Skip to main content

Advertisement

Log in

Diabetes and Cardiovascular Disease: an Update

  • Other Forms of Diabetes and Its Complications (JJ Nolan and H Thabit, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cardiovascular disease (CVD) is the leading cause of mortality in people with diabetes. Our aim was to review the pathophysiology of CVD in diabetes, review related landmark trials, and discuss the cardiovascular benefit of glucose-lowering agents. We have also discussed the role of controversial anti-platelet therapy.

Recent Findings

Recent studies have shown the impact of glucose-lowering agents on CVD in people with diabetes. Statins are now recommended for all patients with diabetes over the age of 40 regardless of the LDL level given the cardiovascular benefit of these drugs. Current recommendations suggest a blood pressure < 130/80 for individuals with high cardiovascular risk.

Summary

Cardiovascular risk reduction should be an important part of the management of diabetes. Focusing solely on glycemic control may not be the best therapeutic strategy. Multifactorial risk reduction should be taken into account. Lipid-lowering agents and anti-hypertensives should be a corner stone of treatment of diabetes. With currently available data, glucose-lowering agents with cardiovascular benefit should be started early in the disease process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Control CfD, Prevention. National diabetes statistics report, 2017. Atlanta: Centers for Disease Control and Prevention; 2017.

    Google Scholar 

  2. Association AD. Economic costs of diabetes in the US in 2017. Diabetes Care. 2018;41(5):917–28.

    Google Scholar 

  3. Booth GL, Kapral MK, Fung K, Tu JV. Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: a population-based retrospective cohort study. Lancet. 2006;368(9529):29–36.

    PubMed  Google Scholar 

  4. Lee WL, Cheung AM, Cape D, Zinman B. Impact of diabetes on coronary artery disease in women and men: a meta-analysis of prospective studies. Diabetes Care. 2000;23(7):962–8.

    CAS  PubMed  Google Scholar 

  5. Stamler J, Vaccaro O, Neaton JD, Wentworth D, Group MRFITR. Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the multiple risk factor intervention trial. Diabetes Care. 1993;16(2):434–44.

    CAS  PubMed  Google Scholar 

  6. Sowers JR. Obesity as a cardiovascular risk factor. Am J Med. 2003;115(8):37–41.

    Google Scholar 

  7. Randle P, Garland P, Hales C, Newsholme E. The glucose fatty-acid cycle its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;281(7285):785–9.

    Google Scholar 

  8. Mooradian AD. Dyslipidemia in type 2 diabetes mellitus. Nat Rev Endocrinol. 2009;5(3):150–9.

    CAS  Google Scholar 

  9. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117(1):175–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. De Pergola G, De Mitrio V, Giorgino F, Sciaraffia M, Minenna A, Di Bari L, et al. Increase in both pro-thrombotic and anti-thrombotic factors in obese premenopausal women: relationship with body fat distribution. Int J Obes. 1997;21(7):527–35.

    Google Scholar 

  11. Aroor AR, DeMarco V, Jia G, Sun Z, Nistala R, Meininger GA, et al. The role of tissue renin-angiotensin-aldosterone system in the development of endothelial dysfunction and arterial stiffness. Front Endocrinol. 2013;4:161.

    Google Scholar 

  12. Bornfeldt KE, Tabas I. Insulin resistance, hyperglycemia, and atherosclerosis. Cell Metab. 2011;14(5):575–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sowers JR. Hypertension and vascular disease. Hypertension. 2013;61(5):943–7.

    CAS  PubMed  Google Scholar 

  14. Vanessa Fiorentino T, Prioletta A, Zuo P, Folli F. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr Pharm Des. 2013;19(32):5695–703.

    Google Scholar 

  15. Li Q, Verma IM. NF-κB regulation in the immune system. Nat Rev Immunol. 2002;2(10):725–34.

    CAS  PubMed  Google Scholar 

  16. Adhikari N, Basi DL, Carlson M, Mariash A, Hong Z, Lehman U, et al. Increase in GLUT1 in smooth muscle alters vascular contractility and increases inflammation in response to vascular injury. Arterioscler Thromb Vasc Biol. 2011;31(1):86–94.

