Skip to main content

Advertisement

Log in

Pediatric Diabetic Retinopathy: Updates in Prevalence, Risk Factors, Screening, and Management

  • Microvascular Complications—Retinopathy (R Channa, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Diabetic retinopathy (DR) is a microvascular complication of diabetes mellitus and a major cause of vision loss worldwide. The purpose of this review is to provide an update on the prevalence of diabetic retinopathy in youth, discuss risk factors, and review recent advances in diabetic retinopathy screening.

Recent Findings

While DR has long been considered a microvascular complication, recent data suggests that retinal neurodegeneration may precede the vascular changes associated with DR. The prevalence of DR has decreased in type 1 diabetes (T1D) patients following the results of the Diabetes Control and Complications Trial and implementation of intensive insulin therapy, with prevalence ranging from 14–20% before the year 2000 to 3.7–6% after 2000. In contrast, the prevalence of diabetic retinopathy in pediatric type 2 diabetes (T2D) is higher, ranging from 9.1–50%. Risk factors for diabetic retinopathy are well established and include glycemic control, diabetes duration, hypertension, and hyperlipidemia, whereas diabetes technology use including insulin pumps and continuous glucose monitors has been shown to have protective effects. Screening for DR is recommended for youth with T1D once they are aged ≥ 11 years or puberty has started and diabetes duration of 3–5 years. Pediatric T2D patients are advised to undergo screening at or soon after diagnosis, and annually thereafter, due to the insidious nature of T2D. Recent advances in DR screening methods including point of care and artificial intelligence technology have increased access to DR screening, while being cost-saving to patients and cost-effective to healthcare systems.

Summary

While the prevalence of diabetic retinopathy in youth with T1D has been declining over the last few decades, there has been a significant increase in the prevalence of DR in youth with T2D. Improving access to diabetic retinopathy screening using novel screening methods may help improve detection and early treatment of diabetic retinopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data is available in the literature.

Code Availability

Not applicable.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. National Diabetes Statistics Report, 2020. Atlanta, GA: Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services; 2020.

  2. Muñoz B, West SK, Rubin GS, Schein OD, Quigley HA, Bressler SB, et al. Causes of blindness and visual impairment in a population of older Americans: the Salisbury eye evaluation study. Arch Ophthalmol. 2000;118(6):819–25.

    Article  PubMed  Google Scholar 

  3. Progression of retinopathy with intensive versus conventional treatment in the diabetes control and complications trial. Ophthalmology 1995 102(4):647–61.

  4. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. New England Journal of Medicine. 1993;329(14):977–86.

  5. Dabelea D, Stafford JM, Mayer-Davis EJ, D’Agostino R Jr, Dolan L, Imperatore G, et al. Association of type 1 diabetes vs type 2 diabetes diagnosed during childhood and adolescence with complications during teenage years and young adulthood. JAMA. 2017;317(8):825–35.

  6. Foster NC, Beck RW, Miller KM, Clements MA, Rickels MR, DiMeglio LA, et al. State of type 1 diabetes management and outcomes from the T1D exchange in 2016–2018. Diabetes Technol Ther. 2019;21(2):66–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lachin JM, Genuth S, Cleary P, Davis MD, Nathan DM. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N Engl J Med. 2000;342(6):381–9.

    Article  PubMed  Google Scholar 

  8. White NH, Cleary PA, Dahms W, Goldstein D, Malone J, Tamborlane WV. Beneficial effects of intensive therapy of diabetes during adolescence: outcomes after the conclusion of the Diabetes Control and Complications Trial (DCCT). J Pediatr. 2001;139(6):804–12.

    Article  CAS  PubMed  Google Scholar 

  9. Gandica R, Zeitler P. Update on youth-onset type 2 diabetes: lessons learned from the treatment options for type 2 diabetes in adolescents and youth clinical trial. Adv Pediatr. 2016;63(1):195–209.

