Skip to main content

Advertisement

Log in

Adverse Effects of Glycemia-Lowering Medications in Type 2 Diabetes

  • Pharmacologic Treatment of Type 2 Diabetes (HE Lebovitz and G Bahtiyar, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Treatment of patients with type 2 diabetes mellitus is focused on preventing the occurrence and delaying the development of macro- and micro-vascular complications. Glycemic control can help prevent these complications, but there is concern about the adverse effects of glycemia-lowering medications. A rational approach is to balance the desired low risk of adverse events against the unwanted higher risk of major complications resulting from suboptimal glucose control.

Recent Findings

Using the above approach, approved glucose-lowering agents have favorable benefit-to-risk profiles for use in most patients with type 2 diabetes. We first briefly review the mechanism of actions and benefits of the different commonly used classes of glycemia-lowering medications and then discuss adverse effects and safety concern associated with their use.

Summary

Our overall assessment is that if used appropriately, the different classes of glycemia-lowering medications offer beneficial outcomes with relatively modest and, in some instances, preventable adverse events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. DeFronzo RA. Banting lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58:773–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tura A, Bagger JI, Ferrannini E, Holst JJ, Knop FK, Vilsbøll T, et al. Impaired beta cell sensitivity to incretins in type 2 diabetes is insufficiently compensated by higher incretin response. Nutr Metab Cardiovasc Dis. 2017;27:1123–9.

    Article  CAS  PubMed  Google Scholar 

  3. Savarese G, Perrone-Firaldi P, D’ Amore C, et al. Cardiovascular effects of dipeptidyl peptidase-4 inhibitors in diabetic patients: a meta-analysis. Int J Cardiol. 2015;181:239–44.

    Article  PubMed  Google Scholar 

  4. Ussher JR, Drucker DJ. Cardiovascular actions of incretin-based therapies. Circ Res. 2014;114:1788–803.

    Article  CAS  PubMed  Google Scholar 

  5. Gharaibeh NE, Rahhal MN, Rahimi L, Ismail-Beigi F. SGLT-2 inhibitors as promising therapeutics for non-alcoholic fatty liver disease: pathophysiology, clinical outcomes, and future directions. Diabetes Metab Syndr Obes. 2019;12:1001–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Meier JJ, Nauck MA. The potential role of glucagon-like peptide 1 in diabetes. Curr Opin Investig Drugs. 2004;5:402–10.

    CAS  PubMed  Google Scholar 

  7. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375:311–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, et al. Semaglutide and cardiovascular outcome in patients with type 2 diabetes. N Engl J Med. 2016;375:1834–44.

    Article  CAS  PubMed  Google Scholar 

  9. Drucker DJ, Buse JB, Taylor K, Kendall DM, Trautmann M, Zhuang D, et al. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomized, open label, non-inferiority study. Lancet. 2008;372:1240–50.

    Article  CAS  PubMed  Google Scholar 

  10. Partley RE, Nauck MA, Barnett AH, et al. Once-weekly albiglutide versus once-daily liraglutide in patients with type 2 diabetes inadequately controlled on oral drugs(HARMONY7):a randomized, open label, multicenter, non-inferiority phase 3 study. Lancet Diabetes Endocrinol. 2014;2:289–97.

    Article  CAS  Google Scholar 

  11. Vilsboll T, Bain SC, Leiter LA, et al. Semaglutide, reduction in glycated hemoglobin and the risk of diabetic retinopathy. Diabetes Obes Metab. 2018;20:889–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Robinson LE, Holt TA, Rees K, Randeva HS, et al. Effects of exenatide and liraglutide on heart rate, blood pressure and body weight: systemic review and meta-analysis. BMJ Open. 2013;3:e001986.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Buse JB, Nauck M, Forest T, et al. Exenatide once weekly versus liraglutide once daily in patients with type 2 diabetes (DURATION-6): a randomized, open label study. Lancet. 2013;381:117–24.

    Article  CAS  PubMed  Google Scholar 

  14. Dungan KM, Povedano ST, Forest T, et al. Once weekly dulaglutide versus once daily liraglutide in metformin- treated patients with type2 diabetes (AWARD-6): a randomized, open label, phase3, non-inferiority trial. Lancet. 2014;384:1349–57.

