Skip to main content

Recurrence of Type 1 Diabetes Mellitus

  • Chapter
  • First Online:
Transplantation of the Pancreas

Abstract

Simultaneous pancreas–kidney (SPK) transplantation is the best option for patients with type 1 diabetes (T1D) and end-stage kidney (ESKD) disease. While most SPK recipients experience long-term euglycemia, about 5% experience T1D recurrence (T1DR), and return to insulin therapy 5–20 years after transplantation. Since the identification of our first patient with T1DR two decades ago, we have assessed autoimmunity in our patients. This includes evaluating T1D-associated autoantibodies (GAD65, IA2 and ZnT8), autoreactive T cells against islet antigens, and pancreas transplant (PT) biopsies. We have shown that most patients with T1DR experience sero-conversion for multiple autoantibodies. In addition, autoreactive memory T cells have been identified in the peripheral blood, PT, and peri-PT lymph nodes. PT biopsies generally exhibit insulitis, the typical lesion of T1D, affecting pancreatic islets in the PT. Somewhat surprisingly, PT biopsies may show considerable insulin staining in the beta islet cells, and mixed meal tolerance tests may demonstrate persistent c-peptide secretion, despite the clinical presentation with severe hyperglycemia. This has led to attempts to treat our patients with T1DR. This chapter describes therapeutic efforts, as well as projections for the future, along with our hope that this will translate to possible treatment for T1D.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ESKD:

End-stage kidney disease

H&E:

Hematoxylin and eosin

IGRP:

Islet-specific glucose-6-phosphatase catalytic subunit-related protein

IVIg:

Intravenous immunoglobulin

MMTT:

Mixed meal tolerance test

PB:

Peripheral blood

SPK:

Simultaneous pancreas–kidney

SPKT:

Simultaneous pancreas–kidney transplant

T1D:

Type 1 diabetes

T1DR:

Type 1 diabetes recurrence

References

  1. Ciancio G, Sageshima J, Chen L, Gaynor JJ, Hanson L, Tueros L, Montenora-Velards E, Gomez C, Kupin W, Guerra G, Mattiazzi A, Fornoni A, Pugliese A, Roth D, Wolf M, Burke GW 3rd. Advantage of rapamycin over mycophenolate mofetil when used with tacrolimus for simultaneous pancreas kidney transplants: randomized, single-center trial at ten years. Am J Transplant. 2012;12(12):3363–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sageshima J, Ciancio G, Gaynor JJ, Chen L, Guerra G, Kupin W, Roth D, Ruiz P, Burke GW. Addition of anti-CD25 to thymoglobulin for induction therapy: delayed return of peripheral blood CD25-positive population. Clin Transpl. 2011;25(2):E132–5.

    Article  CAS  Google Scholar 

  3. Finger EB, Radosevich DM, Dunn TB, Chinnakotla S, Sutherland DER, Matas AJ, Pruett TL, Kandaswamy R. A composite risk model for predicting technical failure in pancreas transplantation. Am J Transplant. 2013;13:1840–9. https://doi.org/10.1002/ajt.12269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Burke GW, Ciancio G, Figueiro J, Buigas R, Olson L, Roth D, Kupin W, Miller J. Hypercoagulable state associated with kidney-pancreas transplantation. Thromboelastogram-directed anticoagulation and implications for future therapy. Clin Transpl. 2004;18(4):423–8. https://doi.org/10.1111/j.1399-0012.2004.00183.x.

    Article  Google Scholar 

  5. Raveh Y, Ciancio G, Burke GW, et al. Susceptibility-directed anticoagulation after pancreas transplantation: a single center retrospective study. Clin Transplant. 2019;33(7):e13619. https://doi.org/10.1111/.ctr.13619.

    Article  PubMed  Google Scholar 

  6. Ciancio G, Sageshima J, Chen L, Pugliese A, Burke GW. Current status of pancreas transplantation. In: Orlando G, Lerut J, Soker S, Stratta RJ, editors. Regenerative medicine applications in organ transplantation. New York: Elsevier; 2014. p. 563–70.