    Article  PubMed  PubMed Central  Google Scholar 

  10. • Long-Term complications in youth-onset type 2 diabetes. New England Journal of Medicine. 2021;385(5):416–26. This article describes the high rate of diabetes-associated complications in youth with type 2 diabetes, including a prevalence of diabetic retinopathy of up to 50% after a diabetes duration of 10 years

  11. Fundus photographic risk factors for progression of diabetic retinopathy. ophthalmology. 1991;98(5):823–33.

  12. Wilkinson CP, Ferris FL 3rd, Klein RE, Lee PP, Agardh CD, Davis M, et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110(9):1677–82.

    Article  CAS  PubMed  Google Scholar 

  13. Chung SS, Chung SK. Aldose reductase in diabetic microvascular complications. Curr Drug Targets. 2005;6(4):475–86.

    Article  CAS  PubMed  Google Scholar 

  14. Lorenzi M. The polyol pathway as a mechanism for diabetic retinopathy: attractive, elusive, and resilient. Exp Diabetes Res. 2007;2007:61038.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Bapputty R, Talahalli R, Zarini S, Samuels I, Murphy R, Gubitosi-Klug R. Montelukast Prevents early diabetic retinopathy in mice. Diabetes. 2019;68(10):2004–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Farjo KM, Farjo RA, Halsey S, Moiseyev G, Ma JX. Retinol-binding protein 4 induces inflammation in human endothelial cells by an NADPH oxidase- and nuclear factor kappa B-dependent and retinol-independent mechanism. Mol Cell Biol. 2012;32(24):5103–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Forrester JV, Kuffova L, Delibegovic M. The role of inflammation in diabetic retinopathy. Front Immunol. 2020;11:583687.

  18. Tang J, Kern TS. Inflammation in diabetic retinopathy. Prog Retin Eye Res. 2011;30(5):343–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cohen SR, Gardner TW. Diabetic retinopathy and diabetic macular edema. Dev Ophthalmol. 2016;55:137–46.

    Article  PubMed  Google Scholar 

  20. Honasoge A, Nudleman E, Smith M, Rajagopal R. Emerging insights and interventions for diabetic retinopathy. Curr Diab Rep. 2019;19(10):100.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Heng LZ, Comyn O, Peto T, Tadros C, Ng E, Sivaprasad S, et al. Diabetic retinopathy: pathogenesis, clinical grading, management and future developments. Diabet Med. 2013;30(6):640–50.

    Article  CAS  PubMed  Google Scholar 

  22. Lynch SK, Abràmoff MD. Diabetic retinopathy is a neurodegenerative disorder. Vision Res. 2017;139:101–7.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lieth E, Gardner TW, Barber AJ, Antonetti DA. Retinal neurodegeneration: early pathology in diabetes. Clin Exp Ophthalmol. 2000;28(1):3–8.

    Article  CAS  PubMed  Google Scholar 

  24. Sohn EH, van Dijk HW, Jiao C, Kok PH, Jeong W, Demirkaya N, et al. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci U S A. 2016;113(19):E2655–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. van Dijk HW, Verbraak FD, Stehouwer M, Kok PH, Garvin MK, Sonka M, et al. Association of visual function and ganglion cell layer thickness in patients with diabetes mellitus type 1 and no or minimal diabetic retinopathy. Vision Res. 2011;51(2):224–8.

    Article  PubMed  Google Scholar 

  26. Cho YH, Craig ME, Hing S, Gallego PH, Poon M, Chan A, et al. Microvascular complications assessment in adolescents with 2- to 5-yr duration of type 1 diabetes from 1990 to 2006. Pediatr Diabetes. 2011;12(8):682–9.

    Article  CAS  PubMed  Google Scholar 

  27. Kernell A, Dedorsson I, Johansson B, Wickström CP, Ludvigsson J, Tuvemo T, et al. Prevalence of diabetic retinopathy in children and adolescents with IDDM. A population-based multicentre study Diabetologia. 1997;40(3):307–10.

    CAS  PubMed  Google Scholar 

  28. Holl RW, Lang GE, Grabert M, Heinze E, Lang GK, Debatin KM. Diabetic retinopathy in pediatric patients with type-1 diabetes: effect of diabetes duration, prepubertal and pubertal onset of diabetes, and metabolic control. J Pediatr. 1998;132(5):790–4.