    Article  CAS  PubMed  Google Scholar 

  15. Steinberg WM, Buse JB, Ghorbani MLM. Amylase, lipase, and acute pancreatitis in people with type 2 diabetes treated with liraglutide: results from the LEADER randomized Trial. Diabetes Care. 2017;40:966–72.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Z, Chen X, Lu P, et al. Incretin-based agents in type 2 diabetic patients at cardiovascular risk: compare the effect of GLP-1 agonists and DPP-4 inhibitors on cardiovascular and pancreatic outcomes. Cardiovasc Diabetol. 2017;16:31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Buse JB, Garber A, Rosenstock J, Schmidt WE, Brett JH, Videbæk N, et al. Liraglutide treatment is associated with a low frequency and magnitude of antibody formation with no apparent impact on glycemic response or increased frequency of adverse events: results from the liraglutide effect and action in diabetes (LEAD) trial. J Clin Endocrinol Metab. 2011;96:1695–702.

    Article  CAS  PubMed  Google Scholar 

  18. ChenX-W HZ-X, Zhou Z-W, et al. Clinical pharmacology of dipeptidyl peptidase 4 inhibitors indicated for treatment of type 2 diabetes mellitus. Clin Exp Pharmacol Physiol. 2015;42:999–1024.

    Article  CAS  Google Scholar 

  19. Aschner P, Katzeff HL, Guo H, Sunga S, Williams-Herman D, Kaufman KD, et al. Efficacy and safety of monotherapy of sitagliptin compared with metformin in patients with type 2 diabetes. Diabetes Obes Metab. 2010;12:252–61.

    Article  CAS  PubMed  Google Scholar 

  20. Scirica BM, Bhatt DL, Bruanwald E, et al. Saxagliptin and CV outcomes in patients with type 2 diabetes. N Engl J Med. 2013;369:1317–26.

    Article  CAS  PubMed  Google Scholar 

  21. Zannad F, Cannon CP, Cushman WC, Bakris GL, Menon V, Perez AT, et al. Heart failure and mortality in patients with type 2 diabetes taking alogliptin versus placebo in EXAMINE: a multicenter, randomized and double blinded trial. Lancet. 2015;385:2067–76.

    Article  CAS  PubMed  Google Scholar 

  22. Green JB, Bethel MA, Armstrong PW, Buse JB, Engel SS, Garg J, et al. Effects of sitagliptin on CV outcomes in type 2 diabetes. N Engl J Med. 2015;373:232–42.

    Article  CAS  PubMed  Google Scholar 

  23. Scheen AJ. Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs. 2015;75:33–59.

    Article  CAS  PubMed  Google Scholar 

  24. Monami M, Nardini C, Mannucci E. Efficacy and safety of sodium glucose co-transport-2 inhibitors in type 2 diabetes: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2014;16:457–66.

    Article  CAS  PubMed  Google Scholar 

  25. Desouza CV, Gupta N, Patel A. Cardiometabolic effects of a new class of antidiabetic agents. Clin Ther. 2015;37:1178–94.

    Article  CAS  PubMed  Google Scholar 

  26. Wanner C, Lachin JM, Inzucchi SE, Fitchett D, Mattheus M, George J, et al. EMPA-REG OUTCOME Investigators. Empagliflozin and clinical outcomes in patients with type 2 diabetes mellitus, established cardiovascular disease, and chronic kidney disease. Circulation. 2018;137:119–29.

    Article  CAS  PubMed  Google Scholar 

  27. Mahaffey KW, Neal B, Perkovic V, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin for primary and secondary prevention of cardiovascular events: results from the CANVAS Program (Canagliflozin Cardiovascular Assessment Study). Circulation. 2018;137:323–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. • Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy (CREDENCE trial). N Engl J Med. 2019;380:2295–306. This study may advance the use of this agent in certain patients with chronic kidney disease due to proven safety and benefits.

