Skip to main content

Advertisement

Log in

Advanced Endoscopic Imaging for Barrett’s Esophagus: Current Options and Future Directions

  • Esophagus (MF Vela, Section Editor)
  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

Barrett’s esophagus is the precursor to esophageal adenocarcinoma, one of the most rapidly increasing cancers in the United States. Given the poor prognosis of late-stage adenocarcinoma, endoscopic surveillance is recommended for subjects with Barrett’s esophagus to detect early neoplasia. Current guidelines recommend “random” four-quadrant biopsies taken every 1–2 cm throughout the Barrett’s segment. However, this only samples a minority of epithelium and has been shown to miss areas of endoscopically- inapparent neoplasia (high grade dysplasia or cancer). Recent efforts have focused on developing novel diagnostic imaging technologies to detect the subtle epithelial changes associated with dysplasia and neoplasia in Barrett’s esophagus. Some of these modalities serve as “red flag” technologies designed to detect areas of abnormality within large surface areas. Other technologies serve to characterize areas of visible abnormality, offering a higher spatial resolution to confirm/exclude the presence of neoplasia. This review summarizes several available and evolving imaging technologies used in the endoscopic diagnosis and surveillance of Barrett’s associated neoplasia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Shaheen NJ, Overholt BF, Sampliner RE et al.: Durability of Radiofrequency Ablation in Barrett's Esophagus With Dysplasia. Gastroenterology 2011, 141(2):460–468. While prior studies had demonstrated high rates of eradication of dysplastic BE with radiofrequency ablation (RFA), most of the studies were cross-sectional or had short follow-up periods. This multicenter-randomized controlled trial demonstrated that RFA had an acceptable safety profile, is durable and associated with low rate of disease progression for up to 3 years.

  2. Sharma P, Bansal A, Mathur S, et al. The utility of a novel narrow band imaging endoscopy system in patients with Barrett's esophagus. Gastrointest Endosc. 2006;64(2):167–75.

    Article  PubMed  Google Scholar 

  3. Spechler SJ, Sharma P, Souza RF et al.: American Gastroenterological Association technical review on the management of Barrett's esophagus. Gastroenterology 2011, 140(3):e18–52; quiz e13.

    Google Scholar 

  4. Vieth M, Ell C, Gossner L, et al. Histological analysis of endoscopic resection specimens from 326 patients with Barrett's esophagus and early neoplasia. Endoscopy. 2004;36(9):776–81.

    Article  PubMed  CAS  Google Scholar 

  5. Thekkek N, Anandasabapathy S, Richards-Kortum R. Optical molecular imaging for detection of Barrett's-associated neoplasia. World J Gastroenterol. 2011;17(1):53–62.

    Article  PubMed  Google Scholar 

  6. Mannath J, Ragunath K. Era of Barrett's surveillance: does equipment matter? WJG. 2010;16(37):4640–5.

    Article  PubMed  Google Scholar 

  7. Wang KK, Okoro N, Prasad G, et al. Endoscopic evaluation and advanced imaging of Barrett's esophagus. Gastrointest Endosc Clin N Am. 2011;21(1):39–51.

    Article  PubMed  CAS  Google Scholar 

  8. Gono K, Obi T, Yamaguchi M, et al. Appearance of enhanced tissue features in narrow-band endoscopic imaging. J Biomed Opt. 2004;9(3):568–77.

    Article  PubMed  Google Scholar 

  9. Kara MA, Peters FP, Fockens P, et al. Endoscopic video-autofluorescence imaging followed by narrow band imaging for detecting early neoplasia in Barrett's esophagus. Gastrointest Endosc. 2006;64(2):176–85.

    Article  PubMed  Google Scholar 

  10. Wolfsen HC, Crook JE, Krishna M, et al. Prospective, controlled tandem endoscopy study of narrow band imaging for dysplasia detection in Barrett's Esophagus. Gastroenterology. 2008;135(1):24–31.