    Chapter  Google Scholar 

  7. Sutherland DER, Goetz FC, Sibley RK. Recurrence of disease in pancreas transplants. Diabetes. 1989;38(Supplement 1):85–7.

    Article  PubMed  Google Scholar 

  8. Tyden G, Reinholt FP, Sundkvist G, Bolinder J. Recurrence of autoimmune diabetes mellitus in recipients of cadaveric pancreas grafts. N Engl J Med. 1996;335(12):860–3.

    Article  CAS  PubMed  Google Scholar 

  9. Burke GW, Vendrame F, Pileggi A, Ciancio G, Reijonen H, Pugliese A. Recurrence of autoimmunity following pancreas transplantation. Curr Diab Rep. 2011;11:413–9. https://doi.org/10.1007/s11892-011-0206-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Burke GWIII, Vendrame F, Virdi SK, Ciancio G, Chen L, Ruiz P, Messinger S, Reijonen HK, Pugliese A. Lessons from pancreas transplantation in type 1 diabetes: recurrence of islet autoimmunity. Curr Diab Rep. 2015;15(12):121. https://doi.org/10.1007/s1.1892-015-0691-5.

    Article  PubMed  Google Scholar 

  11. Burke GWIII, Chen LJ, Ciancio G, Pugliese A. Biomarkers in pancreas transplant. Curr Opin Organ Transplant. 2016;21(4):412–8. https://doi.org/10.1097/MOT.0000000000000333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Laughlin E, Burke G, Pugliese A, Falk B, Nepom G. Recurrence of autoreactive antigen-specific CD4+ T cells in autoimmune diabetes after pancreas transplantation. Clin Immunol. 2008;128(1):23–30. https://doi.org/10.1016/j.clim.2008.03.459. Epub 2008 May.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Reijonen H, Geubtner K, Allende G, Kwok W, Nepom G, Burke G, Pugliese A. Identification of islet-autoantigen specific CD4+ T-cells in the pancreatic lymph nodes and pancreas of a pancreas-kidney transplant patient with recurrence of autoimmunity. Diabetes. 2006;55(Supplement 1):A88.

    Google Scholar 

  14. Bottazzo GF, Dean BM, McNally JM, MacKay EH, Swift PG. Gamble DR in situ characterization of autoimmune phenomena and expression of HLA molecules in the pancreas in diabetic insulitis. N Engl J Med. 1985;313(6):353–60.

    Article  CAS  PubMed  Google Scholar 

  15. Accili D. Whither type 1 diabetes. N Engl J Med. 2020;383(21):2078–9. https://doi.org/10.1056/NEJMe2030472.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Martin-Pagola A, Sisino G, Allende G, Dominguez-Bendala J, Gianani R, Reijonen H, Nepom GT, Ricordi C, Ruiz P, Sageshima J, Ciancio G, Burke GW, Pugliese A. Insulin protein and proliferation in ductal cells in the transplanted pancreas of patients with type 1 diabetes and recurrence of autoimmunity. Diabetologia. 2008;51:1803–13. https://doi.org/10.1007/s00125-008-1105-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vendrame F, Pileggi A, Laughlin E, Allende G, Martin-Pagola A, Molano RD, Diamantopouls S, Standifer N, Geubtner K, Falk BA, Ichii H, Takahashi H, Snowhite IV, Chen Z, Mendez A, Chen L, Sageshima J, Ruiz P, Ciancio G, Ricordi C, Reijonen HK, Nepom GT, Burke GW 3rd, Pugliese A. Recurrence of type 1 diabetes after simultaneous pancreas-kidney transplantation, despite immunosuppression, is associated with autoantibodies and pathogenic autoreactive CD4 T cells. Diabetes. 2010;59:947–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Atkinson MA. Evaluating preclinical efficacy. Sci Transl Med. 2011;3:96cm22.