    Article  CAS  PubMed  Google Scholar 

  29. United States Food and Drug Administration (FDA) warns about rare occurrences of a serious infection of the genital area with SGLT2 inhibitors for diabetes. https://www.fda.gov/drugs/drug-safety-and-availability. Accesed 5/16/2019

  30. • Inzucchi SE, Iliev H, Pfarr E, Zinman B. Empagliflozin and assessment of lower-limb amputations in the EMPA-REG OUTCOME trial. Diabetes Care. 2018;41:e4–5. This study evaluates potential serious adverse effects of this class of glucose-lowering medications.

    Article  PubMed  Google Scholar 

  31. Jabbour S, Seufert J, Scheen A, Bailey CJ, Karup C, Langkilde AM. Dapagliflozin in patients with type 2 diabetes mellitus: a pooled analysis of safety data from phase IIb/III clinical trials. Diabetes Obes Metab. 2017;20:620–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Bersoff-Matcha SJ, Chamberlain C, Cao C, et al. Fournier gangrene associated with sodium-glucose Cotransporter-2 inhibitors: a review of spontaneous postmarketing cases. Ann Intern Med. 2019. https://doi.org/10.7326/M19-0085.

    Article  PubMed  Google Scholar 

  33. Burke KR, Schumacher CA, Harpe SE. SGLT2 inhibitors: a systematic review of diabetic ketoacidosis and related risk factors in the primary literature. Pharmacotherapy. 2017;37:187–94.

    Article  PubMed  Google Scholar 

  34. Ogawa W, Sakaguchi K. Euglycemic diabetic ketoacidosis induced by SGLT2 inhibitors: possible mechanism and contributing factors. J Diabetes Investig. 2016;7:135–8.

    Article  CAS  PubMed  Google Scholar 

  35. Rosenstock J, Ferrannini E. Euglycemic diabetic ketoacidosis: a predictable, detectable, and preventable safety concern with SGLT2 inhibitors. Diabetes Care. 2015;38:1638–42.

    Article  CAS  PubMed  Google Scholar 

  36. Watts NB, Bilezikian JP, Usiskin K. Effects of canagliflozin on fracture risk in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2016;101:157–66.

    Article  CAS  PubMed  Google Scholar 

  37. Wolverton D, Blair MM. Fracture risk associated with common medications used in treating type 2 diabetes mellitus. Am J Health Syst Pharm. 2017;74:1143–51.

    Article  CAS  PubMed  Google Scholar 

  38. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–57.

    Article  CAS  PubMed  Google Scholar 

  39. Neuen BL, Ohkuma T, Neal B, Matthews DR, de Zeeuw D, Mahaffey KW, et al. Cardiovascular and renal outcomes with canagliflozin according to baseline kidney function. Circulation. 2018;138:1537–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. • Fioretto P, Del Prato S, Buse JB, et al. Efficacy and safety of dapagliflozin in patients with type 2 diabetes and moderate renal impairment (chronic kidney disease stage 3A): The DERIVE Study. Diabetes Obes Metab. 2018;20:2532–40. This study may advance the use of this agent in certain patients with chronic kidney disease due to proven safety and benefits.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wiviott SD, Raz I, Bonaca MP. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380:347–57.

    Article  CAS  PubMed  Google Scholar 

  42. Chowdhary M, Kabbani AA, Chhabra A. Canagliflozin-induced pancreatitis: a rare side effect of a new drug. Ther Clin Risk Manag. 2015;11:991–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Srivali N, Thongprayoon C, Cheungpasitporn W, Ungprasert P. Acute pancreatitis in the use of canagliflozin: a rare side-effect of the novel therapy for type 2 diabetes mellitus. J Basic Clin Pharm. 2015;6:101–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Garber AJ. Restaging insulin therapy for patients with type 2 diabetes. Diabetes Obes Metab. 2009;11(5):1–5.

    Article  CAS  PubMed  Google Scholar 

  45. Goto A, Arah OA, Goto M, Terauchi Y, Noda M. Severe hypoglycaemia and cardiovascular disease: systematic review and meta-analysis with bias analysis. BMJ. 2013;347:f4533.

    Article  PubMed  Google Scholar 

  46. Swinnen SG, Simon AC, Holleman F, Hoekstra JB, Devries JH.Insulin detemir vs insulin glargene for type 2 diabetes mellitus.Cochrane Database Syst Rev. 2011 Jul 6;(7):CD006383. https://doi.org/10.1002/14651858.CD006383.pub2. Review.

