Skip to main content
Log in

New Perspectives in cAMP-Signaling Modulation

  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Cyclic adenosine 3′,5′-monophosphate (cAMP) mediates the biological effects of various hormones and neurotransmitters. Stimulation of cardiac β-adrenergic receptors (β-AR) via catecholamines leads to activation of adenylyl cyclases and increases cAMP production to enhance myocardial function. Because many other receptors signaling through cAMP generation exist in cardiac myocytes, a central question is how different hormones induce distinct cellular responses through the same second messenger. A large body of evidence suggests that the localization and compartmentalization of β-AR/cAMP signaling affects the net outcome of biological functions. Spatiotemporal dynamics of cAMP action is achieved by various proteins, including protein kinase A (PKA), phosphodiesterases, and scaffolding proteins such as A-kinase–anchoring proteins. In addition, the discovery of the cAMP target Epac (exchange proteins directly activated by cAMP), which functions in a PKA-independent manner, represents a novel mechanism for governing cAMP-signaling specificity. Aberrant cAMP signaling through dysregulation of β-AR/cAMP compartmentalization may contribute to cardiac remodeling and heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as:•• Of major importance

  1. Bers DM. Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol. 2008;70:23–49.

    Article  PubMed  CAS  Google Scholar 

  2. Movsesian MA, Bristow MR. Alterations in cAMP-mediated signaling and their role in the pathophysiology of dilated cardiomyopathy. Curr Top Dev Biol. 2005;68:25–48.

    Article  PubMed  CAS  Google Scholar 

  3. Lohse MJ, Engelhardt S, Eschenhagen T. What is the role of beta-adrenergic signaling in heart failure? Circ Res. 2003;93:896–906.

    Article  PubMed  CAS  Google Scholar 

  4. Fischmeister R, Castro LR, Abi-Gerges A, et al. Compartmentalization of cyclic nucleotide signaling in the heart: the role of cyclic nucleotide phosphodiesterases. Circ Res. 2006;99:816–28.

    Article  PubMed  CAS  Google Scholar 

  5. Houslay MD. Underpinning compartmentalised cAMP signaling through targeted cAMP breakdown. Trends Biochem Sci. 2010;35:91–100.

    Article  PubMed  CAS  Google Scholar 

  6. Scott JD, Santana LF. A-kinase anchoring proteins: getting to the heart of the matter. Circulation. 2010;121:1264–71.

    Article  PubMed  CAS  Google Scholar 

  7. Gloerich M, Bos JL. Epac: defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol. 2010;50:355–75.

    Article  PubMed  CAS  Google Scholar 

  8. Lompre AM, Hajjar RJ, Harding SE, et al. Ca2+ cycling and new therapeutic approaches for heart failure. Circulation. 2010;121:822–30.

    Article  PubMed  Google Scholar 

  9. Gauthier C, Leblais V, Kobzik L, et al. The negative inotropic effect of beta3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J Clin Invest. 1998;102:1377–84.

    Article  PubMed  CAS  Google Scholar 

  10. Skeberdis VA, Gendviliene V, Zablockaite D, et al. beta3-adrenergic receptor activation increases human atrial tissue contractility and stimulates the L-type Ca2+ current. J Clin Invest. 2008;118:3219–27.

    PubMed  CAS  Google Scholar 

  11. Kuschel M, Zhou YY, Spurgeon HA, et al. beta2-adrenergic cAMP signaling is uncoupled from phosphorylation of cytoplasmic proteins in canine heart. Circulation. 1999;99:2458–65.

    PubMed  CAS  Google Scholar 

  12. Zhu WZ, Wang SQ, Chakir K, et al. Linkage of beta1-adrenergic stimulation to apoptotic heart cell death through protein kinase A-independent activation of Ca2+/calmodulin kinase II. J Clin Invest. 2003;111:617–25.

    PubMed  CAS  Google Scholar 

  13. Engelhardt S, Hein L, Wiesmann F, Lohse MJ. Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. Proc Natl Acad Sci USA. 1999;96:7059–64.