    Article  CAS  PubMed  Google Scholar 

  29. Burger W, Hövener G, Düsterhus R, Hartmann R, Weber B. Prevalence and development of retinopathy in children and adolescents with type 1 (insulin-dependent) diabetes mellitus. A longitudinal study Diabetologia. 1986;29(1):17–22.

    CAS  PubMed  Google Scholar 

  30. Agroiya P, Alrawahi AH. Pediatric Diabetic Retinopathy: Experience of a Tertiary Hospital in Oman. Middle East Afr J Ophthalmol. 2019;26(4):189–95.

    Article  PubMed  Google Scholar 

  31. Porter M, Channa R, Wagner J, Prichett L, Liu TYA, Wolf RM. Prevalence of diabetic retinopathy in children and adolescents at an urban tertiary eye care center. Pediatr Diabetes. 2020;21(5):856–62.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tapley JL, McGwin G Jr, Ashraf AP, MacLennan PA, Callahan K, Searcey K, et al. Feasibility and efficacy of diabetic retinopathy screening among youth with diabetes in a pediatric endocrinology clinic: a cross-sectional study. Diabetol Metab Syndr. 2015;7:56.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wolf RM, Liu TYA, Thomas C, Prichett L, Zimmer-Galler I, Smith K, et al. The SEE study: safety, efficacy, and equity of implementing autonomous artificial intelligence for diagnosing diabetic retinopathy in youth. Diabetes Care. 2021;44(3):781–7.

    Article  CAS  PubMed  Google Scholar 

  34. Ek AE, Samuelsson U, Janson A, Carlsson A, Elimam A, Marcus C. Microalbuminuria and retinopathy in adolescents and young adults with type 1 and type 2 diabetes. Pediatr Diabetes. 2020;21(7):1310–21.

    Article  PubMed  Google Scholar 

  35. Retinopathy in youth with type 2 diabetes participating in the TODAY clinical trial. Diabetes Care 2013;36(6):1772–4.

  36. Thomas CG, Channa R, Prichett L, Liu TYA, Abramoff MD, Wolf RM. Racial/ethnic disparities and barriers to diabetic retinopathy screening in youths. JAMA Ophthalmology. 2021;139(7):791–5.

    Article  PubMed  Google Scholar 

  37. Hainsworth DP, Bebu I, Aiello LP, Sivitz W, Gubitosi-Klug R, Malone J, et al. Risk factors for retinopathy in type 1 diabetes: the DCCT/EDIC study. Diabetes Care. 2019;42(5):875–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hammes HP, Kerner W, Hofer S, Kordonouri O, Raile K, Holl RW, et al. Diabetic retinopathy in type 1 diabetes-a contemporary analysis of 8,784 patients. Diabetologia. 2011;54(8):1977–84.

    Article  CAS  PubMed  Google Scholar 

  39. Forga L, Goni MJ, Ibanez B, Cambra K, Garcia-Mouriz M, Iriarte A. Influence of age at diagnosis and time-dependent risk factors on the development of diabetic retinopathy in patients with type 1 diabetes. J Diabetes Res. 2016;2016:9898309.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Laffel LM, Kanapka LG, Beck RW, Bergamo K, Clements MA, Criego A, et al. Effect of continuous glucose monitoring on glycemic control in adolescents and young adults with type 1 diabetes: a randomized clinical trial. JAMA. 2020;323(23):2388–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Downie E, Craig ME, Hing S, Cusumano J, Chan AK, Donaghue KC. Continued reduction in the prevalence of retinopathy in adolescents with type 1 diabetes: role of insulin therapy and glycemic control. Diabetes Care. 2011;34(11):2368–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pickup J, Mattock M, Kerry S. Glycaemic control with continuous subcutaneous insulin infusion compared with intensive insulin injections in patients with type 1 diabetes: meta-analysis of randomised controlled trials. BMJ. 2002;324(7339):705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Virk SA, Donaghue KC, Wong TY, Craig ME. Interventions for diabetic retinopathy in type 1 diabetes: systematic review and meta-analysis. Am J Ophthalmol. 2015;160(5):1055-64 e4.