    Article  PubMed  Google Scholar 

  19. Herold KC, Bluestone JA. Type 1 diabetes immunotherpy: is the glass half empty or half full? Sci Transl Med. 2011;3:95fs1.

    Article  CAS  PubMed  Google Scholar 

  20. Herold KC, Hagopian W, Auger JA, Poumian-Ruiz E, Taylor L, Donaldson D, Gitelman SE, Harlan DM, Xu D, Zivin RA, Bluestone JA. Anti-CD3 monoclonal antibody in new onset type 1 diabetes mellitus. N Engl J Med. 2002;346(22):1692–8.

    Article  CAS  PubMed  Google Scholar 

  21. Ludvigsson J, Faresjo M, Hjorth M, Axelsson S, Cheramy M, Pihl M, Vaarala O, Forsander G, Ivarsson S, Johansson C, Lindh A, Nilsson NO, Aman J, Ortqvist E, Zerhouni P, Casas R. GAD treatment and insulin secretion in recent-onset type 1 diabetes. N Engl J Med. 2008;359(18):1909–20. https://doi.org/10.1056/NEJMoa0804328. Epub 2008 Oct 8.

    Article  CAS  PubMed  Google Scholar 

  22. Pescovitz MD, Greenbaum CJ, Krause-Steinrauf H, et al. Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N Engl J Med. 2009;361(22):2143–52. https://doi.org/10.1056/NEJMoa0904452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Orban T, Bundy B, Becker DJ, Dimeglio LA, Gitelman SE, Goland R, Gottlieb PA, Greenbaum CJ, Marks JB, Monzavi R, Moran A, Peakman M, Raskin P, Russell WE, Schatz D, Wherrett DK, Wilson DM, Krischer JP, Skyler JS. Type 1 diabetes TrialNet Abatacept study group. Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: follow-up 1 year after cessation of treatment. Diabetes Care. 2014;37(4):1059–75.

    Article  Google Scholar 

  24. Vendrame F, Hopfner YY, Diamantopoulos S, Virdi SK, Allende G, Snowhite IV, Reijonen HK, Chen L, Ruiz P, Ciancio G, Hutton JC, Messinger S, Burke GW 3rd, Pugliese A. Risk factors for type 1 diabetes recurrence in immunosuppressed recipients of simultaneous pancreas kidney transplants. Am J Transplant. 2016;16(1):235–45. https://doi.org/10.1111/ajt.13426.

    Article  CAS  PubMed  Google Scholar 

  25. Ziegler AG, Rewers M, Simell O, Simeel T, Lempainen J, Steck A, Winkler C, Ilonen J, Veijola R, Knip M, Bonifacio E, Eisenbarth GS. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA. 2013;309(23):2473–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Endsfelder D, Hagen M, Winkler C, Haupt F, Zillmer S, Knopff A, Bonifacio E, Ziegler AG, Zu Castell W, Achenbach P. A novel approach for the analysis of longitudinal profiles reveals delayed progression to type 1 diabetes in a subgroup of multiple-islet-autoantibody-positive children. Diabetologia. 2016;59:2172–80. https://doi.org/10.1007/s00125-016-4050-0.

    Article  CAS  Google Scholar 

  27. A Pugliese, H Reijonen, F Vendrame, G Werra, G Allende, L Hanson, L Tueros, D Matheson, JS Skyler, GW Burke. Treatment of recurrent islet autoimmunity in a pancreas transplant recipient with Alefacept. 13th meeting of the immunology of diabetes society, Australia, Abstract Book, December 2013.