    Article  PubMed  CAS  Google Scholar 

  14. Liggett SB, Tepe NM, Lorenz JN, et al. Early and delayed consequences of beta(2)-adrenergic receptor overexpression in mouse hearts: critical role for expression level. Circulation. 2000;101:1707–14.

    PubMed  CAS  Google Scholar 

  15. Xiao RP, Zhang SJ, Chakir K, et al. Enhanced G(I) signaling selectively negates beta2-adrenergic receptor (AR)–but not beta1-AR-mediated positive inotropic effect in myocytes from failing rat hearts. Circulation. 2003;108:1633–9.

    Article  PubMed  CAS  Google Scholar 

  16. Talan MI, Ahmet I, Xiao RP, Lakatta EG. beta(2) AR agonists in treatment of chronic heart failure: long path to translation. J Mol Cell Cardiol. 2010, In press

  17. Rybin VO, Xu X, Lisanti MP, Steinberg SF. Differential targeting of beta -adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. J Biol Chem. 2000;275:41447–57.

    Article  PubMed  CAS  Google Scholar 

  18. Jurevicius J, Fischmeister R. cAMP compartmentalization is responsible for a local activation of cardiac Ca2+ channels by beta-adrenergic agonists. Proc Natl Acad Sci USA. 1996;93:295–9.

    Article  PubMed  CAS  Google Scholar 

  19. DiPilato LM, Zhang J. Fluorescent protein-based biosensors: resolving spatiotemporal dynamics of signaling. Curr Opin Chem Biol. 2010;14:37–42.

    Article  PubMed  CAS  Google Scholar 

  20. Nikolaev VO, Bunemann M, Schmitteckert E, et al. Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching beta1-adrenergic but locally confined beta2-adrenergic receptor-mediated signaling. Circ Res. 2006;99:1084–91.

    Article  PubMed  CAS  Google Scholar 

  21. •• Nikolaev VO, Moshkov A, Lyon AR, et al. Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentalization. Science. 2010; 327:1653–7. This article describes a redistribution of the β 2 -ARs from the T-tubules to the cell crest in failing cardiomyocytes.

    Article  PubMed  CAS  Google Scholar 

  22. Zaccolo M. cAMP signal transduction in the heart: understanding spatial control for the development of novel therapeutic strategies. Br J Pharmacol. 2009;158:50–60.

    Article  PubMed  CAS  Google Scholar 

  23. Zaccolo M, Pozzan T. Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science. 2002;295:1711–5.

    Article  PubMed  CAS  Google Scholar 

  24. Mongillo M, McSorley T, Evellin S, et al. Fluorescence resonance energy transfer-based analysis of cAMP dynamics in live neonatal rat cardiac myocytes reveals distinct functions of compartmentalized phosphodiesterases. Circ Res. 2004;95:67–75.

    Article  PubMed  CAS  Google Scholar 

  25. Rochais F, Abi-Gerges A, Horner K, et al. A specific pattern of phosphodiesterases controls the cAMP signals generated by different Gs-coupled receptors in adult rat ventricular myocytes. Circ Res. 2006;98:1081–8.

    Article  PubMed  CAS  Google Scholar 

  26. Richter W, Day P, Agrawal R, et al. Signaling from beta1- to beta2-adrenergic receptors is defined by differential interactions with PDE4. EMBO J. 2008;27:384–93.

    Article  PubMed  CAS  Google Scholar 

  27. Perry SJ, Baillie GS, Kohout TA, et al. Targeting of cyclic AMP degradation to beta 2-adrenergic receptors by beta-arrestins. Science. 2002;298:834–6.

    Article  PubMed  CAS  Google Scholar 

  28. Baillie GS, Sood A, McPhee I, et al. beta-Arrestin-mediated PDE4 cAMP phosphodiesterase recruitment regulates beta-adrenoceptor switching from Gs to Gi. Proc Natl Acad Sci USA. 2003;100:940–5.

    Article  PubMed  CAS  Google Scholar 

  29. •• Leroy J, Abi-Gerges A, Nikolaev VO, et al. Spatiotemporal dynamics of beta-adrenergic cAMP signals and L-type Ca2+ channel regulation in adult rat ventricular myocytes: role of phosphodiesterases. Circ Res. 2008; 102:1091–100. This is a study showing the spatiotemporal contribution of PDE isoforms 3 and 4 to the β-AR response of cardiac myocytes.