    Article  PubMed  Google Scholar 

  11. Kara MA, Peters FP, Rosmolen WD, et al. High-resolution endoscopy plus chromoendoscopy or narrow-band imaging in Barrett's esophagus: a prospective randomized crossover study. Endoscopy. 2005;37(10):929–36.

    Article  PubMed  CAS  Google Scholar 

  12. Sharma P. Clinical practice. Barrett's esophagus. N Engl J Med. 2009;361(26):2548–56.

    Article  PubMed  CAS  Google Scholar 

  13. Curvers WL, Bohmer CJ, Mallant-Hent RC, et al. Mucosal morphology in Barrett's esophagus: interobserver agreement and role of narrow band imaging. Endoscopy. 2008;40(10):799–805.

    Article  PubMed  CAS  Google Scholar 

  14. Herrero LA, Curvers WL, Bansal A, et al. Zooming in on Barrett oesophagus using narrow-band imaging: an international observer agreement study. Eur J Gastroenterol Hepatol. 2009;21(9):1068–75.

    Article  PubMed  Google Scholar 

  15. Herrero LA, Weusten BL, Bergman JJ. Autofluorescence and narrow band imaging in Barrett's esophagus. Gastroenterol Clin North Am. 2010;39(4):747–58.

    Article  PubMed  Google Scholar 

  16. Mannath J, Subramanian V, Hawkey CJ, et al. Narrow band imaging for characterization of high grade dysplasia and specialized intestinal metaplasia in Barrett's esophagus: a meta-analysis. Endoscopy. 2010;42(5):351–9.

    Article  PubMed  CAS  Google Scholar 

  17. Panossian AM, Raimondo M, Wolfsen HC. State of the art in the endoscopic imaging and ablation of Barrett's esophagus. Dig Liver Dis: official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver. 2011;43(5):365–73.

    Article  Google Scholar 

  18. Niepsuj K, Niepsuj G, Cebula W, et al. Autofluorescence endoscopy for detection of high-grade dysplasia in short-segment Barrett's esophagus. Gastrointest Endosc. 2003;58(5):715–9.

    Article  PubMed  Google Scholar 

  19. Haringsma J, Tytgat GN, Yano H, et al. Autofluorescence endoscopy: feasibility of detection of GI neoplasms unapparent to white light endoscopy with an evolving technology. Gastrointest Endosc. 2001;53(6):642–50.

    Article  PubMed  CAS  Google Scholar 

  20. Borovicka J, Fischer J, Neuweiler J, et al. Autofluorescence endoscopy in surveillance of Barrett's esophagus: a multicenter randomized trial on diagnostic efficacy. Endoscopy. 2006;38(9):867–72.

    Article  PubMed  CAS  Google Scholar 

  21. Kara MA, Smits ME, Rosmolen WD, et al. A randomized crossover study comparing light-induced fluorescence endoscopy with standard videoendoscopy for the detection of early neoplasia in Barrett's esophagus. Gastrointest Endosc. 2005;61(6):671–8.

    Article  PubMed  Google Scholar 

  22. Kara MA, Peters FP, Ten Kate FJ, et al. Endoscopic video autofluorescence imaging may improve the detection of early neoplasia in patients with Barrett's esophagus. Gastrointest Endosc. 2005;61(6):679–85.

    Article  PubMed  Google Scholar 

  23. Curvers WL, Singh R, Song LM, et al. Endoscopic tri-modal imaging for detection of early neoplasia in Barrett's oesophagus: a multi-centre feasibility study using high-resolution endoscopy, autofluorescence imaging and narrow band imaging incorporated in one endoscopy system. Gut. 2008;57(2):167–72.

    Article  PubMed  CAS  Google Scholar 

  24. • Curvers WL, van Vilsteren FG, Baak LC et al.: Endoscopic trimodal imaging versus standard video endoscopy for detection of early Barrett's neoplasia: a multicenter, randomized, crossover study in general practice. Gastrointest Endosc. 2011, 73(2):195–203. This article importantly illustrates that other widefield platforms have yet to eclipse HD-WLE. The authors integrated HD-WLE, AFI, and NBI into a single tri-modal platform in order to decrease rates of false positives with AFI and to combine the strenghts of all three widefield platforms in one technology. Despite an improved targeted detection of HGD/EN, overall detection with the trimodal platform was not significantly better than with HD-WLE alone.

