricular diastolic performance for prognosis in patients with left ventricular systolic heart failure. Am J Cardiol. 2008;101(3):370–3.

    Article  PubMed  CAS  Google Scholar 

  63. Tang WH, Tong W, Troughton RW, et al. Prognostic value and echocardiographic determinants of plasma myeloperoxidase levels in chronic heart failure. J Am Coll Cardiol. 2007;49(24):2364–70.

    Article  PubMed  CAS  Google Scholar 

  64. Wedel H, McMurray JJ, Lindberg M, et al. Predictors of fatal and non-fatal outcomes in the Controlled Rosuvastatin Multinational Trial in Heart Failure (CORONA): incremental value of apolipoprotein A-1, high-sensitivity C-reactive peptide and N-terminal pro B-type natriuretic peptide. Eur J Heart Fail. 2009;11(3):281–91.

    Article  PubMed  CAS  Google Scholar 

  65. Dadu RT, Dodge R, Nambi V, et al. Ceruloplasmin and Heart Failure in the Atherosclerosis Risk in Communities (ARIC) Study. Circ Heart Fail. 2013;6(5):936–43.

    Google Scholar 

  66. Tang WH, Katz R, Brennan ML, et al. Usefulness of myeloperoxidase levels in healthy elderly subjects to predict risk of developing heart failure. Am J Cardiol. 2009;103(9):1269–74.

    Article  PubMed  CAS  Google Scholar 

  67. Ledwidge M, Gallagher J, Conlon C, et al. Natriuretic peptide-based screening and collaborative care for heart failure: the STOP-HF randomized trial. JAMA. 2013;310(1):66–74.

    Article  PubMed  CAS  Google Scholar 

  68. Bahrami H, Bluemke DA, Kronmal R, et al. Novel metabolic risk factors for incident heart failure and their relationship with obesity: the MESA (Multi-Ethnic Study of Atherosclerosis) study. J Am Coll Cardiol. 2008;51(18):1775–83.

    Article  PubMed  CAS  Google Scholar 

  69. Ingelsson E, Sundstrom J, Lind L, et al. Low-grade albuminuria and the incidence of heart failure in a community-based cohort of elderly men. Eur Heart J. 2007;28(14):1739–45.

    Article  PubMed  CAS  Google Scholar 

  70. Masson S, Latini R, Milani V, et al. Prevalence and prognostic value of elevated urinary albumin excretion in patients with chronic heart failure: data from the GISSI-Heart Failure trial. Circ Heart Fail. 2010;3(1):65–72.

    Article  PubMed  CAS  Google Scholar 

  71. Matsushita K, Blecker S, Pazin-Filho A, et al. The association of hemoglobin a1c with incident heart failure among people without diabetes: the atherosclerosis risk in communities study. Diabetes. 2010;59(8):2020–6.

    Article  PubMed  CAS  Google Scholar 

  72. Lind M, Olsson M, Rosengren A, Svensson AM, Bounias I, Gudbjornsdottir S. The relationship between glycaemic control and heart failure in 83,021 patients with type 2 diabetes. Diabetologia. 2012;55(11):2946–53.

    Article  PubMed  CAS  Google Scholar 

  73. Lainchbury JG, Troughton RW, Strangman KM, et al. N-terminal pro-B-type natriuretic peptide-guided treatment for chronic heart failure: results from the BATTLESCARRED (NT-proBNP-Assisted Treatment To Lessen Serial Cardiac Readmissions and Death) trial. J Am Coll Cardiol. 2009;55(1):53–60.

    Article  PubMed  Google Scholar 

  74. • Januzzi Jr JL, Rehman SU, Mohammed AA, et al. Use of amino-terminal pro-B-type natriuretic peptide to guide outpatient therapy of patients with chronic left ventricular systolic dysfunction. J Am Coll Cardiol. 2011;58(18):1881–9. Single-center study to demonstrate the effectiveness of natriuretic peptide-guided therapy in improving outcomes following hospital discharge for heart failure.

    Article  PubMed  CAS  Google Scholar 

  75. Pfisterer M, Buser P, Rickli H, et al. BNP-guided vs symptom-guided heart failure therapy: the Trial of Intensified vs Standard Medical Therapy in Elderly Patients With Congestive Heart Failure (TIME-CHF) randomized trial. JAMA. 2009;301(4):383–92.

    Article  PubMed  CAS  Google Scholar 

  76. Logeart D, Thabut G, Jourdain P, et al. Predischarge B-type natriuretic peptide assay for identifying patients at high risk of re-admission after decompensated heart failure. J Am Coll Cardiol. 2004;43(4):635–41.

    Article  PubMed  CAS  Google Scholar 

  77. Hilfiker-Kleiner D, Sliwa K, Drexler H. Peripartum cardiomyopathy: recent insights in its pathophysiology. Trends Cardiovasc Med. 2008;18(5):173–9.

    Article  PubMed  CAS  Google Scholar 

  78. Hilfiker-Kleiner D, Struman I, Hoch M, Podewski E, Sliwa K. 16-kDa prolactin and bromocriptine in postpartum cardiomyopathy. Curr Heart Fail Rep. 2012;9(3):174–82.

    Article  PubMed  CAS  Google Scholar 

  79. Forman DE, Butler J, Wang Y, et al. Incidence, predictors at admission, and impact of worsening renal function among patients hospitalized with heart failure. J Am Coll Cardiol. 2004;43(1):61–7.

    Article  PubMed  Google Scholar 

  80. Testani JM, Chen J, McCauley BD, Kimmel SE, Shannon RP. Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation. 2010;122(3):265–72.

    Article  PubMed  Google Scholar 

  81. Testani JM, McCauley BD, Chen J, Shumski M, Shannon RP. Worsening renal function defined as an absolute increase in serum creatinine is a biased metric for the study of cardio-renal interactions. Cardiology. 2010;116(3):206–12.

    Article  PubMed  CAS  Google Scholar 

  82. Januzzi JL, van Kimmenade R, Lainchbury J, et al. NT-proBNP testing for diagnosis and short-term prognosis in acute destabilized heart failure: an international pooled analysis of 1256 patients: the International Collaborative of NT-proBNP Study. Eur Heart J. 2006;27(3):330–7.

    Article  PubMed  CAS  Google Scholar 

  83. Januzzi Jr JL, Chen-Tournoux AA, Moe G. Amino-terminal pro-B-type natriuretic peptide testing for the diagnosis or exclusion of heart failure in patients with acute symptoms. Am J Cardiol. 2008;101(3A):29–38.

    Article  PubMed  Google Scholar 

Download references

Financial Support

Dr. Tang is supported in part by grants from the National Institutes of Health R01HL103931 and P20HL113452.

Compliance with Ethics Guidelines

Conflict of Interest

Meghana Halkar declares that she has no conflict of interest.

W.H. Wilson Tang has received financial support through grants from Pfizer, St. Jude Medical, and Abbott Laboratories, and has received compensation from Medtronic, Inc. and St. Jude Medical for service as a consultant.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Wilson Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halkar, M., Tang, W.H.W. Incorporating Common Biomarkers into the Clinical Management of Heart Failure. Curr Heart Fail Rep 10, 450–457 (2013). https://doi.org/10.1007/s11897-013-0165-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-013-0165-5

Keywords

Navigation