    CAS  PubMed  Google Scholar 

  17. Regan TJ, Lyons MM, Ahmed SS, Levinson GE, Oldewurtel HA, Ahmad MR, et al. Evidence for cardiomyopathy in familial diabetes mellitus. J Clin Invest. 1977;60(4):885–99.

    PubMed Central  Google Scholar 

  18. Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol. 1972;30(6):595–602.

    CAS  PubMed  Google Scholar 

  19. Mizushige K, Yao L, Noma T, Kiyomoto H, Yu Y, Hosomi N, et al. Alteration in left ventricular diastolic filling and accumulation of myocardial collagen at insulin-resistant prediabetic stage of a type II diabetic rat model. Circulation. 2000;101(8):899–907.

    CAS  PubMed  Google Scholar 

  20. •• Jia G, Hill MA, Sowers JR. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res. 2018;122(4):624–38. Diabetic cardiomyopathy can occur in patients without coronary artery disease or other conventional risk factors. This review discusses mechanisms for diabetic cardiomyopathy and stratifies for prevention and treatment.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev. 2004;25(4):543–67.

    CAS  PubMed  Google Scholar 

  22. •• Care D. Standards of medical care in diabetes 2019. Diabetes Care. 2019;42:S81. Annual update from American Diabetes Association gives current guidelines and changes for the year regarding the care for patients with diabetes.

    Google Scholar 

  23. •• Garber AJ, Abrahamson MJ, Barzilay JI, Blonde L, Bloomgarden ZT, Bush MA, et al. Consensus statement by the American association of clinical endocrinologists and American college of endocrinology on the comprehensive type 2 diabetes management algorithm–2019 executive summary. Endoc Pract. 2019;25(1):69–100. Important management algorithm that guides evidence-based patient care.

    Google Scholar 

  24. Group DPPR. The diabetes prevention program (DPP): description of lifestyle intervention. Diabetes Care. 2002;25(12):2165–71.

    Google Scholar 

  25. Group LAR. Eight-year weight losses with an intensive lifestyle intervention: the look AHEAD study. Obesity. 2014;22(1):5–13.

    Google Scholar 

  26. Salas-Salvadó J, Díaz-López A, Ruiz-Canela M, Basora J, Fitó M, Corella D, et al. Effect of a lifestyle intervention program with energy-restricted mediterranean diet and exercise on weight loss and cardiovascular risk factors: one-year results of the PREDIMED-plus trial. Diabetes Care. 2019;42(5):777–88.

    PubMed  Google Scholar 

  27. Lean ME, Leslie WS, Barnes AC, Brosnahan N, Thom G, McCombie L, et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet. 2018;391(10120):541–51.

    PubMed  Google Scholar 

  28. Control D, Group CTR. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.

    Google Scholar 

  29. Cleary PA, Orchard TJ, Genuth S, Wong ND, Detrano R, Backlund J-YC, et al. The effect of intensive glycemic treatment on coronary artery calcification in type 1 diabetic participants of the diabetes Control and complications trial/epidemiology of diabetes interventions and complications (DCCT/EDIC) study. Diabetes. 2006;55(12):3556–65.

    CAS  PubMed  Google Scholar 

  30. King P, Peacock I, Donnelly R. The UK prospective diabetes study (UKPDS): clinical and therapeutic implications for type 2 diabetes. Br J Clin Pharmacol. 1999;48(5):643–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HAW. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359(15):1577–89.

    CAS  PubMed  Google Scholar 

  32. Genuth S, Eastman R, Kahn R, Klein R, Lachin J, Lebovitz H, et al. Implications of the United Kingdom prospective diabetes study. Diabetes Care. 2003;26:S28.