    Article  PubMed  Google Scholar 

  44. Zabeen B, Craig ME, Virk SA, Pryke A, Chan AK, Cho YH, et al. Insulin pump therapy is associated with lower rates of retinopathy and peripheral nerve abnormality. PLoS One. 2016;11(4):e0153033.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Ferm M, DeSalvo D, Prichett L, Sickler J, Wolf R, Channa R. Clinical and demographic factors associated with diabetic retinopathy among children and adolescents with diabetes. JAMA Network. 2021(In Press).

  46. Bourry J, Courteville H, Ramdane N, Drumez E, Duhamel A, Subtil D, et al. Progression of diabetic retinopathy and predictors of its development and progression during pregnancy in patients with type 1 diabetes: a report of 499 pregnancies. Diabetes Care. 2021;44(1):181–7.

    Article  PubMed  Google Scholar 

  47. Lu J, Ma X, Zhou J, Zhang L, Mo Y, Ying L, et al. Association of time in range, as assessed by continuous glucose monitoring, with diabetic retinopathy in type 2 diabetes. Diabetes Care. 2018;41(11):2370–6.

    Article  CAS  PubMed  Google Scholar 

  48. Klein R, Klein BE, Moss SE, Davis MD, DeMets DL. The Wisconsin epidemiologic study of diabetic retinopathy. III. Prevalence and risk of diabetic retinopathy when age at diagnosis is 30 or more years. Arch Ophthalmol. 1984;102(4):527–32.

    Article  CAS  PubMed  Google Scholar 

  49. Microvascular and acute complications in IDDM patients. the EURODIAB IDDM complications study. Diabetologia. 1994;37(3):278–85.

    Article  Google Scholar 

  50. Gubitosi-Klug RA, Bebu I, White NH, Malone J, Miller R, Lorenzi GM, et al. Screening eye exams in youth with type 1 diabetes under 18 years of age: Once may be enough? Pediatr Diabetes. 2019;20(6):743–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Group TS. Retinopathy in youth with type 2 diabetes participating in the TODAY clinical trial. Diabetes Care. 2013;36(6):1772–4.

    Article  CAS  Google Scholar 

  52. Cho YH, Craig ME, Donaghue KC. Puberty as an accelerator for diabetes complications. Pediatr Diabetes. 2014;15(1):18–26.

    Article  CAS  PubMed  Google Scholar 

  53. Danne T, Kordonouri O, Enders I, Hövener G, Weber B. Factors modifying the effect of hyperglycemia on the development of retinopathy in adolescents with diabetes. Results of the Berlin Retinopathy Study. Horm Res. 1998;50(Suppl 1):28–32.

    CAS  PubMed  Google Scholar 

  54. Kubin M, Tossavainen P, Hannula V, Lahti S, Hautala N, Falck A. Prevalence of retinopathy in Finnish children and adolescents with type 1 diabetes: a cross-sectional population-based retrospective study. Arch Dis Child. 2011;96(10):963–8.

    Article  PubMed  Google Scholar 

  55. McNally PG, Raymond NT, Swift PG, Hearnshaw JR, Burden AC. Does the prepubertal duration of diabetes influence the onset of microvascular complications? Diabet Med. 1993;10(10):906–8.

    Article  CAS  PubMed  Google Scholar 

  56. Nordwall M, Fredriksson M, Ludvigsson J, Arnqvist HJ. Impact of age of onset, puberty, and glycemic control followed from diagnosis on incidence of retinopathy in type 1 diabetes: the VISS study. Diabetes Care. 2019;42(4):609–16.

    Article  CAS  PubMed  Google Scholar 

  57. Olsen BS, Sjølie AK, Hougaard P, Johannesen J, Marinelli K, Jacobsen BB, et al. The significance of the prepubertal diabetes duration for the development of retinopathy and nephropathy in patients with type 1 diabetes. J Diabetes Complications. 2004;18(3):160–4.