    Google Scholar 

  25. Curvers WL, Herrero LA, Wallace MB, et al. Endoscopic tri-modal imaging is more effective than standard endoscopy in identifying early-stage neoplasia in Barrett's esophagus. Gastroenterology. 2010;139(4):1106–14.

    Article  PubMed  Google Scholar 

  26. Osawa H, Yamamoto H, Yamada N, et al. Diagnosis of endoscopic Barrett's esophagus by transnasal flexible spectral imaging color enhancement. J Gastroenterol. 2009;44(11):1125–32.

    Article  PubMed  Google Scholar 

  27. Pohl J, May A, Rabenstein T, et al. Comparison of computed virtual chromoendoscopy and conventional chromoendoscopy with acetic acid for detection of neoplasia in Barrett's esophagus. Endoscopy. 2007;39(7):594–8.

    Article  PubMed  CAS  Google Scholar 

  28. Muto M, Higuchi H, Ezoe Y, et al. Differences of image enhancement in image-enhanced endoscopy: narrow band imaging versus flexible spectral imaging color enhancement. J Gastroenterol. 2011;46(8):998–1002.

    Article  PubMed  Google Scholar 

  29. Chaiteerakij R, Rerknimitr R, Kullavanijaya P. Role of digital chromoendoscopy in detecting minimal change esophageal reflux disease. World J Gastrointest Endosc. 2010;2(4):121–9.

    Article  PubMed  Google Scholar 

  30. Hoffman A, Basting N, Goetz M, et al. High-definition endoscopy with i-Scan and Lugol's solution for more precise detection of mucosal breaks in patients with reflux symptoms. Endoscopy. 2009;41(2):107–12.

    Article  PubMed  CAS  Google Scholar 

  31. Neumann H, Fuchs FS, Vieth M, et al. Review article: in vivo imaging by endocytoscopy. Aliment Pharmacol Ther. 2011;33(11):1183–93.

    Article  PubMed  CAS  Google Scholar 

  32. Thekkek N, Maru DM, Polydorides AD, et al. Pre-clinical evaluation of fluorescent deoxyglucose as a topical contrast agent for the detection of Barrett's-associated neoplasia during confocal imaging. Technol Cancer Res Treat. 2011;10(5):431–41.

    PubMed  CAS  Google Scholar 

  33. Goetz M, Kiesslich R. Confocal endomicroscopy: in vivo diagnosis of neoplastic lesions of the gastrointestinal tract. Anticancer Res. 2008;28(1B):353–60.

    PubMed  Google Scholar 

  34. VistaPharm—KERR Triple Die [http://www.vistapharm.com/kerrtriple.html]

  35. Janssen PA, Selwood BL, Dobson SR, et al. To dye or not to dye: a randomized, clinical trial of a triple dye/alcohol regime versus dry cord care. Pediatrics. 2003;111(1):15–20.

    Article  PubMed  Google Scholar 

  36. McConnell TP, Lee CW, Couillard M, et al. Trends in umbilical cord care. Newb Inf Nurs Rev. 2004;4(4):211–22.

    Article  Google Scholar 

  37. Kiesslich R, Gossner L, Goetz M, et al. In vivo histology of Barrett's esophagus and associated neoplasia by confocal laser endomicroscopy. Clin Gastroenterol Hepatol. 2006;4(8):979–87.

    Article  PubMed  Google Scholar 

  38. Dunbar KB, Okolo 3rd P, Montgomery E, et al. Confocal laser endomicroscopy in Barrett's esophagus and endoscopically inapparent Barrett's neoplasia: a prospective, randomized, double-blind, controlled, crossover trial. Gastrointest Endosc. 2009;70(4):645–54.

    Article  PubMed  Google Scholar 

  39. Pohl H, Rosch T, Vieth M, et al. Miniprobe confocal laser microscopy for the detection of invisible neoplasia in patients with Barrett's oesophagus. Gut. 2008;57(12):1648–53.