    PubMed  Google Scholar 

  33. Gæde P, Vedel P, Parving H-H, Pedersen O. Intensified multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: the Steno type 2 randomised study. Lancet. 1999;353(9153):617–22.

    PubMed  Google Scholar 

  34. Gæde P, Oellgaard J, Carstensen B, Rossing P, Lund-Andersen H, Parving H-H, et al. Years of life gained by multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: 21 years follow-up on the Steno-2 randomised trial. Diabetologia. 2016;59(11):2298–307.

    PubMed  PubMed Central  Google Scholar 

  35. Group AC. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72.

    Google Scholar 

  36. Group AtCCRiDS. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545–59.

    Google Scholar 

  37. Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360(2):129–39.

    CAS  PubMed  Google Scholar 

  38. • Reaven PD, Emanuele NV, Wiitala WL, Bahn GD, Reda DJ, McCarren M, et al. Intensive glucose control in patients with type 2 diabetes—15-year follow-up. NEJM. 2019;380:2215–24. https://doi.org/10.1056/NEJMoa1806802. Important follow-up trial that did not show metabolic memory of legacy effect as oppsed to DCCT and UKPDS long-term trials.

    Article  CAS  PubMed  Google Scholar 

  39. Investigators OT. Rationale, design, and baseline characteristics for a large international trial of cardiovascular disease prevention in people with dysglycemia: the ORIGIN Trial (Outcome Reduction with an Initial Glargine Intervention). Am Heart J. 2008;155(1):26. e1–e13.

    Google Scholar 

  40. Turnbull F, Abraira C, Anderson RJ, Byington R, Chalmers J, Duckworth W, et al. Intensive glucose control and macrovascular outcomes in type 2 diabetes. Berlin: Springer; 2009.

    Google Scholar 

  41. Merino J, Leong A, Posner DC, Porneala B, Masana L, Dupuis J, et al. Genetically driven hyperglycemia increases risk of coronary artery disease separately from type 2 diabetes. Diabetes Care. 2017;40(5):687–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.

    CAS  PubMed  Google Scholar 

  43. Neal B, Perkovic V, Mahaffey KW, De Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57.

    CAS  PubMed  Google Scholar 

  44. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–57.

    CAS  PubMed  Google Scholar 

  45. Pfeffer MA, Claggett B, Diaz R, Dickstein K, Gerstein HC, Køber LV, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015;373(23):2247–57.

    CAS  PubMed  Google Scholar 

  46. Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF, Nauck MA, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375(4):311–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Marso SP, Bain SC, Consoli A, Eliaschewitz FG, Jódar E, Leiter LA, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375(19):1834–44.

    CAS  PubMed  Google Scholar 

  48. Husain M, Birkenfeld AL, Donsmark M, Dungan K, Eliaschewitz FG, Franco DR, et al. Oral Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2019;381:841–51.

    CAS  PubMed  Google Scholar 

  49. Holman RR, Bethel MA, Mentz RJ, Thompson VP, Lokhnygina Y, Buse JB, et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017;377(13):1228–39.

    CAS  PubMed  Google Scholar 

  50. Bhatt DL, editor. Saxagliptin Assessment of Vascular Outcomes Recorded in patients with diabetes mellitus (SAVOR)–TIMI 53. Presentation delivered at the European Association for the Study of Diabetes 49th annual meeting on; 2013.

  51. •• Cutshall BT, Twilla JD, Olinger AS, Oliphant CS. A review on cardiovascular effects of newer hypoglycaemic medications. Ann Med. 2017;49(7):603–12. Reviews the importance of selecting medications that provide diabetes control while maintaining cardiovascular safety.

    CAS  PubMed  Google Scholar 

  52. White WB, Cannon CP, Heller SR, Nissen SE, Bergenstal RM, Bakris GL, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes. N Engl J Med. 2013;369(14):1327–35.