  47. ORIGIN Trial Investigators, Gerstein HC, Bosch J, et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med. 2012;367:319–28.

    Article  CAS  Google Scholar 

  48. • Marso SP, McGuire DK, Zinman B, et al. Efficacy and Safety of Degludec versus Glargine in Type 2 Diabetes (DEVOTE). N Engl J Med. 2017;377:723–32. This study confirmed the CV safety of the novel insulin, degludec.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Melo KFS, Bahia LR, Pasinato B, et al. Short-acting insulin analogues versus regular human insulin on postprandial glucose and hypoglycemia in type 1 diabetes mellitus: a systematic review and meta-analysis. Diabetol Metab Syndr. 2019;11:2.eCollection 2019.

    Article  Google Scholar 

  50. Xu Y, Pilla SJ, Alexander GC, Murimi IB. Use of non-insulin diabetes medicines after insulin initiation: A retrospective cohort study. PLoS ONE. 2019;14(2):e0211820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Roglic G, Norris SL. Medicines for treatment intensification in type 2 diabetes and type of insulin in type 1 and type 2 diabetes in low-resource settings: synopsis of the World Health Organization guidelines on second- and third-line medicines and type of insulin for the control of blood glucose levels in non pregnant adults with diabetes mellitus. Ann Intern Med. 2018;169:394–7.

    Article  PubMed  Google Scholar 

  52. Ashcroft FM. Gribble FM.ATP sensitive K channels and insulin secretion: their role in health and disease. Diabetologia. 1999;10:51–8.

    Google Scholar 

  53. Gribble FM, Reimann F. Pharmacological modulation of KATP channels. Biochem Soc Trans. 2002;30:333–9.

    Article  CAS  PubMed  Google Scholar 

  54. Rorsman P, Renstrom E. Insulin granule dynamics in pancreatic beta cells. Diabetologia. 2003;46:1029–45.

    Article  CAS  PubMed  Google Scholar 

  55. Aj K, Fermer RE, Bailey CJ. Comparative tolerability profile of oral antidiabetic agents. Drug Saf. 1994;11:223–41.

    Article  Google Scholar 

  56. Reaven PD, Moritz TE, Schwenke DC, Anderson RJ, Criqui M, Detrano R, et al. Intensive glucose-lowering therapy reduces cardiovascular disease events in veterans affairs diabetes trial participants with lower calcified coronary atherosclerosis. Diabetes. 2009;58:2642–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. •• Bonds DE, Miller ME, Bergenstal RM, et al. The association between symptomatic, severe hypoglycaemia and mortality in type 2 diabetes: retrospective epidemiological analysis of the ACCORD study. Diabetes Care. 2016;39:1089–100. This study is one of the pioneers in establishing adverse effects of glucose-lowering medications.

    Article  CAS  Google Scholar 

  58. •• UK Prospective Diabetes Study Group. Intensive blood-glucose control with sulfonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53. This study is also one of the initial studies that introduced the adverse effects of glucose-lowering medications.

    Article  Google Scholar 

  59. Wilson SH, Kennedy FP, Garratt KN. Optimization of the management of patient with coronary heart disease and type 2 diabetes mellitus. Drugs Aging. 2001;18:352–33.

    Article  Google Scholar 

  60. Schernthaner G, Grimaldi A, Di Mario U, et al. GUIDE study: double blind comparison of once-daily gliclazide MR and glimepiride in type 2 diabetic patients. Eur J Clin Investig. 2004;34:535–42.

    Article  CAS  Google Scholar 

  61. Bailey CJ, Day C. Antidiabetic drugs. Br J Cardiol. 2003;10:128–36.

    Google Scholar 

  62. DeFronzo RA. Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med. 1999;7:139–53.

    Google Scholar 

  63. Varvaki Rados D, Catani Pinto L, Reck Remonti L, et al. The association between sulfonylurea use and all-cause and cardiovascular mortality: a meta-analysis with trial sequential analysis of randomized clinical trials. PLoS Med. 2016;13:1–22.

