Skip to main content

Advertisement

Log in

Immunological Monitoring in Beta Cell Replacement: Towards a Pathophysiology-Guided Implementation of Biomarkers

  • Immunology, Transplantation, and Regenerative Medicine (L Piemonti and V Sordi, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of review

Grafted beta cells are lost because of recurrence of T1D and/or allograft rejection, two conditions diagnosed with pancreas graft biopsy, which is invasive and impossible in case of islet transplantation. This review synthetizes the current pathophysiological knowledge and discusses the interest of available immune biomarkers.

Recent findings

Despite the central role of auto-(recurrence of T1D) and allo-(T-cell mediated rejection) immune cellular responses, the latter are not directly monitored in routine. In striking contrast, there have been undisputable progresses in monitoring of auto and alloantibodies.

Summary

Except for pancreas recipients in whom anti-donor HLA antibodies can be directly responsible for antibody-mediated rejection, autoantibodies (and alloantibodies in islet recipients) have no direct pathogenic effect. However, their fluctuation offers a surrogate marker for the activation status of T cells (because antibody generation depends on T cells). This illustrates the necessity to understand the pathophysiology when interpreting a biomarker and selecting the appropriate treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wojtusciszyn A, Branchereau J, Esposito L, Badet L, Buron F, Chetboun M, et al. Indications for islet or pancreatic transplantation: statement of the TREPID working group on behalf of the Societe francophone du diabete (SFD), Societe francaise d'endocrinologie (SFE), Societe francophone de transplantation (SFT) and Societe francaise de nephrologie - dialyse - transplantation (SFNDT). Diabetes Metab. 2019;45(3):224–37. https://doi.org/10.1016/j.diabet.2018.07.006This review explains the benefit / risk ratios of each beta cell replacement therapy and proposes a decision tree for transplantation indications.

    Article  CAS  PubMed  Google Scholar 

  2. Azmi S, Jeziorska M, Ferdousi M, Petropoulos IN, Ponirakis G, Marshall A, et al. Early nerve fibre regeneration in individuals with type 1 diabetes after simultaneous pancreas and kidney transplantation. Diabetologia. 2019;62(8):1478–87. https://doi.org/10.1007/s00125-019-4897-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fioretto P, Steffes MW, Sutherland DE, Goetz FC, Mauer M. Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med. 1998;339(2):69–75. https://doi.org/10.1056/NEJM199807093390202.

    Article  CAS  PubMed  Google Scholar 

  4. Fiorina P, Gremizzi C, Maffi P, Caldara R, Tavano D, Monti L, et al. Islet transplantation is associated with an improvement of cardiovascular function in type 1 diabetic kidney transplant patients. Diabetes Care. 2005;28(6):1358–65. https://doi.org/10.2337/diacare.28.6.1358.

    Article  PubMed  Google Scholar 

  5. Giannarelli R, Coppelli A, Sartini MS, Del Chiaro M, Vistoli F, Rizzo G, et al. Pancreas transplant alone has beneficial effects on retinopathy in type 1 diabetic patients. Diabetologia. 2006;49(12):2977–82. https://doi.org/10.1007/s00125-006-0463-5.

    Article  CAS  PubMed  Google Scholar 

  6. La Rocca E, Fiorina P, di Carlo V, Astorri E, Rossetti C, Lucignani G, et al. Cardiovascular outcomes after kidney-pancreas and kidney-alone transplantation. Kidney Int. 2001;60(5):1964–71. https://doi.org/10.1046/j.1523-1755.2001.00008.x.

    Article  PubMed  Google Scholar 

  7. Thompson DM, Meloche M, Ao Z, Paty B, Keown P, Shapiro RJ, et al. Reduced progression of diabetic microvascular complications with islet cell transplantation compared with intensive medical therapy. Transplantation. 2011;91(3):373–8. https://doi.org/10.1097/TP.0b013e31820437f3.