    Article  PubMed  Google Scholar 

  58. Arslanian S, Bacha F, Grey M, Marcus MD, White NH, Zeitler P. Evaluation and management of youth-onset type 2 diabetes: a position statement by the American diabetes association. Diabetes Care. 2018;41(12):2648–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Benitez-Aguirre P, Craig ME, Cass HG, Sugden CJ, Jenkins AJ, Wang JJ, et al. Sex differences in retinal microvasculature through puberty in type 1 diabetes: are girls at greater risk of diabetic microvascular complications? Invest Ophthalmol Vis Sci. 2014;56(1):571–7.

    Article  PubMed  Google Scholar 

  60. Wang SY, Andrews CA, Herman WH, Gardner TW, Stein JD. Incidence and risk Factors for developing diabetic retinopathy among youths with type 1 or type 2 diabetes throughout the United States. Ophthalmology. 2017;124(4):424–30.

    Article  PubMed  Google Scholar 

  61. American Diabetes A. 13. Children and adolescents: standards of medical care in diabetes—2021. Diabetes Care. 2021;44(Supplement 1):S180-S99.

  62. Dost A, Bechtold-DallaPozza S, Bollow E, Kovacic R, Vogel P, Feldhahn L, et al. Blood pressure regulation determined by ambulatory blood pressure profiles in children and adolescents with type 1 diabetes mellitus: impact on diabetic complications. Pediatr Diabetes. 2017;18(8):874–82.

    Article  CAS  PubMed  Google Scholar 

  63. Gallego PH, Craig ME, Hing S, Donaghue KC. Role of blood pressure in development of early retinopathy in adolescents with type 1 diabetes: prospective cohort study. Bmj. 2008;337:918.

    Article  Google Scholar 

  64. Emdin CA, Rahimi K, Neal B, Callender T, Perkovic V, Patel A. Blood pressure lowering in type 2 diabetes: a systematic review and meta-analysis. JAMA. 2015;313(6):603–15.

    Article  PubMed  CAS  Google Scholar 

  65. Lloyd CE, Klein R, Maser RE, Kuller LH, Becker DJ, Orchard TJ. The progression of retinopathy over 2 years: the Pittsburgh epidemiology of diabetes complications (EDC) study. J Diabetes Complications. 1995;9(3):140–8.

    Article  CAS  PubMed  Google Scholar 

  66. Miljanovic B, Glynn RJ, Nathan DM, Manson JE, Schaumberg DA. A prospective study of serum lipids and risk of diabetic macular edema in type 1 diabetes. Diabetes. 2004;53(11):2883–92.

    Article  CAS  PubMed  Google Scholar 

  67. Sacks FM, Hermans MP, Fioretto P, Valensi P, Davis T, Horton E, et al. Association between plasma triglycerides and high-density lipoprotein cholesterol and microvascular kidney disease and retinopathy in type 2 diabetes mellitus: a global case-control study in 13 countries. Circulation. 2014;129(9):999–1008.

    Article  CAS  PubMed  Google Scholar 

  68. Jeng CJ, Hsieh YT, Yang CM, Yang CH, Lin CL, Wang IJ. Diabetic Retinopathy in patients with dyslipidemia: development and progression. Ophthalmol Retina. 2018;2(1):38–45.

    Article  PubMed  Google Scholar 

  69. Chew EY, Ambrosius WT, Davis MD, Danis RP, Gangaputra S, Greven CM, et al. Effects of medical therapies on retinopathy progression in type 2 diabetes. N Engl J Med. 2010;363(3):233–44.

    Article  PubMed  CAS  Google Scholar 

  70. Keech AC, Mitchell P, Summanen PA, O’Day J, Davis TME, Moffitt MS, et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. The Lancet. 2007;370(9600):1687–97.

  71. Nsiah-Kumi P, Ortmeier SR, Brown AE. Disparities in diabetic retinopathy screening and disease for racial and ethnic minority populations—a literature review. J Natl Med Assoc. 2009;101(5):430–8.

    PubMed  Google Scholar 

  72. Thomas C, Channa R, Prichett L, Liu A, Abramoff MA. Wolf, RM Racialethnic disparities and barriers to diabetic retinopathy screening in youth. JAMA Ophthalmology. 2021;139(7):791–5 This article highlights disparities in diabetic retinopathy, and shows that minority youth and youth of lower socioeconomic status are less likely to undergo recommended diabetic eye exams, yet more likely to have diabetic retinopathy.