    CAS  PubMed  Google Scholar 

  53. Green JB, Bethel MA, Armstrong PW, Buse JB, Engel SS, Garg J, et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;373(3):232–42.

    CAS  PubMed  Google Scholar 

  54. Association AD. 10. Cardiovascular disease and risk management: standards of medical care in diabetes—2019. Diab Care. 2019;42(Supplement 1):S103–S23.

    Google Scholar 

  55. Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, Neil HAW, Livingstone SJ, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the collaborative atorvastatin diabetes study (CARDS): multicentre randomised placebo-controlled trial. Lancet. 2004;364(9435):685–96.

    CAS  PubMed  Google Scholar 

  56. Cannon CP, Braunwald E, McCabe CH, Rader DJ, Rouleau JL, Belder R, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med. 2004;350(15):1495–504.

    CAS  PubMed  Google Scholar 

  57. Group AS. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1563–74.

    Google Scholar 

  58. Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372(25):2387–97.

    CAS  PubMed  Google Scholar 

  59. • Ghadban R, Enezate T, Omran J, Almourani R, Singla A, Balla S. Clinical outcomes of PCSK9Is: a meta-analysis of randomized clinical trials. Cardiovasc Diag Ther. 2017;7(6):598–606. This meta-analysis shows the importance of PCSK9 inhibitors in improving clinical outcomes in patients at high risk for atherosclerotic cardiovascular disease.

    Google Scholar 

  60. Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376(18):1713–22.

    CAS  PubMed  Google Scholar 

  61. Handelsman Y, Lepor NE. PCSK9 inhibitors in lipid management of patients with diabetes mellitus and high cardiovascular risk: a review. J Am Heart Assoc. 2018;7(13):e008953.

    PubMed  PubMed Central  Google Scholar 

  62. Giugliano RP, Pedersen TR, Park J-G, De Ferrari GM, Gaciong ZA, Ceska R, et al. Clinical efficacy and safety of achieving very low LDL-cholesterol concentrations with the PCSK9 inhibitor evolocumab: a prespecified secondary analysis of the FOURIER trial. Lancet. 2017;390(10106):1962–71.

    CAS  PubMed  Google Scholar 

  63. Lastra G, Syed S, Kurukulasuriya LR, Manrique C, Sowers JR. Type 2 diabetes mellitus and hypertension: an update. Endocrinol Metab Clin. 2014;43(1):103–22.

    Google Scholar 

  64. Jia G, Aroor AR, Martinez-Lemus LA, Sowers JR. Potential role of antihypertensive medications in preventing excessive arterial stiffening. Curr Hypertens Rep. 2018;20(9):76.

    PubMed  PubMed Central  Google Scholar 

  65. James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the eighth joint National Committee (JNC 8). Jama. 2014;311(5):507–20.

    CAS  PubMed  Google Scholar 

  66. Group AS. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1575–85.

    Google Scholar 

  67. Cushman WC, Evans GW, Cutler JA. Long-term cardiovascular effects of 4.9 years of intensive blood pressure control in type 2 diabetes mellitus: the action to control cardiovascular risk in diabetes follow-on blood-pressure study. Am Heart Assoc. 2015.

  68. Group SR. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373(22):2103–16.

    Google Scholar 

  69. Margolis KL, O’Connor PJ, Morgan TM, Buse JB, Cohen RM, Cushman WC, et al. Outcomes of combined cardiovascular risk factor management strategies in type 2 diabetes: the ACCORD randomized trial. Diabetes Care. 2014;37(6):1721–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. • Whaley-Connell A, Sowers JR. Blood pressure related outcomes in a diabetic population. Hypertension. 2016;68(1):34. Evidence-based review of BP control in patients with diabetes.

    CAS  PubMed  Google Scholar 

  71. Emdin CA, Rahimi K, Neal B, Callender T, Perkovic V, Patel A. Blood pressure lowering in type 2 diabetes: a systematic review and meta-analysis. Jama. 2015;313(6):603–15.