    Article  PubMed  CAS  Google Scholar 

  30. Abi-Gerges A, Richter W, Lefebvre F, et al. Decreased expression and activity of cAMP phosphodiesterases in cardiac hypertrophy and its impact on beta-adrenergic cAMP signals. Circ Res. 2009;105:784–92.

    Article  PubMed  CAS  Google Scholar 

  31. Ding B, Abe J, Wei H, et al. Functional role of phosphodiesterase 3 in cardiomyocyte apoptosis: implication in heart failure. Circulation. 2005;111:2469–76.

    Article  PubMed  CAS  Google Scholar 

  32. Lehnart SE, Wehrens XH, Reiken S, et al. Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell. 2005;123:25–35.

    Article  PubMed  CAS  Google Scholar 

  33. Sin YY, Edwards HV, Li X, et al. Disruption of the cyclic AMP phosphodiesterase-4 (PDE4)-HSP20 complex attenuates the beta-agonist induced hypertrophic response in cardiac myocytes. J Mol Cell Cardiol. 2011, In press

  34. Dodge KL, Khouangsathiene S, Kapiloff MS, et al. mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module. EMBO J. 2001;20:1921–30.

    Article  PubMed  CAS  Google Scholar 

  35. Dodge-Kafka KL, Langeberg L, Scott JD. Compartmentalization of cyclic nucleotide signaling in the heart: the role of A-kinase anchoring proteins. Circ Res. 2006;98:993–1001.

    Article  PubMed  CAS  Google Scholar 

  36. Lygren B, Carlson CR, Santamaria K, et al. AKAP complex regulates Ca2+ re-uptake into heart sarcoplasmic reticulum. EMBO Rep. 2007;8:1061–7.

    Article  PubMed  CAS  Google Scholar 

  37. McConnell BK, Popovic Z, Mal N, et al. Disruption of protein kinase A interaction with A-kinase-anchoring proteins in the heart in vivo: effects on cardiac contractility, protein kinase A phosphorylation, and troponin I proteolysis. J Biol Chem. 2009;284:1583–92.

    Article  PubMed  CAS  Google Scholar 

  38. Kapiloff MS, Jackson N, Airhart N. mAKAP and the ryanodine receptor are part of a multi-component signaling complex on the cardiomyocyte nuclear envelope. J Cell Sci. 2001;114:3167–76.

    PubMed  CAS  Google Scholar 

  39. •• Carnegie GK, Soughayer J, Smith FD, et al. AKAP-Lbc mobilizes a cardiac hypertrophy signaling pathway. Mol Cell. 2008; 32:169–79. This article demonstrates in molecular detail that AKAP-Lbc activates a prohypertrophic signaling involving protein kinase D activation and the nuclear export of the class II histone deacetylase HDAC.

    Article  PubMed  CAS  Google Scholar 

  40. Christian F, Szaszak M, Friedl S, et al. Small molecule AKAP/PKA interaction disruptors that activate PKA interfere with compartmentalized cAMP signaling in cardiac myocytes. J Biol Chem. 2011, In press

  41. Enserink JM, Christensen AE, de Rooij J, et al. A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK. Nat Cell Biol. 2002;4:901–6.

    Article  PubMed  CAS  Google Scholar 

  42. Breckler M, Berthouze M, Laurent AC, et al. Rap-linked cAMP signaling Epac proteins: compartmentalization, functioning and disease implications. Cell Signal. 2011, In press

  43. •• Metrich M, Lucas A, Gastineau M, et al. Epac mediates beta-adrenergic receptor-induced cardiomyocyte hypertrophy. Circ Res. 2008;102:959–65. This article demonstrates that Epac prohypertrohic signaling pathway involves calcineurin and CaMKII in adult cardiac myocytes in response to β-AR activation.

    Article  PubMed  CAS  Google Scholar 

  44. Rehmann H, Wittinghofer A, Bos JL. Capturing cyclic nucleotides in action: snapshots from crystallographic studies. Nat Rev Mol Cell Biol. 2007;8:63–73.