    Article  PubMed  Google Scholar 

  8. Vantyghem MC, Quintin D, Caiazzo R, Leroy C, Raverdy V, Cassim F, et al. Improvement of electrophysiological neuropathy after islet transplantation for type 1 diabetes: a 5-year prospective study. Diabetes Care. 2014;37(6):e141–2. https://doi.org/10.2337/dc14-0320.

    Article  PubMed  Google Scholar 

  9. Fiorina P, Folli F, Bertuzzi F, Maffi P, Finzi G, Venturini M, et al. Long-term beneficial effect of islet transplantation on diabetic macro-/microangiopathy in type 1 diabetic kidney-transplanted patients. Diabetes Care. 2003;26(4):1129–36. https://doi.org/10.2337/diacare.26.4.1129.

    Article  PubMed  Google Scholar 

  10. Mohan P, Safi K, Little DM, Donohoe J, Conlon P, Walshe JJ, et al. Improved patient survival in recipients of simultaneous pancreas-kidney transplant compared with kidney transplant alone in patients with type 1 diabetes mellitus and end-stage renal disease. Br J Surg. 2003;90(9):1137–41. https://doi.org/10.1002/bjs.4208.

    Article  CAS  PubMed  Google Scholar 

  11. Benhamou PY, Milliat-Guittard L, Wojtusciszyn A, Kessler L, Toso C, Baertschiger R, et al. Quality of life after islet transplantation: data from the GRAGIL 1 and 2 trials. Diabet Med. 2009;26(6):617–21. https://doi.org/10.1111/j.1464-5491.2009.02731.x.

    Article  CAS  PubMed  Google Scholar 

  12. Sureshkumar KK, Patel BM, Markatos A, Nghiem DD, Marcus RJ. Quality of life after organ transplantation in type 1 diabetics with end-stage renal disease. Clin Transpl. 2006;20(1):19–25. https://doi.org/10.1111/j.1399-0012.2005.00433.x.

    Article  Google Scholar 

  13. Gruessner AC, Gruessner RW. Pancreas Transplantation of US and Non-US Cases from 2005 to 2014 as Reported to the United Network for Organ Sharing (UNOS) and the International Pancreas Transplant Registry (IPTR). Rev Diabet Stud. 2016;13(1):35–58 10.1900/RDS.2016.13.e2016002. 10.1900/RDS.2016.13.35.

    Article  Google Scholar 

  14. Vantyghem MC, Chetboun M, Gmyr V, Jannin A, Espiard S, Le Mapihan K, et al. Ten-year outcome of islet alone or islet after kidney transplantation in type 1 diabetes: a prospective parallel-arm cohort study. Diabetes Care. 2019;42(11):2042–9. https://doi.org/10.2337/dc19-0401.

    Article  PubMed  Google Scholar 

  15. Rickels MR, Stock PG, de Koning EJP, Piemonti L, Pratschke J, Alejandro R, et al. Defining Outcomes for beta-cell Replacement Therapy in the Treatment of Diabetes: A Consensus Report on the Igls Criteria From the IPITA/EPITA Opinion Leaders Workshop. Transplantation. 2018;102(9):1479–86. https://doi.org/10.1097/TP.0000000000002158This paper is the first consensus report on definitions of function and failure of different forms of beta cell replacement therapy, on behalf of the International Pancreas and Islet Transplant Association and the European Pancreas and Islet Transplantation Association.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Drachenberg CB, Odorico J, Demetris AJ, Arend L, Bajema IM, Bruijn JA, et al. Banff schema for grading pancreas allograft rejection: working proposal by a multi-disciplinary international consensus panel. Am J Transplant. 2008;8(6):1237–49. https://doi.org/10.1111/j.1600-6143.2008.02212.x.