    PubMed  Google Scholar 

  72. Wu Z, Jin C, Vaidya A, Jin W, Huang Z, Wu S, et al. Longitudinal patterns of blood pressure, incident cardiovascular events, and all-cause mortality in normotensive diabetic people. Hypertension. 2016;68(1):71–7.

    CAS  PubMed  Google Scholar 

  73. •• Rahman F, McEvoy JW, Ohkuma T, Marre M, Hamet P, Harrap S, et al. Effects of blood pressure lowering on clinical outcomes according to baseline blood pressure and cardiovascular risk in patients with type 2 diabetes mellitus: the ADVANCE trial. Hypertension. 2019:HYPERTENSIONAHA.118.12414. This study shows that adults with DM appear to benefit from more intensive BP management than what current guidelines recommend.

  74. Zoungas S, Chalmers J, Bruce N, Billot Laurent , Li Q, et al ADVANCE On Collaborative group- Follow uo of Blood pressure 2 Lowering and glucose control in Type 2 diabetes New Eng J Med 2014;371:1392-1406

  75. Investigators O. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358(15):1547–59.

    Google Scholar 

  76. • Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJ, Charytan DM, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. New Engl J Med. 2019. Effect of an antidiabetic agent on reducing the risks of kidney disease and cardiovascular events.

  77. Khangura D, Kurukulasuriya LR, Whaley-Connell A, Sowers JR. Diabetes and hypertension: clinical update. Am J Hypertens. 2018;31(5):515–21. https://doi.org/10.1093/ajh/hpy025.

    Article  CAS  PubMed  Google Scholar 

  78. • Baigent C, Blackwell L, Collins R, Emberson J, Godwin J, Peto R, et al. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Elsevier; 2009. Strong message about aspirin in primary prevention. Aaspirin is of uncertain net value as the reduction in occlusive events needs to be weighed against any increase in major bleeds.

  79. Gaziano JM, Brotons C, Coppolecchia R, Cricelli C, Darius H, Gorelick PB, et al. Use of aspirin to reduce risk of initial vascular events in patients at moderate risk of cardiovascular disease (ARRIVE): a randomised, double-blind, placebo-controlled trial. Lancet. 2018;392(10152):1036–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. McNeil JJ, Nelson MR, Woods RL, Lockery JE, Wolfe R, Reid CM, et al. Effect of aspirin on all-cause mortality in the healthy elderly. N Engl J Med. 2018;379(16):1519–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Mcneil J, Wolfe R, Woods, R, Tonkin A, Geoffrey A et al ASPree investigator group. Effect of Aspirin on cardiovascular events and bleeding in the healthy Elderly New End J Med 2018 379:1509-1518

  82. Beck RW, Riddlesworth T, Ruedy K, Ahmann A, Bergenstal R, Haller S, et al. Effect of continuous glucose monitoring on glycemic control in adults with type 1 diabetes using insulin injections: the DIAMOND randomized clinical trial. Jama. 2017;317(4):371–8.

    CAS  PubMed  Google Scholar 

  83. Zhou JJ, Koska J, Bahn G, Reaven P. Glycaemic variation is a predictor of all-cause mortality in the veteran affairs diabetes trial. Diabetes and Vascular Disease Research. 2019;16(2):178–85.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Brenda Hunter for her assistance in preparing this review by helping with the figure.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. Romayne Kurukulasuriya or James Sowers.

Ethics declarations

Conflict of Interest

Rajaa Almourani, Bhavana Chinnakotla, Richa Patel, L. Romayne Kurukulasuriya, and James Sowers declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Other Forms of Diabetes and Its Complications

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almourani, R., Chinnakotla, B., Patel, R. et al. Diabetes and Cardiovascular Disease: an Update. Curr Diab Rep 19, 161 (2019). https://doi.org/10.1007/s11892-019-1239-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-019-1239-x

Keywords

Navigation