    Article  PubMed  Google Scholar 

  73. Spanakis EK, Golden SH. Race/ethnic difference in diabetes and diabetic complications. Curr Diab Rep. 2013;13(6):814–23.

    Article  PubMed  Google Scholar 

  74. Redondo MJ, Libman I, Cheng P, Kollman C, Tosur M, Gal RL, et al. Racial/ethnic minority youth with recent-onset type 1 diabetes have poor prognostic factors. Diabetes Care. 2018;41(5):1017–24.

    Article  CAS  PubMed  Google Scholar 

  75. Monkemoller K, Muller-Godeffroy E, Lilienthal E, Heidtmann B, Becker M, Feldhahn L, et al. The association between socio-economic status and diabetes care and outcome in children with diabetes type 1 in Germany: The DIAS study (diabetes and social disparities). Pediatr Diabetes. 2019;20(5):637–44.

    PubMed  Google Scholar 

  76. Pulgaron ER, Delamater AM. Obesity and type 2 diabetes in children: epidemiology and treatment. Curr Diab Rep. 2014;14(8):508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Nadeau KJ, Anderson BJ, Berg EG, Chiang JL, Chou H, Copeland KC. Youth-onset type 2 diabetes consensus report current status, challenges, and priorities. Diabetes care. 2016;39(9):1635–42.

    Article  PubMed  PubMed Central  Google Scholar 

  78. American Diabetes A. 11. Microvascular complications and foot care: standards of medical care in diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S135-S51.

  79. Donaghue KC, Marcovecchio ML, Wadwa RP, Chew EY, Wong TY, Calliari LE, et al. ISPAD clinical practice consensus guidelines 2018: microvascular and macrovascular complications in children and adolescents. Pediatr Diabetes. 2018;19(Suppl 27):262–74.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Flaxel CJ, Adelman RA, Bailey ST, Fawzi A, Lim JI, Vemulakonda GA, et al. Diabetic retinopathy preferred practice pattern®. Ophthalmology. 2020;127(1):66–145.

  81. Beauchamp G, Boyle CT, Tamborlane WV, Miller KM, Libman IM, Haller MJ, et al. Treatable diabetic retinopathy is extremely rare among pediatric t1d exchange clinic registry participants. Diabetes Care. 2016:dc161691.

  82. Scanlon PH, Stratton IM, Bachmann MO, Jones C, Leese GP, Four Nations Diabetic Retinopathy Screening Study Group. Risk of diabetic retinopathy at first screen in children at 12 and 13 years of age. Diabetic Medicine. 2016;33(12):1655–8.

  83. Ferris FL 3rd. How effective are treatments for diabetic retinopathy? JAMA. 1993;269(10):1290–1.

    Article  PubMed  Google Scholar 

  84. Lin DY, Blumenkranz MS, Brothers RJ, Grosvenor DM. The sensitivity and specificity of single-field nonmydriatic monochromatic digital fundus photography with remote image interpretation for diabetic retinopathy screening: a comparison with ophthalmoscopy and standardized mydriatic color photography. Am J Ophthalmol. 2002;134(2):204–13.

    Article  PubMed  Google Scholar 

  85. Pugh JA, Jacobson JM, Van Heuven WA, Watters JA, Tuley MR, Lairson DR, et al. Screening for diabetic retinopathy. The wide-angle retinal camera Diabetes Care. 1993;16(6):889–95.

    CAS  PubMed  Google Scholar 

  86. Roser P, Kalscheuer H, Groener JB, Lehnhoff D, Klein R, Auffarth GU, et al. Diabetic retinopathy screening ratio is improved when using a digital, nonmydriatic fundus camera onsite in a diabetes outpatient clinic. J Diabetes Res. 2016;2016:4101890.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kolomeyer AM, Nayak NV, Simon MA, Szirth BC, Shahid K, Sheng IY, et al. Feasibility of retinal screening in a pediatric population with type 1 diabetes mellitus. J Pediatr Ophthalmol Strabismus. 2014;51(5):299–306.