    Article  CAS  PubMed  Google Scholar 

  17. Lehmann-Werman R, Neiman D, Zemmour H, Moss J, Magenheim J, Vaknin-Dembinsky A, et al. Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proc Natl Acad Sci U S A. 2016;113(13):E1826–34. https://doi.org/10.1073/pnas.1519286113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marchand L, Jalabert A, Meugnier E, Van den Hende K, Fabien N, Nicolino M, et al. miRNA-375 a Sensor of Glucotoxicity Is Altered in the Serum of Children with Newly Diagnosed Type 1 Diabetes. J Diabetes Res. 2016;2016:1869082. https://doi.org/10.1155/2016/1869082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chang CA, Haque WZ, Yoshimatsu G, Balajii PS, Lawrence MC, Naziruddin B. Monitoring of beta cell replacement outcomes. Panminerva Med. 2016;58(1):59–71.

    PubMed  Google Scholar 

  20. Sutherland DE, Goetz FC, Sibley RK. Recurrence of disease in pancreas transplants. Diabetes. 1989;38(Suppl 1):85–7. https://doi.org/10.2337/diab.38.1.s85.

    Article  PubMed  Google Scholar 

  21. Petruzzo P, Andreelli F, McGregor B, Lefrancois N, Dawahra M, Feitosa LC, et al. Evidence of recurrent type I diabetes following HLA-mismatched pancreas transplantation. Diabetes Metab. 2000;26(3):215–8.

    CAS  PubMed  Google Scholar 

  22. Tyden G, Reinholt FP, Sundkvist G, Bolinder J. Recurrence of autoimmune diabetes mellitus in recipients of cadaveric pancreatic grafts. N Engl J Med. 1996;335(12):860–3. https://doi.org/10.1056/NEJM199609193351205.

    Article  CAS  PubMed  Google Scholar 

  23. Vendrame F, Hopfner YY, Diamantopoulos S, Virdi SK, Allende G, Snowhite IV, et al. Risk Factors for Type 1 Diabetes Recurrence in Immunosuppressed Recipients of Simultaneous Pancreas-Kidney Transplants. Am J Transplant. 2016;16(1):235–45. https://doi.org/10.1111/ajt.13426This study is the first assessing the incidence and risk factors of autoimmune recurrence (biopsy-confirmed in 88% patients) in a cohort of 223 simultaneous pancreas – kidney recipients.

    Article  CAS  PubMed  Google Scholar 

  24. Stegall MD, Lafferty KJ, Kam I, Gill RG. Evidence of recurrent autoimmunity in human allogeneic islet transplantation. Transplantation. 1996;61(8):1272–4. https://doi.org/10.1097/00007890-199604270-00027.

    Article  CAS  PubMed  Google Scholar 

  25. Worcester Human Islet Transplantation G, Sharma V, Andersen D, Thompson M, Woda BA, Stoff JS, et al. Autoimmunity after islet-cell allotransplantation. N Engl J Med. 2006;355(13):1397–9. https://doi.org/10.1056/NEJMc061530.

    Article  Google Scholar 

  26. Robertson CC, Rich SS. Genetics of type 1 diabetes. Curr Opin Genet Dev. 2018;50:7–16. https://doi.org/10.1016/j.gde.2018.01.006.

    Article  CAS  PubMed  Google Scholar 

  27. Ilonen J, Lempainen J, Veijola R. The heterogeneous pathogenesis of type 1 diabetes mellitus. Nat Rev Endocrinol. 2019;15(11):635–50. https://doi.org/10.1038/s41574-019-0254-yThis review explains the pathogenesis of type 1 diabetes mellitus, detailing genetic factors (and their role in the generation of autoimmune response), environmental factors (such as microbiota composition, microbial infections and nutrition) and their role in the evolution of the incidence of type 1 diabetes mellitus in the last half of the twentieth century.

    Article  CAS  PubMed  Google Scholar 

  28. Piemonti L, Everly MJ, Maffi P, Scavini M, Poli F, Nano R, et al. Alloantibody and autoantibody monitoring predicts islet transplantation outcome in human type 1 diabetes. Diabetes. 2013;62(5):1656–64. https://doi.org/10.2337/db12-1258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mallone R, Roep BO. Biomarkers for immune intervention trials in type 1 diabetes. Clin Immunol. 2013;149(3):286–96. https://doi.org/10.1016/j.clim.2013.02.009.