    Article  PubMed  CAS  Google Scholar 

  40. Wallace MB, Sharma P, Lightdale C, et al. Preliminary accuracy and interobserver agreement for the detection of intraepithelial neoplasia in Barrett's esophagus with probe-based confocal laser endomicroscopy. Gastrointest Endosc. 2010;72(1):19–24.

    Article  PubMed  Google Scholar 

  41. Sharma P, Meining AR, Coron E, et al. Real-time increased detection of neoplastic tissue in Barrett's esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial. Gastrointest Endosc. 2011;74(3):465–72.

    Article  PubMed  Google Scholar 

  42. Kiesslich R, Goetz M, Lammersdorf K, et al. Chromoscopy-guided endomicroscopy increases the diagnostic yield of intraepithelial neoplasia in ulcerative colitis. Gastroenterology. 2007;132(3):874–82.

    Article  PubMed  Google Scholar 

  43. Toyoda H, Rubio C, Befrits R, et al. Detection of intestinal metaplasia in distal esophagus and esophagogastric junction by enhanced-magnification endoscopy. Gastrointest Endosc. 2004;59(1):15–21.

    Article  PubMed  Google Scholar 

  44. Tadrous PJ. Methods for imaging the structure and function of living tissues and cells: 1. Optical coherence tomography. J Pathol. 2000;191(2):115–9.

    Article  PubMed  CAS  Google Scholar 

  45. Isenberg G, Sivak Jr MV, Chak A, et al. Accuracy of endoscopic optical coherence tomography in the detection of dysplasia in Barrett's esophagus: a prospective, double-blinded study. Gastrointest Endosc. 2005;62(6):825–31.

    Article  PubMed  Google Scholar 

  46. Kwon RS, Wong Kee Song LM, Adler DG, et al. Endocytoscopy. Gastrointest Endosc. 2009;70(4):610–3.

    Article  PubMed  Google Scholar 

  47. Kodashima S, Fujishiro M, Takubo K, et al. Ex-vivo study of high-magnification chromoendoscopy in the gastrointestinal tract to determine the optimal staining conditions for endocytoscopy. Endoscopy. 2006;38(11):1115–21.

    Article  PubMed  CAS  Google Scholar 

  48. Pohl H, Koch M, Khalifa A, et al. Evaluation of endocytoscopy in the surveillance of patients with Barrett's esophagus. Endoscopy. 2007;39(6):492–6.

    Article  PubMed  CAS  Google Scholar 

  49. Eberl T, Jechart G, Probst A, et al. Can an endocytoscope system (ECS) predict histology in neoplastic lesions? Endoscopy. 2007;39(6):497–501.

    Article  PubMed  CAS  Google Scholar 

  50. •• Muldoon TJ, Anandasabapathy S, Maru D et al.: High-resolution imaging in Barrett's esophagus: a novel, low-cost endoscopic microscope. Gastrointest Endosc. 2008, 68(4):737–744. This paper first described the novel, low cost HRME imaging modality. HRME was capable of visualizing cellular architecture, morphologic features, and nuclear-to-cytoplasmic ratios and the ex vivo evaluation showed that this system could differentiate between squamous mucosa, Barrett's metaplasia, and Barrett's intraepithelial neoplasia. Following this publication, subsequent studies have evaluated the HRME in in-vivo settings.

  51. Vila PM KM, Polydorides AD, Protano MA, Pierce MC, Sauk J, Kim MK, Patel K, Godbold J, Waye JD, Richards-Kortum R, Anandasabapathy S: Accuracy and Inter-rater reliability for the diagnosis of Barrett's neoplasia among new and experienced users of a novel, low-cost, portable microendoscope. In: Digestive Disease Week 2011. Chicago, Illinois; 2011.

  52. Winkler AM, Rice PF, Weichsel J et al.: In Vivo, Dual-Modality OCT/LIF Imaging Using a Novel VEGF Receptor-Targeted NIR Fluorescent Probe in the AOM-Treated Mouse Model. Mol Imaging Biol 2010.