    Article  PubMed  Google Scholar 

  88. Stillman JK, Gole GA, Wootton R, Woolfield N, Price D, Van der Westhuyzen J, et al. Telepaediatrics and diabetic retinopathy screening of young people with diabetes in Queensland. J Telemed Telecare. 2004;10(Suppl 1):92–4.

    Article  PubMed  Google Scholar 

  89. Kirkizlar E, Serban N, Sisson JA, Swann JL, Barnes CS, Williams MD. Evaluation of telemedicine for screening of diabetic retinopathy in the Veterans Health Administration. Ophthalmology. 2013;120(12):2604–10.

    Article  PubMed  Google Scholar 

  90. Aptel F, Denis P, Rouberol F, Thivolet C. Screening of diabetic retinopathy: effect of field number and mydriasis on sensitivity and specificity of digital fundus photography. Diabetes Metab. 2008;34(3):290–3.

    Article  CAS  PubMed  Google Scholar 

  91. Silva PS, Cavallerano JD, Haddad NM, Kwak H, Dyer KH, Omar AF, et al. Peripheral lesions identified on ultrawide field imaging predict increased risk of diabetic retinopathy progression over 4 years. Ophthalmology. 2015;122(5):949–56.

    Article  PubMed  Google Scholar 

  92. Aiello LP, Odia I, Glassman AR, Melia M, Jampol LM, Bressler NM, et al. Comparison of early treatment diabetic retinopathy study standard 7-field imaging with ultrawide-field imaging for determining severity of diabetic retinopathy. JAMA Ophthalmol. 2019;137(1):65–73.

    Article  PubMed  Google Scholar 

  93. Abramoff MD, Lavin PT, Birch M, Shah N, Folk JC. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med. 2018;1:39.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Bhaskaranand M, Ramachandra C, Bhat S, Cuadros J, Nittala MG, Sadda SR, et al. The value of automated diabetic retinopathy screening with the eyeart system: a study of more than 100000 consecutive encounters from people with diabetes. Diabetes Technol Ther. 2019;21(11):635–43.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Liu Y, Rajamanickam VP, Parikh RS, Loomis SJ, Kloek CE, Kim LA, et al. Diabetic retinopathy assessment variability among eye care providers in an urban teleophthalmology program. Telemed J E Health. 2019;25(4):301–8.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402–10.

    Article  PubMed  Google Scholar 

  97. Ting DSW, Cheung CY, Lim G, Tan GSW, Quang ND, Gan A, et al. Development and Validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 2017;318(22):2211–23.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Verbraak FD, Abramoff MD, Bausch GCF, Klaver C, Nijpels G, Schlingemann RO, et al. Diagnostic accuracy of a device for the automated detection of diabetic retinopathy in a primary care setting. Diabetes Care. 2019;42(4):651–6.

    Article  PubMed  Google Scholar 

  99. Bellemo V, Lim G, Rim TH, Tan GSW, Cheung CY, Sadda S, et al. Artificial intelligence screening for diabetic retinopathy: the real-world emerging application. Curr Diab Rep. 2019;19(9):72.

    Article  PubMed  Google Scholar 

  100. Javitt JC, Aiello LP. Cost-effectiveness of detecting and treating diabetic retinopathy. Ann Intern Med. 1996;124(1 Pt 2):164–9.

    Article  CAS  PubMed  Google Scholar 

  101. Javitt JC, Aiello LP, Chiang Y, Ferris FL 3rd, Canner JK, Greenfield S. Preventive eye care in people with diabetes is cost-saving to the federal government. Implications for health-care reform Diabetes Care. 1994;17(8):909–17.

    CAS  PubMed  Google Scholar 

  102. Aoki N, Dunn K, Fukui T, Beck JR, Schull WJ, Li HK. Cost-effectiveness analysis of telemedicine to evaluate diabetic retinopathy in a prison population. Diabetes Care. 2004;27(5):1095–101.