    Article  CAS  PubMed  Google Scholar 

  30. Pugliese A. Autoreactive T cells in type 1 diabetes. J Clin Invest. 2017;127(8):2881–91. https://doi.org/10.1172/JCI94549.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Roep BO, Kracht MJ, van Lummel M, Zaldumbide A. A roadmap of the generation of neoantigens as targets of the immune system in type 1 diabetes. Curr Opin Immunol. 2016;43:67–73. https://doi.org/10.1016/j.coi.2016.09.007.

    Article  CAS  PubMed  Google Scholar 

  32. Thomaidou S, Zaldumbide A, Roep BO. Islet stress, degradation and autoimmunity. Diabetes Obes Metab. 2018;20 Suppl 2:88–94. https://doi.org/10.1111/dom.13387.

    Article  CAS  PubMed  Google Scholar 

  33. Monti P, Vignali D, Piemonti L. Monitoring inflammation, humoral and cell-mediated immunity in pancreas and islet transplants. Curr Diabetes Rev. 2015;11(3):135–43. https://doi.org/10.2174/1573399811666150317125820.

    Article  CAS  PubMed  Google Scholar 

  34. Szempruch KR, Banerjee O, McCall RC, Desai CS. Use of anti-inflammatory agents in clinical islet cell transplants: a qualitative systematic analysis. Islets. 2019;11(3):65–75. https://doi.org/10.1080/19382014.2019.1601543.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chen CC, Pouliquen E, Broisat A, Andreata F, Racape M, Bruneval P, et al. Endothelial chimerism and vascular sequestration protect pancreatic islet grafts from antibody-mediated rejection. J Clin Invest. 2018;128(1):219–32. https://doi.org/10.1172/JCI93542This translational study demonstrates the resistance of islet allograft to humoral rejection, which is due to endothelial chimerism (endothelial cells being mainly from recipient origin) and vascular sequestration of donor-specific anti-HLA antibodies. This finding may have important implications outside the field of beta cell replacement.

    Article  PubMed  Google Scholar 

  36. Bloem SJ, Roep BO. The elusive role of B lymphocytes and islet autoantibodies in (human) type 1 diabetes. Diabetologia. 2017;60(7):1185–9. https://doi.org/10.1007/s00125-017-4284-5.

    Article  CAS  PubMed  Google Scholar 

  37. Lampasona V, Pittman DL, Williams AJ, Achenbach P, Schlosser M, Akolkar B, et al. Islet Autoantibody Standardization Program 2018 Workshop: Interlaboratory Comparison of Glutamic Acid Decarboxylase Autoantibody Assay Performance. Clin Chem. 2019;65(9):1141–52. https://doi.org/10.1373/clinchem.2019.304196.

    Article  CAS  PubMed  Google Scholar 

  38. Mathieu C, Lahesmaa R, Bonifacio E, Achenbach P, Tree T. Immunological biomarkers for the development and progression of type 1 diabetes. Diabetologia. 2018;61(11):2252–8. https://doi.org/10.1007/s00125-018-4726-8This is a recent review on immunological biomarkers for the follow-up of type 1 diabetes mellitus, including genetic biomarkers, autoantibodies, T cell biomarkers, emerging biomarkers (omics) and the role of longitudinal and integrated biomarker studies.

    Article  CAS  PubMed  Google Scholar 

  39. Assalino M, Genevay M, Morel P, Demuylder-Mischler S, Toso C, Berney T. Recurrence of type 1 diabetes after simultaneous pancreas-kidney transplantation in the absence of GAD and IA-2 autoantibodies. Am J Transplant. 2012;12(2):492–5. https://doi.org/10.1111/j.1600-6143.2011.03844.x.

    Article  CAS  PubMed  Google Scholar 

  40. Martins LS, Henriques AC, Fonseca IM, Rodrigues AS, Oliverira JC, Dores JM, et al. Pancreatic autoantibodies after pancreas-kidney transplantation - do they matter? Clin Transpl. 2014;28(4):462–9. https://doi.org/10.1111/ctr.12337.