    Google Scholar 

  28. Rigby MR, Harris KM, Pinckney A, DiMeglio LA, Rendell MS, Feiner EI, Dostou JM, Gitelman SE, Griffin KJ, Tsalikian E, Gottlieb PA, Greenbaum CJ, Sherry NA, Moore WV, Monzavi R, Willi SM, Raskin P, Keyes-Elstein L, Long SA, Kanaparthi S, Lim N, Phippard D, Soppe CL, Fitzgibbon ML, McNamara J, Nepom GT, Ehlers MR. Alefacept provides sustained clinical and immunological effects in new-onset type 1 diabetes patients. J Clin Invest. 2015;125(8):3285–96.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pugliese A, Vendrame F, Reijonen H, Atkinson MA, Campbell-Thompson M, Burke GW. New insight on human type 1 diabetes biology: nPOD and nPOD-transplantation. Curr Diab Rep. 2014;10:530. https://doi.org/10.1007/s11892-014-0530-0.

    Article  CAS  Google Scholar 

  30. Anderson MS, Bluestone JA. The NOD mouse: a model of immune dysregulation. Annu Rev Immunol. 2005;23:447–85.

    Article  CAS  PubMed  Google Scholar 

  31. Xue S, Posgai A, Wasserfall C, Myhr C, Campbell-Thompson M, Mathews CE, Brusko T, Rabinovich A, Savinov A, Battaglia M, Schatz D, Haller M, Atkinson MA. Combination therapy reverses hyperglycemia in NOD mice with established type 1 diabetes. Diabetes. 2015;64:3873–84. https://doi.org/10.2337/db15-0164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Burke GW 3rd, Posgai AL, Wasserfall CH, Atkinson MA, Pugliese A. Raising awareness: the need to promote allocation of Pancreata from rare nondiabetic donors with pancreatic islet autoimmunity to type 1 diabetes research. Am J Transplant. 2017;17(1):306–7. https://doi.org/10.1111/ajt.13983. Epub 2016 Aug 24.

    Article  PubMed  Google Scholar 

  33. Oram RA, Jones AG, Besser RE, et al. The majority of patients with long-duration type 1 diabetes are insulin microsecretors and have functioning beta cells. Diabetologia. 2014;57:187–91.

    Article  CAS  PubMed  Google Scholar 

  34. Nagy N, Kaber G, Johnson PY, Gebe JA, Preisinger A, Falk BA, Sunkari VG, Gooden MD, Vernon RB, Bogdani M, Kuipers HF, Day AJ, Campbell DJ, Wight TN, Bollyky PL. Inhibition of hyaluronan synthesis restores immune tolerance during autoimmune insulitis. J Clin Invest. 2015;125(10):3928–40. https://doi.org/10.1172/JCI179271. Epub 2015 Sep 14.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Korpos E, Kadri N, Loisman S, et al. Pancreatic tertiary lymphoid organs in mouse and human autoimmune diabetes. Diabetologia. 2021;64:1626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reijonen H, Werra G, Falk, et al. Association of autoreactive memory CD4 T cells expressing the chemokine receptor CXCR3 in the peripheral blood of pancreas-kidney transplant recipients with type 1 diabetes recurrence. Presented at the immunology of diabetes society meeting, San Francisco, January 2017.

    Google Scholar 

  37. Frigerio S, Junt T, Lu B, Gerard C, Zumsteg U, Hollander GA, Piali L. Beta cells are responsible for CXCR3-mediated T-cell infiltration in insulitis. Nat Med. 2002;8(12):1414–20. https://doi.org/10.1038/nm792.

    Article  CAS  PubMed  Google Scholar 

  38. Campbell-Thompson M, Fu A, Kaddis JS, Wasserfall C, Schatz DA, Pugliese A, Atkinson MA. Insulitis and β-cell mass in the natural history of type 1 diabetes. Diabetes. 2016;65(3):719–31. https://doi.org/10.2337/db15-0779. Epub 2015 Nov 18.

    Article  CAS  PubMed  Google Scholar 

  39. Brozzi F, Eizirik DL. ER stress and the decline and fall of pancreatic beta cells in type 1 diabetes. Ups J Med Sci. 2016;121(2):133–9. https://doi.org/10.3109/03009734.2015.1135217. Epub 2016 Feb 22.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mallone R, Eizirik DL. Presumption of innocence for beta cells: why are they vulnerable autoimmune targets in type 1 diabetes? Diabetologia. 2020;63:1999–2006. https://doi.org/10.1007/s00125-020-05176-7.