    Article  PubMed  Google Scholar 

  103. Lairson DR, Pugh JA, Kapadia AS, Lorimor RJ, Jacobson J, Velez R. Cost-effectiveness of alternative methods for diabetic retinopathy screening. Diabetes Care. 1992;15(10):1369–77.

    Article  CAS  PubMed  Google Scholar 

  104. Maberley D, Walker H, Koushik A, Cruess A. Screening for diabetic retinopathy in James Bay, Ontario: a cost-effectiveness analysis. CMAJ. 2003;168(2):160–4.

    PubMed  PubMed Central  Google Scholar 

  105. Tufail A, Kapetanakis VV, Salas-Vega S, Egan C, Rudisill C, Owen CG, et al. An observational study to assess if automated diabetic retinopathy image assessment software can replace one or more steps of manual imaging grading and to determine their cost-effectiveness. Health Technol Assess. 2016;20(92):1–72.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Tufail A, Rudisill C, Egan C, Kapetanakis VV, Salas-Vega S, Owen CG, et al. Automated diabetic retinopathy image assessment software: diagnostic accuracy and cost-effectiveness compared with human graders. Ophthalmology. 2017;124(3):343–51.

    Article  PubMed  Google Scholar 

  107. Scotland GS, McNamee P, Philip S, Fleming AD, Goatman KA, Prescott GJ, et al. Cost-effectiveness of implementing automated grading within the national screening programme for diabetic retinopathy in Scotland. Br J Ophthalmol. 2007;91(11):1518–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Xie Y, Nguyen QD, Hamzah H, Lim G, Bellemo V, Gunasekeran DV, et al. Artificial intelligence for teleophthalmology-based diabetic retinopathy screening in a national programme: an economic analysis modelling study. Lancet Digit Health. 2020;2(5):e240–9.

    Article  PubMed  Google Scholar 

  109. Fuller SD, Hu J, Liu JC, Gibson E, Gregory M, Kuo J, et al. Five-year cost-effectiveness modeling of primary care-based, nonmydriatic automated retinal image analysis screening among low-income patients with diabetes. J Diabetes Sci Technol. 2020:1932296820967011.

  110. Wolf RM, Channa R, Abramoff MD, Lehmann HP. Cost-effectiveness of autonomous point-of-care diabetic retinopathy screening for pediatric patients with diabetes. JAMA Ophthalmol. 2020;138(10):1063–9.

    Article  PubMed  Google Scholar 

  111. Dhoot DS, Avery RL. Vascular endothelial growth factor inhibitors for diabetic retinopathy. Curr Diab Rep. 2016;16(12):122.

    Article  PubMed  CAS  Google Scholar 

  112. Elman MJ, Ayala A, Bressler NM, Browning D, Flaxel CJ, Glassman AR, et al. Intravitreal ranibizumab for diabetic macular edema with prompt versus deferred laser treatment: 5-year randomized trial results. Ophthalmology. 2015;122(2):375–81.

    Article  PubMed  Google Scholar 

  113. Gross JG, Glassman AR, Liu D, Sun JK, Antoszyk AN, Baker CW, et al. Five-year outcomes of panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial. JAMA Ophthalmol. 2018;136(10):1138–48.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Nguyen QD, Brown DM, Marcus DM, Boyer DS, Patel S, Feiner L, et al. Ranibizumab for diabetic macular edema: results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology. 2012;119(4):789–801.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by a Johns Hopkins Children’s Center Innovation Award to RW and RC, and supported in part by an Unrestricted Grant to the Department of Ophthalmology and Visual Sciences, University of Wisconsin, from Research to Prevent Blindness, Inc.

Author information

Authors and Affiliations

Authors

Contributions

TL, RMW, RAG, and RC wrote the manuscript, and all authors critically reviewed the final draft.

Corresponding author

Correspondence to Risa M. Wolf.

Ethics declarations

Conflict of Interest/Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, T., Gubitosi-Klug, R.A., Channa, R. et al. Pediatric Diabetic Retinopathy: Updates in Prevalence, Risk Factors, Screening, and Management. Curr Diab Rep 21, 56 (2021). https://doi.org/10.1007/s11892-021-01436-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11892-021-01436-x

Keywords

Navigation