    Article  CAS  Google Scholar 

  41. Occhipinti M, Lampasona V, Vistoli F, Bazzigaluppi E, Scavini M, Boggi U, et al. Zinc transporter 8 autoantibodies increase the predictive value of islet autoantibodies for function loss of technically successful solitary pancreas transplant. Transplantation. 2011;92(6):674–7. https://doi.org/10.1097/TP.0b013e31822ae65f.

    Article  CAS  PubMed  Google Scholar 

  42. Bosi E, Braghi S, Maffi P, Scirpoli M, Bertuzzi F, Pozza G, et al. Autoantibody response to islet transplantation in type 1 diabetes. Diabetes. 2001;50(11):2464–71. https://doi.org/10.2337/diabetes.50.11.2464.

    Article  CAS  PubMed  Google Scholar 

  43. Ahmed S, Cerosaletti K, James E, Long SA, Mannering S, Speake C, et al. Standardizing T-Cell Biomarkers in Type 1 Diabetes: Challenges and Recent Advances. Diabetes. 2019;68(7):1366–79. https://doi.org/10.2337/db19-0119This paper describes T cell biomarkers (antigen-specific or antigen-agnostic) used in type 1 diabetes mellitus, their place in the follow-up of response to therapy and the challenges to develop effective T cell biomarkers in type 1 diabetes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Terrazzano G, Bruzzaniti S, Rubino V, Santopaolo M, Palatucci AT, Giovazzino A, et al. T1D progression is associated with loss of CD3(+)CD56(+) regulatory T cells that control CD8(+) T cell effector functions. Nat Metab. 2020;2(2):142–52. https://doi.org/10.1038/s42255-020-0173-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jacobsen LM, Newby BN, Perry DJ, Posgai AL, Haller MJ, Brusko TM. Immune Mechanisms and Pathways Targeted in Type 1 Diabetes. Curr Diab Rep. 2018;18(10):90. https://doi.org/10.1007/s11892-018-1066-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Laughlin E, Burke G, Pugliese A, Falk B, Nepom G. Recurrence of autoreactive antigen-specific CD4+ T cells in autoimmune diabetes after pancreas transplantation. Clin Immunol. 2008;128(1):23–30. https://doi.org/10.1016/j.clim.2008.03.459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Velthuis JH, Unger WW, van der Slik AR, Duinkerken G, Engelse M, Schaapherder AF, et al. Accumulation of autoreactive effector T cells and allo-specific regulatory T cells in the pancreas allograft of a type 1 diabetic recipient. Diabetologia. 2009;52(3):494–503. https://doi.org/10.1007/s00125-008-1237-z.

    Article  CAS  PubMed  Google Scholar 

  48. Vendrame F, Pileggi A, Laughlin E, Allende G, Martin-Pagola A, Molano RD, et al. Recurrence of type 1 diabetes after simultaneous pancreas-kidney transplantation, despite immunosuppression, is associated with autoantibodies and pathogenic autoreactive CD4 T-cells. Diabetes. 2010;59(4):947–57. https://doi.org/10.2337/db09-0498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pugliese A, Reijonen HK, Nepom J, Burke GW 3rd. Recurrence of autoimmunity in pancreas transplant patients: research update. Diabetes Manag (Lond). 2011;1(2):229–38. https://doi.org/10.2217/dmt.10.21.

    Article  Google Scholar 

  50. Burke GW 3rd, Vendrame F, Virdi SK, Ciancio G, Chen L, Ruiz P, et al. Lessons from pancreas transplantation in type 1 diabetes: recurrence of islet autoimmunity. Curr Diab Rep. 2015;15(12):121. https://doi.org/10.1007/s11892-015-0691-5.

    Article  CAS  PubMed  Google Scholar 

  51. Pinkse GG, Tysma OH, Bergen CA, Kester MG, Ossendorp F, van Veelen PA, et al. Autoreactive CD8 T cells associated with beta cell destruction in type 1 diabetes. Proc Natl Acad Sci U S A. 2005;102(51):18425–30. https://doi.org/10.1073/pnas.0508621102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huurman VA, Hilbrands R, Pinkse GG, Gillard P, Duinkerken G, van de Linde P, et al. Cellular islet autoimmunity associates with clinical outcome of islet cell transplantation. PLoS One. 2008;3(6):e2435. https://doi.org/10.1371/journal.pone.0002435.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Chujo D, Foucat E, Takita M, Itoh T, Sugimoto K, Shimoda M, et al. Emergence of a broad repertoire of GAD65-specific T-cells in type 1 diabetes patients with graft dysfunction after allogeneic islet transplantation. Cell Transplant. 2012;21(12):2783–95. https://doi.org/10.3727/096368912X654993.

    Article  PubMed  Google Scholar 

  54. Suchin EJ, Langmuir PB, Palmer E, Sayegh MH, Wells AD, Turka LA. Quantifying the frequency of alloreactive T cells in vivo: new answers to an old question. J Immunol. 2001;166(2):973–81. https://doi.org/10.4049/jimmunol.166.2.973.

    Article  CAS  PubMed  Google Scholar 

  55. Halloran PF, Chang J, Famulski K, Hidalgo LG, Salazar ID, Merino Lopez M, et al. Disappearance of T cell-mediated rejection despite continued antibody-mediated rejection in late kidney transplant recipients. J Am Soc Nephrol. 2015;26(7):1711–20. https://doi.org/10.1681/ASN.2014060588.

    Article  CAS  PubMed  Google Scholar 

  56. Chen CC, Koenig A, Saison C, Dahdal S, Rigault G, Barba T, et al. CD4+ T cell help is mandatory for naive and memory donor-specific antibody responses: impact of therapeutic immunosuppression. Front Immunol. 2018;9:275. https://doi.org/10.3389/fimmu.2018.00275This paper demonstrates that CD4+ T cell help is mandatory for both naive and memory DSA responses after transplantation and that recipient’s CD4+T cells are not adequately blocked by current maintenance immunosuppressive drugs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Thaunat O, Koenig A, Leibler C, Grimbert P. Effect of immunosuppressive drugs on humoral allosensitization after kidney transplant. J Am Soc Nephrol. 2016;27(7):1890–900. https://doi.org/10.1681/ASN.2015070781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dahdal S, Saison C, Valette M, Bachy E, Pallet N, Lina B, et al. Residual activatability of circulating Tfh17 predicts humoral response to thymodependent antigens in patients on therapeutic immunosuppression. Front Immunol. 2018;9:3178. https://doi.org/10.3389/fimmu.2018.03178.

    Article  CAS  PubMed  Google Scholar 

  59. Pouliquen E, Baltzinger P, Lemle A, Chen CC, Parissiadis A, Borot S, et al. Anti-donor HLA antibody response after pancreatic islet grafting: characteristics, risk factors, and impact on graft function. Am J Transplant. 2017;17(2):462–73. https://doi.org/10.1111/ajt.13936This article assesses de novo donor-specific anti-HLA antibodies (DSA) responses in a cohort of 42 islet graft recipients. DSA do not negatively impact islet graft survival.

    Article  CAS  PubMed  Google Scholar 

  60. Campbell PM, Salam A, Ryan EA, Senior P, Paty BW, Bigam D, et al. Pretransplant HLA antibodies are associated with reduced graft survival after clinical islet transplantation. Am J Transplant. 2007;7(5):1242–8. https://doi.org/10.1111/j.1600-6143.2007.01777.x.

    Article  CAS  PubMed  Google Scholar 

  61. van Kampen CA, van de Linde P, Duinkerken G, van Schip JJ, Roelen DL, Keymeulen B, et al. Alloreactivity against repeated HLA mismatches of sequential islet grafts transplanted in non-uremic type 1 diabetes patients. Transplantation. 2005;80(1):118–26. https://doi.org/10.1097/01.tp.0000164143.22287.e3.

    Article  PubMed  Google Scholar 

  62. Lim WH, Wong G, Heidt S, Claas FHJ. Novel aspects of epitope matching and practical application in kidney transplantation. Kidney Int. 2018;93(2):314–24. https://doi.org/10.1016/j.kint.2017.08.008.

    Article  CAS  PubMed  Google Scholar 

  63. Duquesnoy RJ. A structurally based approach to determine HLA compatibility at the humoral immune level. Hum Immunol. 2006;67(11):847–62. https://doi.org/10.1016/j.humimm.2006.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wiebe C, Rush DN, Nevins TE, Birk PE, Blydt-Hansen T, Gibson IW, et al. Class II Eplet mismatch modulates tacrolimus trough levels required to prevent donor-specific antibody development. J Am Soc Nephrol. 2017;28(11):3353–62. https://doi.org/10.1681/ASN.2017030287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chaigne B, Geneugelijk K, Bedat B, Ahmed MA, Honger G, De Seigneux S, et al. Immunogenicity of anti-HLA antibodies in pancreas and islet transplantation. Cell Transplant. 2016;25(11):2041–50. https://doi.org/10.3727/096368916X691673.

    Article  PubMed  Google Scholar 

  66. Reindl-Schwaighofer R, Heinzel A, Kainz A, van Setten J, Jelencsics K, Hu K, et al. Contribution of non-HLA incompatibility between donor and recipient to kidney allograft survival: genome-wide analysis in a prospective cohort. Lancet. 2019;393(10174):910–7. https://doi.org/10.1016/S0140-6736(18)32473-5.

    Article  PubMed  Google Scholar 

  67. Reindl-Schwaighofer R, Heinzel A, Signorini L, Thaunat O, Oberbauer R. Mechanisms underlying human genetic diversity: consequence for antigraft antibody responses. Transpl Int. 2018;31(3):239–50. https://doi.org/10.1111/tri.13059.

    Article  CAS  PubMed  Google Scholar 

  68. Tait BD. Detection of HLA antibodies in organ transplant recipients - triumphs and challenges of the solid phase bead assay. Front Immunol. 2016;7:570. https://doi.org/10.3389/fimmu.2016.00570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cantarovich D, De Amicis S, Akl A, Devys A, Vistoli F, Karam G, et al. Posttransplant donor-specific anti-HLA antibodies negatively impact pancreas transplantation outcome. Am J Transplant. 2011;11(12):2737–46. https://doi.org/10.1111/j.1600-6143.2011.03729.x.

    Article  CAS  PubMed  Google Scholar 

  70. Malheiro J, Martins LS, Tafulo S, Dias L, Fonseca I, Beirao I, et al. Impact of de novo donor-specific anti-HLA antibodies on grafts outcomes in simultaneous pancreas-kidney transplantation. Transpl Int. 2016;29(2):173–83. https://doi.org/10.1111/tri.12687.

    Article  CAS  PubMed  Google Scholar 

  71. Mittal S, Page SL, Friend PJ, Sharples EJ, Fuggle SV. De novo donor-specific HLA antibodies: biomarkers of pancreas transplant failure. Am J Transplant. 2014;14(7):1664–71. https://doi.org/10.1111/ajt.12750.

    Article  CAS  PubMed  Google Scholar 

  72. Parajuli S, Alagusundaramoorthy S, Aziz F, Garg N, Redfield RR, Sollinger H, et al. Outcomes of Pancreas Transplant Recipients With De Novo Donor-specific Antibodies. Transplantation. 2019;103(2):435–40. https://doi.org/10.1097/TP.0000000000002339This article assesses de novo donor-specific anti-HLA antibodies (DSA) responses in a cohort of 541 pancreas transplant recipients. De novo DSA are associated with increased rates of rejection and graft failure.

    Article  PubMed  Google Scholar 

  73. Mujtaba MA, Fridell JA, Higgins N, Sharfuddin AA, Yaqub MS, Kandula P, et al. Early findings of prospective anti-HLA donor specific antibodies monitoring study in pancreas transplantation: Indiana University Health Experience. Clin Transpl. 2012;26(5):E492–9. https://doi.org/10.1111/ctr.12005.

    Article  Google Scholar 

  74. Schinstock CA, Cosio F, Cheungpasitporn W, Dadhania DM, Everly MJ, Samaniego-Picota MD, et al. The value of protocol biopsies to identify patients with de novo donor-specific antibody at high risk for allograft loss. Am J Transplant. 2017;17(6):1574–84. https://doi.org/10.1111/ajt.14161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rabant M, Amrouche L, Lebreton X, Aulagnon F, Benon A, Sauvaget V, et al. Urinary C-X-C motif chemokine 10 independently improves the noninvasive diagnosis of antibody-mediated kidney allograft rejection. J Am Soc Nephrol. 2015;26(11):2840–51. https://doi.org/10.1681/ASN.2014080797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Brooks AM, Carter V, Liew A, Marshall H, Aldibbiat A, Sheerin NS, et al. De novo donor-specific HLA antibodies are associated with rapid loss of graft function following islet transplantation in type 1 diabetes. Am J Transplant. 2015;15(12):3239–46. https://doi.org/10.1111/ajt.13407.

    Article  CAS  PubMed  Google Scholar 

  77. Campbell PM, Senior PA, Salam A, Labranche K, Bigam DL, Kneteman NM, et al. High risk of sensitization after failed islet transplantation. Am J Transplant. 2007;7(10):2311–7. https://doi.org/10.1111/j.1600-6143.2007.01923.x.

    Article  CAS  PubMed  Google Scholar 

  78. Mohanakumar T, Narayanan K, Desai N, Ramachandran S, Shenoy S, Jendrisak M, et al. A significant role for histocompatibility in human islet transplantation. Transplantation. 2006;82(2):180–7. https://doi.org/10.1097/01.tp.0000226161.82581.b2.

    Article  CAS  PubMed  Google Scholar 

  79. Rickels MR, Kearns J, Markmann E, Palanjian M, Markmann JF, Naji A, et al. HLA sensitization in islet transplantation. Clin Transpl. 2006;34:413–20.

  80. Cardani R, Pileggi A, Ricordi C, Gomez C, Baidal DA, Ponte GG, et al. Allosensitization of islet allograft recipients. Transplantation. 2007;84(11):1413–27. https://doi.org/10.1097/01.tp.0000290388.70019.6e.

    Article  PubMed  Google Scholar 

  81. Uva PD, Papadimitriou JC, Drachenberg CB, Toniolo MF, Quevedo A, Dotta AC, et al. Graft dysfunction in simultaneous pancreas kidney transplantation (SPK): results of concurrent kidney and pancreas allograft biopsies. Am J Transplant. 2019;19(2):466–74. https://doi.org/10.1111/ajt.15012.

    Article  PubMed  Google Scholar 

  82. Delaune V, Toso C, Benhamou PY, Wojtusciszyn A, Kessler L, Slits F, et al. Alloimmune monitoring after islet transplantation: a prospective multicenter assessment of 25 recipients. Cell Transplant. 2016;25(12):2259–68. https://doi.org/10.3727/096368916X692023.

    Article  PubMed  Google Scholar 

  83. Huurman VA, van der Torren CR, Gillard P, Hilbrands R, van der Meer-Prins EP, Duinkerken G, et al. Immune responses against islet allografts during tapering of immunosuppression—a pilot study in 5 subjects. Clin Exp Immunol. 2012;169(2):190–8. https://doi.org/10.1111/j.1365-2249.2012.04605.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Clemence Thaunat for her help in the design of the figure. OT has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (SC1-BHC-07-2019 - VANGUARD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Thaunat.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Immunology, Transplantation, and Regenerative Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buron, F., Reffet, S., Badet, L. et al. Immunological Monitoring in Beta Cell Replacement: Towards a Pathophysiology-Guided Implementation of Biomarkers. Curr Diab Rep 21, 19 (2021). https://doi.org/10.1007/s11892-021-01386-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11892-021-01386-4

Keywords

Navigation