  53. Larson SM. Positron emission tomography-based molecular imaging in human cancer: exploring the link between hypoxia and accelerated glucose metabolism. Clin Cancer Res. 2004;10(7):2203–4.

    Article  PubMed  CAS  Google Scholar 

  54. Rajendran JG, Mankoff DA, O'Sullivan F, et al. Hypoxia and glucose metabolism in malignant tumors: evaluation by [18 F]fluoromisonidazole and [18 F]fluorodeoxyglucose positron emission tomography imaging. Clin Cancer Res. 2004;10(7):2245–52.

    Article  PubMed  CAS  Google Scholar 

  55. Shaw RJ. Glucose metabolism and cancer. Curr Opin Cell Biol. 2006;18(6):598–608.

    Article  PubMed  CAS  Google Scholar 

  56. Jadvar H, Alavi A, Gambhir SS. 18 F-FDG uptake in lung, breast, and colon cancers: molecular biology correlates and disease characterization. J Nucl Med. 2009;50(11):1820–7.

    Article  PubMed  Google Scholar 

  57. O'Neil RG, Wu L, Mullani N. Uptake of a fluorescent deoxyglucose analog (2-NBDG) in tumor cells. Mol Imaging Biol. 2005;7(6):388–92.

    Article  PubMed  Google Scholar 

  58. Nitin N, Carlson AL, Muldoon T, et al. Molecular imaging of glucose uptake in oral neoplasia following topical application of fluorescently labeled deoxy-glucose. Int J Cancer. 2009;124(11):2634–42.

    Article  PubMed  CAS  Google Scholar 

  59. • Goetz M, Ziebart A, Foersch S et al.: In vivo molecular imaging of colorectal cancer with confocal endomicroscopy by targeting epidermal growth factor receptor. Gastroenterology 2010, 138(2):435–446. Prior to this study, no trial has used labeled antibodies against a well-defined tumor-associated target, EGFR, in ex vivo immunohistochemistry. This study demonstrated that confocal laser endomicrsocopy can potentially be used for in vivo molecular analysis of colorectal cancer and can differentiate EGFR expression patterns in xenograft tumors and human tissue samples.

  60. • Foersch S, Kiesslich R, Waldner MJ et al.: Molecular imaging of VEGF in gastrointestinal cancer in vivo using confocal laser endomicroscopy. Gut 2010, 59(8):1046–1055. This study demonstrated that molecular imaging of VEGF is possible in different rodent models of gastrointestinal cancer and human tissue using confocal laser endomicroscopy and additionally.

  61. •• Li M, Anastassiades CP, Joshi B et al.: Affinity peptide for targeted detection of dysplasia in Barrett's esophagus. Gastroenterology 2010, 139(5):1472–1480. This paper first described the novel, low cost HRME imaging modality. HRME was capable of visualizing cellular architecture, morphologic features, and nuclear-to-cytoplasmic ratios and the ex vivo evaluation showed that this system could differentiate between squamous mucosa, Barrett's metaplasia, and Barrett's intraepithelial neoplasia. Following this publication, subsequent studies have evaluated the HRME in in-vivo settings.

  62. Goetz M, Wang TD: Molecular imaging in gastrointestinal endoscopy. Gastroenterology 2010, 138(3):828–833 e821.

    Google Scholar 

  63. Kwon RS, Adler DG, Chand B, et al. High-resolution and high-magnification endoscopes. Gastrointest Endosc. 2009;69(3 Pt 1):399–407.

    Article  PubMed  Google Scholar 

Download references

Disclosure

Dr. R. Richards-Kortum has received grant funding and travel support from the NIH and patents, royalties and stock options from Remicalm. No other potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharmila Anandasabapathy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, M.H., Buterbaugh, K., Richards-Kortum, R. et al. Advanced Endoscopic Imaging for Barrett’s Esophagus: Current Options and Future Directions. Curr Gastroenterol Rep 14, 216–225 (2012). https://doi.org/10.1007/s11894-012-0259-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11894-012-0259-3

Keywords

Navigation