    Google Scholar 

  64. Landgraf R. Meglitinide analogues in the treatment of type 2 diabetes mellitus. Drugs Aging. 2000;17:411–25.

    Article  CAS  PubMed  Google Scholar 

  65. Dornhorst A. Insulinotropic meglitinide analogues. Lancet. 2001;358:1709–15.

    Article  CAS  PubMed  Google Scholar 

  66. Davies M. Nateglinide: better post-prandial glucose control. Prescriber. 2002;13:17–27.

    Google Scholar 

  67. Bailey CJ, Turner RC. Metformin. N Engl J Med. 1996;334:574–9.

    Article  CAS  PubMed  Google Scholar 

  68. Cusi K, DeFronzo RA. Metformin: a review of its metabolic effects. Diabetes Rev. 1998;6:89–131.

    Google Scholar 

  69. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in the mechanism of action of metformin. J Clin Invest. 2001;108:1167–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. UKPDS group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352:854–65.

    Article  Google Scholar 

  71. Howlett HCS, Bailey CJ. A risk-benefit assessment of metformin in type 2 diabetes mellitus. In: Aj K, editor. Drug treatment of type 2 diabetes. Auckland: Adis books; 2000. p. 61–7.

    Google Scholar 

  72. Sulkin T, Bosman D, Krentz AJ. Contraindications to metformin therapy in patients with NIDDM. Diabetes Care. 1997;20:925–8.

    Article  CAS  PubMed  Google Scholar 

  73. Day C. Thiazolindiones: a new class of antidiabetic drugs. Diabet Med. 1999;16:1–14.

    Article  Google Scholar 

  74. Rosen ED, Speigelman BM. PPAR-Gamma: a nuclear regulator of metabolism, differentiation and cell growth. J Biol Chem. 2001;276:37731–4.

    Article  CAS  PubMed  Google Scholar 

  75. Fasshauer M, Paschke R. Regulation of adipocytokines and insulin resistance. Diabetologia. 2003;46:1594–603.

    Article  CAS  PubMed  Google Scholar 

  76. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med. 2007;356:2457–71.

    Article  CAS  PubMed  Google Scholar 

  77. European Medicine Agency, 2010. https://www.ema.europa.eu/en/medicines/human/EPAR/avandia. Accesed 9/23/2010

  78. Home PD, Pocock SJ, Beck-Nielsen H, Curtis PS, Gomis R, Hanefeld M, et al. Rosiglitazone evaluated for cardiovascular outcome in oral agent combination for type 2 diabetes (RECORD): a multicenter, randomized, open label trial. Lancet. 2009;373:2125–35.

    Article  CAS  PubMed  Google Scholar 

  79. Avandia [package insert]. Research Triangle Park, NC:Glaxosmithkline;2011.

  80. Erdmann E, et al. The effect of pioglitazone on recurrent myocardial infarction in 2,445 patients with type 2 diabetes and previous myocardial infarction: result from PROactive study. J Am Cardiol. 2007;49:1772–80.

    Article  CAS  Google Scholar 

  81. Inzucchi SE, Viscoli CM, Young LH. Pioglitazone prevents diabetes in patients with insulin resistance and cerebrovascular disease. Diabetes Care. 2016;39(10):1684–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Loke YK, Singh S, Furberg CD. Long term use of thiazolindiones and fractures in type 2 diabetes: a meta-analysis. CMAJ. 2009;180:32–9.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lebovitz HE. Alpha –glucosidase inhibitors as agents in the treatment of diabetes. Diabetes Revs. 1998;6:132–45.

    Google Scholar 

  84. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M, et al. Acarbose for the prevention of diabetes mellitus: the STOP-NIDDM randomized trial. STOP_NIDDM Trial research group. Lancet. 2002;359:2072–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faramarz Ismail-Beigi.

Ethics declarations

Conflict of Interest

Laleh Razavi-Nematollahi declares that she has no conflict of interest. Faramarz Ismail-Beigi is a consultant to COVANCE and Sanofi and has received research grants from Novo Nordisk.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pharmacologic Treatment of Type 2 Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razavi-Nematollahi, L., Ismail-Beigi, F. Adverse Effects of Glycemia-Lowering Medications in Type 2 Diabetes. Curr Diab Rep 19, 132 (2019). https://doi.org/10.1007/s11892-019-1266-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-019-1266-7

Keywords

Navigation