    Article  PubMed  CAS  Google Scholar 

  45. Metrich M, Berthouze M, Morel E, et al. Role of the cAMP-binding protein Epac in cardiovascular physiology and pathophysiology. Pflugers Arch. 2010;459:535–46.

    Article  PubMed  CAS  Google Scholar 

  46. Morel E, Marcantoni A, Gastineau M, et al. cAMP-binding protein Epac induces cardiomyocyte hypertrophy. Circ Res. 2005;97:1296–304.

    Article  PubMed  CAS  Google Scholar 

  47. Ulucan C, Wang X, Baljinnyam E, et al. Developmental changes in gene expression of Epac and its upregulation in myocardial hypertrophy. Am J Physiol Heart Circ Physiol. 2007;293:H1662–72.

    Article  PubMed  CAS  Google Scholar 

  48. Metrich M, Laurent AC, Breckler M, et al. Epac activation induces histone deacetylase nuclear export via a Ras-dependent signaling pathway. Cell Signal. 2010; 22:1459–68.

    Article  PubMed  CAS  Google Scholar 

  49. Pereira L, Metrich M, Fernandez-Velasco M, et al. The cAMP binding protein Epac modulates Ca2+ sparks by a Ca2+/calmodulin kinase signaling pathway in rat cardiac myocytes. J Physiol. 2007;583:685–94.

    Article  PubMed  CAS  Google Scholar 

  50. Kwak HJ, Park KM, Choi HE, et al. PDE4 inhibitor, roflumilast protects cardiomyocytes against NO-induced apoptosis via activation of PKA and Epac dual pathways. Cell Signal. 2008;20:803–14.

    Article  PubMed  Google Scholar 

  51. Yokoyama U, Patel HH, Lai NC, et al. The cyclic AMP effector Epac integrates pro- and anti-fibrotic signals. Proc Natl Acad Sci USA. 2008;105:6386–91.

    Article  PubMed  CAS  Google Scholar 

  52. Somekawa S, Fukuhara S, Nakaoka Y, et al. Enhanced functional gap junction neoformation by protein kinase A-dependent and Epac-dependent signals downstream of cAMP in cardiac myocytes. Circ Res. 2005;97:655–62.

    Article  PubMed  CAS  Google Scholar 

  53. Cazorla O, Lucas A, Poirier F, et al. The cAMP binding protein Epac regulates cardiac myofilament function. Proc Natl Acad Sci USA. 2009;106:14144–9.

    Article  PubMed  CAS  Google Scholar 

  54. Dodge-Kafka KL, Soughayer J, Pare GC, et al. The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways. Nature. 2005;437:574–8.

    Article  PubMed  CAS  Google Scholar 

  55. Sehrawat S, Ernandez T, Cullere X, et al. AKAP9 regulation of microtubule dynamics promotes Epac1-induced endothelial barrier properties. Blood. 2011;117:708–18.

    Article  PubMed  CAS  Google Scholar 

  56. Gloerich M, Ponsioen B, Vliem MJ, et al. Spatial regulation of cyclic AMP-Epac1 signaling in cell adhesion by ERM proteins. Mol Cell Biol. 2010;30:5421–31.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. Jeanne Mialet-Perez and Bertrand Crozatier for their critical reading of the manuscript. The work of Dr. Frank Lezoualc’h mentioned herein was supported by grants from Agence Nationale de la Recherche («HyperEpac» Genopath09) to Région Midi-Pyrénées. Drs. Magali Breckler, Magali Berthouze, and Anne-Coline Laurent were recipients of grants from Région île-de-France (CODIM), Fondation Lefoulon Delalande, and Groupe de Réflexion sur la Recherche Cardiovasculaire (G.R.R.C)/Fédération Française de Cardiologie (F. F. C).

Disclosures

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Lezoualc’h.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berthouze, M., Laurent, AC., Breckler, M. et al. New Perspectives in cAMP-Signaling Modulation. Curr Heart Fail Rep 8, 159–167 (2011). https://doi.org/10.1007/s11897-011-0062-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-011-0062-8

Keywords

Navigation