    Article  PubMed  Google Scholar 

  41. Eizirik DL, Pasquali L, Cnop M. Pancreatic beta-cells in type 1 and type 2 diabetes mellitus: different pathways to failure. Nat Rev Endocrinol. 2020;16:349–62. https://doi.org/10.1038/s41574-020-0355-7.

    Article  CAS  PubMed  Google Scholar 

  42. Panzer JK, Hiller H, Cohrs CM, et al. Pancreas tissue slices from organ donors enable in situ analysis of type 1 diabetes pathogenesis. JCI Insight. 2020;5(8):e134525. https://doi.org/10.1172/jci.insight.134525.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Qadir MMF, Alvarez-Cubela S, Weitz J, et al. Long-term culture of human pancreatic slices as a model to study real-time islet regeneration. Nat Commun. 2020;11(1):3265. https://doi.org/10.1038/s41467-020-17040-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Skyler JS. Prevention and reversal of type1 diabetes – past challenges and future opportunities. Diabetes Care. 2015;38:997–1007. https://doi.org/10.2337/dc15-0349.

    Article  PubMed  Google Scholar 

  45. Greenbaum C, VanBeucken D, Lord S. Disease-modifying therapies in type 1 diabetes: a look into the future of diabetes practice. Drugs. 2019;79:43. https://doi.org/10.1007/s40265-018-1035-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Papp KA, Blauvelt A, Bukhalo M, Gooderham M, Krueger JG, Lacour JP, Menter A, Philipp S, Sofen H, Tyring S, Berner BR, Visvanathan S, Pamulapati C, Bennett N, Flack M, Scholl P, Padula SJ. Risankizumab versus ustekinumab for moderate-to-severe plaque psoriasis. N Engl J Med. 2017;376(16):1551–60. https://doi.org/10.1056/NEJMoa1607017.

    Article  CAS  PubMed  Google Scholar 

  47. Marwaha AK, Tan S, Dutz JP. Targeting the IL-17/IFN-gamma axis as a potential new clinical therapy for type 1 diabetes. Clin Immunol. 2014;154:84–9. https://doi.org/10.1016/j.clim.2014.06.006.

    Article  CAS  PubMed  Google Scholar 

  48. Herold KC, Bundy BN, Long A, et al. An anti-CD3 antibody, teplizumab, in relatives at risk for type 1 diabese. N Engl J Med. 2019;381(7):603–13. https://doi.org/10.1056/NEJMoa1902226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Quattrin T, Haller MJ, Steck AK, et al. Golimumab and beta-cell function in youth with new-onset type 1 diabetes. N Engl J Med. 2020;383(21):2007–20017. https://doi.org/10.1056/NEJMoa6136.

    Article  CAS  PubMed  Google Scholar 

  50. Podesta MA, Binder C, Sellberg F, et al. Siplizumab selectively depletes effector memory T-cells and promotes a relative expansion of allregulatory T-cells in vitro. Am J Transplant. 2020;20(1):88–100. https://doi.org/10.1111/ajt.15533.

    Article  CAS  PubMed  Google Scholar 

  51. Blair HA. Dimethyl fumarate: a review in moderate to severe plaque psoriasis. Drugs. 2018;78(1):123–30. https://doi.org/10.1007/s40265-017-0854-6.

    Article  CAS  PubMed  Google Scholar 

  52. Mills EA, Ogrodnik MA, Plave A, Mao-Draayer Y. Emerging understanding of the mechanism of action for dimethyl fumarate in the treatment of multiple sclerosis. Front Neurol. 2018;9(Article 5):1–8. https://doi.org/10.3389/fneur.2018.00005.

    Article  Google Scholar 

  53. Cunill V, Massot M, Clemente A, Calles C, Andreu V, Nunez V, Lopez-Gomez A, Diaz RM, Jimenez MLR, Pons J, Vives-Bauza C, Ferrer JM. Relapsing-remitting multiple sclerosis is characterized by a T follicular cell pro-inflammatory shift, reverted by dimethyl fumarate treatment. Front Immunol. 2018;9:1097. https://doi.org/10.3389/fimmu.2018.01097. ECollection 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Montes Diaz G, Hupperts R, Fraussen J, Somers V. Dimethyl fumaratetreatment in multiple sclerosis: recent advances in clinical and immunological studies. Autoimmun Rev. 2018;17:1240–50.

    Article  CAS  PubMed  Google Scholar 

  55. Kornberg MD, Bhargava P, Kim PM, Putluri V, Snowman AM, Putluri N, Calabresi PA, Snyder SH. Dimethyl fumarate targets GADPH and aerobic glycolysis to modulate immunity. Science. 2018;360:449–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mackay-Wiggan J, Jabbari A, Nguyen N, Cerise JE, Clark C, Ulerio G, Furniss M, Vaughn R, Christiano AM, Clynes R. Oral ruxolitinib induces hair growth in patients with moderate-to-severe alopecia areata. JCI Insight. 2016;1(15):e89790.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Jabbari A, Cerise JE, Chen JC, Mackay-Wiggan J, Duvic M, Price V, Hordinsky M, Norris D, Clynes R, Christiano AM. Molecular signatures define alopecia areata and transcriptional biomarkers. EBioMedicine. 2016;7:240–7. https://doi.org/10.1016/j.ebiom.2016.03.036.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lenchik NI, Dahl-Jorgensen K, Burke GW, Krogvold L, Pugliese A, Mathews CE, Gerling IC. Gene expression profiles of human islets with ongoing autoimmunity and type 1 diabetes. presented at the 75th annual meeting of American Diabetes Association. Diabetes. 2015;64(Suppl. 1):A468.

    Google Scholar 

  59. Chaimowitz NS, Ebenezer SJ, Hanson IC, Anderson M, Forbes LR. STAT1 gain of function, type 1 diabetes, and reversal with JAK inhibition. N Eng J Med. 2020;383(15):1494. https://doi.org/10.1056/NEJMMc2022226.

    Article  Google Scholar 

  60. Thomas Kay and Helen Thomas, St Vincent’s Institute of Medical Research, Australia. BANDIT Trial: BAricitinib in new-onset type 1 diabetes.

    Google Scholar 

  61. Lanzoni G, Linetsky E, Correa D, et al. Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: a double-blind, phase 1/2a, randomized controlled trial. Stem Cells Transl Med. 2021;10:1–14. https://doi.org/10.1002/sctm.20-0472.

    Article  CAS  Google Scholar 

  62. Carlsson P-O, Schwarcz E, Korsgren O, Le Blanc K. Preserved beta-cell function in type 1 diabetes by mesenchymal stromal cells. Diabetes. 2015;64:587–92. https://doi.org/10.2337/db14-0656.

    Article  CAS  PubMed  Google Scholar 

  63. Paul M, Jacob N, Sachdeva N. Regulatory T-cells in treatment of type 1 diabetes: types and approaches. Diabetes Res Open J. 2015;1(3):54–66. https://doi.org/10.17140/DROJ-1-109.

    Article  Google Scholar 

  64. Terry L, Oo YH. The next frontier of regulatory T cells: promising immunotherapy for autoimmune diseases and organ transplantations. Front Immunol. 2020;11:565518. https://doi.org/10.3389/fimmuno.2020.565518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George W. Burke III .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burke, G.W. et al. (2023). Recurrence of Type 1 Diabetes Mellitus. In: Gruessner, R.W.G., Gruessner, A.C. (eds) Transplantation of the Pancreas. Springer, Cham. https://doi.org/10.1007/978-3-031-20999-4_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20999-4_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20998-7

  • Online ISBN: 978-3-031-20999-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics