Skip to main content

Advertisement

Log in

Stress Hyperglycemia in Patients with Tuberculosis Disease: Epidemiology and Clinical Implications

  • Other Forms of Diabetes and Its Complications (JJ Nolan and H Thabit, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The intersection of tuberculosis (TB) disease and type 2 diabetes mellitus is severely hindering global efforts to reduce TB burdens. Diabetes increases the risk of developing TB disease and negatively impacts TB treatment outcomes including culture conversion time, mortality risk, and TB relapse. Recent evidence also indicates plausible mechanisms by which TB disease may influence the pathogenesis and incidence of diabetes. We review the epidemiology of stress hyperglycemia in patients with TB and the pathophysiologic responses to TB disease that are related to established mechanisms of stress hyperglycemia. We also consider clinical implications of stress hyperglycemia on TB treatment, and the role of TB disease on risk of diabetes post-TB.

Recent Findings

Among patients with TB disease, the development of stress hyperglycemia may influence the clinical manifestation and treatment response of some patients and can complicate diabetes diagnosis.

Summary

Research is needed to elucidate the relationship between TB disease and stress hyperglycemia and determine the extent to which stress hyperglycemia impacts TB treatment response. Currently, there is insufficient data to support clinical recommendations for glucose control among patients with TB disease, representing a major barrier for efforts to improve treatment outcomes for patients with TB and diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. Harries AD, Lin Y, Satyanarayana S, Lonnroth K, Li L, Wilson N, et al. The looming epidemic of diabetes-associated tuberculosis: learning lessons from HIV-associated tuberculosis. Int J Tuberc Lung Dis. 2011;15(11):1436–44, i. https://doi.org/10.5588/ijtld.11.0503.

    Article  PubMed  CAS  Google Scholar 

  2. Magee MJ, Narayan KM. Global confluence of infectious and non-communicable diseases—the case of type 2 diabetes. Prev Med. 2013;57(3):149–51. https://doi.org/10.1016/j.ypmed.2013.05.027S0091-7435(13)00190-4.

    Article  PubMed  CAS  Google Scholar 

  3. WHO. Global tuberculosis report 2017. Geneva: World Health Organization; 2017.

    Google Scholar 

  4. IDF. Diabetes Atlas. 8th ed. Brussels: International Diabetes Federation; 2017.

    Google Scholar 

  5. Lee PH, Fu H, Lee MR, Magee M, Lin HH. Tuberculosis and diabetes in low and moderate tuberculosis incidence countries. Int J Tuberc Lung Dis. 2018;22(1):7–16. https://doi.org/10.5588/ijtld.17.0329.

    Article  PubMed  Google Scholar 

  6. Baker MA, Harries AD, Jeon CY, Hart JE, Kapur A, Lonnroth K, et al. The impact of diabetes on tuberculosis treatment outcomes: a systematic review. BMC Med. 2011;9(1):81. https://doi.org/10.1186/1741-7015-9-81.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jeon CY, Murray MB. Diabetes mellitus increases the risk of active tuberculosis: a systematic review of 13 observational studies. PLoS Med. 2008;5(7):e152. https://doi.org/10.1371/journal.pmed.0050152.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Collaborators GBDT. The global burden of tuberculosis: results from the global burden of disease study 2015. Lancet Infect Dis. 2017; https://doi.org/10.1016/S1473-3099(17)30703-X.

  9. Barron MM, Shaw KM, Bullard KM, Ali MK, Magee MJ. Diabetes is associated with increased prevalence of latent tuberculosis infection: findings from the National Health and nutrition examination survey, 2011-2012. Diabetes Res Clin Pract. 2018;139:366–79. https://doi.org/10.1016/j.diabres.2018.03.022.

    Article  PubMed  Google Scholar 

  10. Hensel RL, Kempker RR, Tapia J, Oladele A, Blumberg HM, Magee MJ. Increased risk of latent tuberculous infection among persons with pre-diabetes and diabetes mellitus. Int H Tuberc Lung Dis. 2016;20(1):71–8. https://doi.org/10.5588/ijtld.15.0457.

    Article  CAS  Google Scholar 

  11. • Huaman MA, Ticona E, Miranda G, Kryscio RJ, Mugruza R, Aranda E, et al. The relationship between latent tuberculosis infection and acute myocardial infarction. Clin Infect Dis. 2018;66(6):886–92. https://doi.org/10.1093/cid/cix910. A study that reported higher incidence of myocardial infarction among persons with latent TB infection.

    Article  PubMed  Google Scholar 

  12. • Greco G, Ferket BS, D’Alessandro DA, Shi W, Horvath KA, Rosen A, et al. Diabetes and the Association of Postoperative Hyperglycemia With Clinical and Economic Outcomes in Cardiac Surgery. Diabetes Care. 2016;39(3):408–17. https://doi.org/10.2337/dc15-1817. A multicenter cohort study of cardiac surgery patients that demonstrated a U-shaped relationshp between glucose levels and severity of hospital outcomes among patients with insulin treated diabetes.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Gunst J, Van den Berghe G. Acute severe illness in diabetes patients: is tolerating hyperglycemia beneficial? J Thorac Dis. 2016;8(11):3012–5. https://doi.org/10.21037/jtd.2016.11.55.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jeon CY, Harries AD, Baker MA, Hart JE, Kapur A, Lonnroth K, et al. Bi-directional screening for tuberculosis and diabetes: a systematic review. Tropical Med Int Health. 2010;15(11):1300–14. https://doi.org/10.1111/j.1365-3156.2010.02632.x.

    Article  Google Scholar 

  15. Harries AD, Murray MB, Jeon CY, Ottmani SE, Lonnroth K, Barreto ML, et al. Defining the research agenda to reduce the joint burden of disease from diabetes mellitus and tuberculosis. Tropical Med Int Health. 2010;15(6):659–63. https://doi.org/10.1111/j.1365-3156.2010.02523.x.

    Article  Google Scholar 

  16. Li L, Lin Y, Mi F, Tan S, Liang B, Guo C, et al. Screening of patients with tuberculosis for diabetes mellitus in China. Trop Med Int Health. 2012;17(10):1294–301. https://doi.org/10.1111/j.1365-3156.2012.03068.x.

  17. Duangrithi D, Thanachartwet V, Desakorn V, Jitruckthai P, Phojanamongkolkij K, Rienthong S, et al. Impact of diabetes mellitus on clinical parameters and treatment outcomes of newly diagnosed pulmonary tuberculosis patients in Thailand. Int J Clin Pract. 2013;67(11):1199–209. https://doi.org/10.1111/ijcp.12215.

  18. Magee MJ, Kempker RR, Kipiani M, Gandhi NR, Darchia L, Tukvadze N, et al. Diabetes mellitus is associated with cavities, smear grade, and multidrug-resistant tuberculosis in Georgia. Int J Tuberc Lung Dis. 2015;19(6):685–92. https://doi.org/10.5588/ijtld.14.0811.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Almeida-Junior JL, Gil-Santana L, Oliveira CA, Castro S, Cafezeiro AS, Daltro C, et al. Glucose metabolism disorder is associated with pulmonary tuberculosis in individuals with respiratory symptoms from Brazil. PloS One. 2016;11(4):e0153590. https://doi.org/10.1371/journal.pone.0153590.

  20. Boillat-Blanco N, Ramaiya KL, Mganga M, Minja LT, Bovet P, Schindler C, et al. Transient hyperglycemia in patients with tuberculosis in Tanzania: implications for diabetes screening algorithms. J Infect Dis. 2016;213(7):1163–72. https://doi.org/10.1093/infdis/jiv568. A study demonstrating transient hyperglycemia among patients with TB disease.

    Article  PubMed  CAS  Google Scholar 

  21. Tahir Z, Ahmad MU, Akhtar AM, Yaqub T, Mushtaq MH, Javed H. Diabetes mellitus among tuberculosis patients: a cross sectional study from Pakistan. Afr Health Sci. 2016;16(3):671–6. https://doi.org/10.4314/ahs.v16i3.5.

  22. Workneh MH, Bjune GA, Yimer SA. Prevalence and associated factors of diabetes mellitus among tuberculosis patients in South-Eastern Amhara Region, Ethiopia: A cross sectional study. PloS One. 2016;11(1):e0147621. https://doi.org/10.1371/journal.pone.0147621.

  23. •• Kornfeld H, West K, Kane K, Kumpatla S, Zacharias RR, Martinez-Balzano C, et al. High prevalence and heterogeneity of diabetes in patients with TB in South India: a report from the Effects of Diabetes on Tuberculosis Severity (EDOTS) Study. Chest. 2016;149(6):1501–8. https://doi.org/10.1016/j.chest.2016.02.675. First study that carefully measured new diabetes diagnoses in patients with TB disease and compared culture conversion rates by type of diabetes diagnosis.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Abdelbary BE, Garcia-Viveros M, Ramirez-Oropesa H, Rahbar MH, Restrepo BI. Tuberculosis-diabetes epidemiology in the border and non-border regions of Tamaulipas, Mexico. Tuberculosis. 2016;101S:S124–S34. https://doi.org/10.1016/j.tube.2016.09.024.

  25. Aftab H, Christensen DL, Ambreen A, Jamil M, Garred P, Petersen JH, et al. Tuberculosis-related diabetes: is it reversible after complete treatment? Am J Trop Med Hyg. 2017;97(4):1099–102. https://doi.org/10.4269/ajtmh.16-0816.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lee EH, Lee JM, Kang YA, Leem AY, Kim EY, Jung JY et al. Prevalence and impact of diabetes mellitus among patients with active pulmonary tuberculosis in South Korea. Lung. 2017;195(2):209–15. https://doi.org/10.1007/s00408-017-9978-4.

  27. Mave V, Meshram S, Lokhande R, Kadam D, Dharmshale S, Bharadwaj R, et al. Prevalence of dysglycemia and clinical presentation of pulmonary tuberculosis in Western India. Int J Tuberc Lung Dis. 2017;21(12):1280–7. https://doi.org/10.5588/ijtld.17.0474.

  28. Tabarsi P, Baghaei P, Marjani M, Vollmer WM, Masjedi MR, Harries AD. Changes in glycosylated haemoglobin and treatment outcomes in patients with tuberculosis in Iran: a cohort study. J Diabetes Metab Disord. 2014;13(1):123. https://doi.org/10.1186/s40200-014-0123-0.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lin Y, Yuan Y, Zhao X, Liu J, Qiu L, He X, et al. The change in blood glucose levels in tuberculosis patients before and during anti-tuberculosis treatment in China. Glob Health Action. 2017;10(1):1289737. https://doi.org/10.1080/16549716.2017.1289737.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Clark ML, Utz SW. Social determinants of type 2 diabetes and health in the United States. World J Diabetes. 2014;5(3):296–304. https://doi.org/10.4239/wjd.v5.i3.296.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Leahy S, AM OH, N OL, Healy M, McCormack M, Kenny RA, et al. Prevalence and correlates of diagnosed and undiagnosed type 2 diabetes mellitus and pre-diabetes in older adults: findings from the Irish longitudinal study on ageing (TILDA). Diabetes Res Clin Pract. 2015;110(3):241–9. https://doi.org/10.1016/j.diabres.2015.10.015.

    Article  PubMed  CAS  Google Scholar 

  32. Beagley J, Guariguata L, Weil C, Motala AA. Global estimates of undiagnosed diabetes in adults. Diabetes Res Clin Pract. 2014;103(2):150–60. https://doi.org/10.1016/j.diabres.2013.11.001.

    Article  PubMed  Google Scholar 

  33. Menke A, Casagrande S, Aviles-Santa ML, Cowie CC. Factors associated with being unaware of having diabetes. Diabetes Care. 2017;40(5):e55–e6. https://doi.org/10.2337/dc16-2626.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cai J, Wang X, Ma A, Wang Q, Han X, Li Y. Factors associated with patient and provider delays for tuberculosis diagnosis and treatment in Asia: a systematic review and meta-analysis. PLoS One. 2015;10(3):e0120088. https://doi.org/10.1371/journal.pone.0120088.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Li Y, Ehiri J, Tang S, Li D, Bian Y, Lin H, et al. Factors associated with patient, and diagnostic delays in Chinese TB patients: a systematic review and meta-analysis. BMC Med. 2013;11:156. https://doi.org/10.1186/1741-7015-11-156.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dungan KM, Braithwaite SS, Preiser J-C. Stress hyperglycaemia. Lancet. 2009;373(9677):1798–807. https://doi.org/10.1016/S0140-6736(09)60553-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. McCowen KC, Malhotra A, Bistrian BR. Stress-induced hyperglycemia. Crit Care Clin. 2001;17(1):107–24. https://doi.org/10.1016/S0749-0704(05)70154-8.

    Article  PubMed  CAS  Google Scholar 

  38. Leonidou L, Mouzaki A, Michalaki M, DeLastic AL, Kyriazopoulou V, Bassaris HP, et al. Cytokine production and hospital mortality in patients with sepsis-induced stress hyperglycemia. J Infect. 2007;55(4):340–6. https://doi.org/10.1016/j.jinf.2007.05.177.

    Article  PubMed  Google Scholar 

  39. Marik PE, Raghavan M. Stress-hyperglycemia, insulin and immunomodulation in sepsis. Intensive Care Med. 2004;30(5):748–56. https://doi.org/10.1007/s00134-004-2167-y.

    Article  PubMed  Google Scholar 

  40. McGuinness OP. Defective glucose homeostasis during infection. Annu Rev Nutr. 2005;25:9–35. https://doi.org/10.1146/annurev.nutr.24.012003.132159.

    Article  PubMed  CAS  Google Scholar 

  41. Kleynhans L, Ruzive S, Ehlers L, Thiart L, Chegou NN, Conradie M, Kriel M, Stanley K, van der Spuy GD, Kidd M, van Helden PD, Walzl G, Ronacher K Changes in host immune–endocrine relationships during tuberculosis treatment in patients with cured and failed treatment outcomes. Front Immunol 2017; 8. doi: 10.3389/fimmu.2017.00690.

  42. • Malherbe ST, Shenai S, Ronacher K, Loxton AG, Dolganov G, Kriel M, et al. Persisting positron emission tomography lesion activity and Mycobacterium tuberculosis mRNA after tuberculosis cure. Nat Med. 2016;22(10):1094–100. https://doi.org/10.1038/nm.4177. A study demonstrating on-going pulmonary inflammation at the end of treatment among patients successfully cured for TB disease in South Africa.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Lerner TR, Borel S, Gutierrez MG. The innate immune response in human tuberculosis. Cell Microbiol. 2015;17(9):1277–85. https://doi.org/10.1111/cmi.12480.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Stutz MD, Clark MP, Doerflinger M, Pellegrini M. Mycobacterium tuberculosis: rewiring host cell signaling to promote infection. J Leukoc Biol. 2018;103(2):259–68. https://doi.org/10.1002/jlb.4mr0717-277r.

    Article  PubMed  CAS  Google Scholar 

  45. Wieser V, Moschen AR, Tilg H. Inflammation, cytokines and insulin resistance: a clinical perspective. Arch Immunol Ther Exp. 2013;61(2):119–25. https://doi.org/10.1007/s00005-012-0210-1.

    Article  CAS  Google Scholar 

  46. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005;115(5):1111–9. https://doi.org/10.1172/jci25102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. de Luca C, Olefsky JM. Inflammation and insulin resistance. FEBS Lett. 2008;582(1):97–105. https://doi.org/10.1016/j.febslet.2007.11.057.

    Article  PubMed  CAS  Google Scholar 

  48. Bottasso O, Bay ML, Besedovsky H, del Rey A. Immunoendocrine alterations during human tuberculosis as an integrated view of disease pathology. Neuroimmunomodulation. 2009;16(2):68–77. https://doi.org/10.1159/000180261.

    Article  PubMed  CAS  Google Scholar 

  49. Besedovsky HO, del Rey A, Klusman I, Furukawa H, Monge Arditi G, Kabiersch A. Cytokines as modulators of the hypothalamus-pituitary-adrenal axis. J Steroid Biochem Mol Biol. 1991;40(4–6):613–8.

    Article  PubMed  CAS  Google Scholar 

  50. • Opolot JO, Theron AJ, Anderson R, Feldman C. Acute phase proteins and stress hormone responses in patients with newly diagnosed active pulmonary tuberculosis. Lung. 2015;193(1):13–8. https://doi.org/10.1007/s00408-014-9680-8. A study that measured hormone responses among patients with TB disease from South Africa.

    Article  PubMed  CAS  Google Scholar 

  51. Rey AD, Mahuad CV, Bozza VV, Bogue C, Farroni MA, Bay ML, et al. Endocrine and cytokine responses in humans with pulmonary tuberculosis. Brain Behav Immun. 2007;21(2):171–9. https://doi.org/10.1016/j.bbi.2006.06.005.

    Article  PubMed  CAS  Google Scholar 

  52. Bottasso O, Bay ML, Besedovsky H, del Rey A. The immuno-endocrine component in the pathogenesis of tuberculosis. Scand J Immunol. 2007;66(2–3):166–75. https://doi.org/10.1111/j.1365-3083.2007.01962.x.

    Article  PubMed  CAS  Google Scholar 

  53. Kim S-H, Park M-J. Effects of growth hormone on glucose metabolism and insulin resistance in human. Ann Pediatr Endocrinol Metab. 2017;22(3):145–52. https://doi.org/10.6065/apem.2017.22.3.145.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Xiu F, Stanojcic M, Diao L, Jeschke MG. Stress hyperglycemia, insulin treatment, and innate immune cells. Int J Endocrinol. 2014;2014:486403. https://doi.org/10.1155/2014/486403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Rubí B, Maechler P. Minireview: new roles for peripheral dopamine on metabolic control and tumor growth: let’s seek the balance. Endocrinology. 2010;151(12):5570–81. https://doi.org/10.1210/en.2010-0745.

    Article  PubMed  CAS  Google Scholar 

  56. Li Y, Zhang M, Liu X, Cui W, Rampersad S, Li F, et al. Correlates and prevalence of hypogonadism in patients with early- and late-onset type 2 diabetes. Andrology. 2017;5(4):739–43. https://doi.org/10.1111/andr.12360.

    Article  PubMed  CAS  Google Scholar 

  57. Li C, Ford ES, Li B, Giles WH, Liu S. Association of testosterone and sex hormone-binding globulin with metabolic syndrome and insulin resistance in men. Diabetes Care. 2010;33(7):1618–24. https://doi.org/10.2337/dc09-1788.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Kupelian V, Hayes FJ, Link CL, Rosen R, McKinlay JB. Inverse association of testosterone and the metabolic syndrome in men is consistent across race and ethnic groups. J Clin Endocrinol Metab. 2008;93(9):3403–10. https://doi.org/10.1210/jc.2008-0054.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Floyd K, Glaziou P, Zumla A, Raviglione M. The global tuberculosis epidemic and progress in care, prevention, and research: an overview in year 3 of the end TB era. Lancet Respir Med. 2018;6(4):299–314. https://doi.org/10.1016/S2213-2600(18)30057-2.

    Article  PubMed  Google Scholar 

  60. Waitt CJ, Squire SB. A systematic review of risk factors for death in adults during and after tuberculosis treatment. Int J Tuberc Lung Dis. 2011;15(7):871–85. https://doi.org/10.5588/ijtld.10.0352.

    Article  PubMed  CAS  Google Scholar 

  61. Amere GA, Nayak P, Salindri AD, Venkat Narayan KM, Magee MJ. Contribution of smoking to tuberculosis incidence and mortality in high tuberculosis burden countries. Am J Epidemiol. 2018; https://doi.org/10.1093/aje/kwy081.

  62. Hannah HA, Miramontes R, Gandhi NR. Sociodemographic and clinical risk factors associated with tuberculosis mortality in the United States, 2009-2013. Public Health Rep. 2017;132(3):366–75. https://doi.org/10.1177/0033354917698117.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Huangfu P, Pearson F, Ugarte-Gil C, Critchley J. Diabetes and poor tuberculosis treatment outcomes: issues and implications in data interpretation and analysis. Int J Tuberc Lung Dis. 2017;21(12):1214–9. https://doi.org/10.5588/ijtld.17.0211.

    Article  PubMed  CAS  Google Scholar 

  64. Shewade HD, Jeyashree K, Mahajan P, Shah AN, Kirubakaran R, Rao R, et al. Effect of glycemic control and type of diabetes treatment on unsuccessful TB treatment outcomes among people with TB-diabetes: a systematic review. PLoS One. 2017;12(10):e0186697. https://doi.org/10.1371/journal.pone.0186697.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Chiang CY, Bai KJ, Lin HH, Chien ST, Lee JJ, Enarson DA, et al. The influence of diabetes, glycemic control, and diabetes-related comorbidities on pulmonary tuberculosis. PLoS One. 2015;10(3):e0121698. https://doi.org/10.1371/journal.pone.0121698.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Jorgensen ME, Faurholt-Jepsen D. Is there an effect of glucose lowering treatment on incidence and prognosis of tuberculosis? A systematic review. Curr Diab Rep. 2014;14(7):505. https://doi.org/10.1007/s11892-014-0505-1.

    Article  PubMed  Google Scholar 

  67. Magee MJ, Bloss E, Shin SS, Contreras C, Huaman HA, Ticona JC, et al. Clinical characteristics, drug resistance, and treatment outcomes among tuberculosis patients with diabetes in Peru. Int J Infect Dis. 2013;17:e404–12. https://doi.org/10.1016/j.ijid.2012.12.029.

    Article  PubMed  CAS  Google Scholar 

  68. Krinsley JS, Egi M, Kiss A, Devendra AN, Schuetz P, Maurer PM, et al. Diabetic status and the relation of the three domains of glycemic control to mortality in critically ill patients: an international multicenter cohort study. Crit Care. 2013;17(2):R37. https://doi.org/10.1186/cc12547.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Umpierrez GE, Isaacs SD, Bazargan N, You X, Thaler LM, Kitabchi AE. Hyperglycemia: an independent marker of in-hospital mortality in patients with undiagnosed diabetes. J Clin Endocrinol Metab. 2002;87(3):978–82. https://doi.org/10.1210/jcem.87.3.8341.

    Article  PubMed  CAS  Google Scholar 

  70. Investigators N-SS, Finfer S, Chittock DR, Su SY, Blair D, Foster D, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360(13):1283–97. https://doi.org/10.1056/NEJMoa0810625.

    Article  Google Scholar 

  71. Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358(2):125–39. https://doi.org/10.1056/NEJMoa070716.

    Article  PubMed  CAS  Google Scholar 

  72. Fajans SS. I. Identification of chemical diabetes. The definition of chemical diabetes. Metabolism. 1973;22(2):211–7.

    Article  PubMed  CAS  Google Scholar 

  73. Tabarsi P, Baghaei P, Hemmati N, Mirsaeidi M, Kazempour M, Mansouri D, et al. Comparison of the effectiveness of 2 treatment regimens in patients with isoniazid-resistant tuberculosis. East Mediterr Health J. 2009;15(6):1346–50.

    PubMed  CAS  Google Scholar 

  74. Podell BK, Ackart DF, Obregon-Henao A, Eck SP, Henao-Tamayo M, Richardson M, et al. Increased severity of tuberculosis in Guinea pigs with type 2 diabetes: a model of diabetes-tuberculosis comorbidity. Am J Pathol. 2014;184(4):1104–18. https://doi.org/10.1016/j.ajpath.2013.12.015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Podell BK, Ackart DF, Richardson MA, DiLisio JE, Pulford B, Basaraba RJ. A model of type 2 diabetes in the Guinea pig using sequential diet-induced glucose intolerance and streptozotocin treatment. Dis Model Mech. 2017;10(2):151–62. https://doi.org/10.1242/dmm.025593.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Podell BK, Ackart DF, Kirk NM, Eck SP, Bell C, Basaraba RJ. Non-diabetic hyperglycemia exacerbates disease severity in Mycobacterium tuberculosis infected Guinea pigs. PLoS One. 2012;7(10):e46824. https://doi.org/10.1371/journal.pone.0046824.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Jawad F, Shera AS, Memon R, Ansari G. Glucose intolerance in pulmonary tuberculosis. J Pak Med Assoc. 1995;45(9):237–8.

    PubMed  CAS  Google Scholar 

  78. Kamper-Jorgensen Z, Carstensen B, Norredam M, Bygbjerg IC, Andersen PH, Jorgensen ME. Diabetes-related tuberculosis in Denmark: effect of ethnicity, diabetes duration and year of diagnosis. Int J Tuberc Lung Dis. 2015;19(10):1169–75. https://doi.org/10.5588/ijtld.14.0932.

    Article  PubMed  CAS  Google Scholar 

  79. Pearson F, Huangfu P, Pearce M, McNally R, Unwin N, Critchley JA. Exploring the association between tuberculosis and diabetes in a UK primary care dataset. Society for Social Medicine, 60th Annual Scientific Meeting; 14-16 September 2016; University of York: Journal of Epidemiology & Community Health; 2016.

  80. Salindri AD, Wang JY, Wang CH, Wu CY, Lin HH, Magee MJ. Risk factors for incident diabetes among a cohort of patients previously treated for tuberculosis in Taiwan. Presnted at the 22nd annual international union against TB and lung disease north American regional conference, Chicago 2018.

  81. Baghaei P, Marjani M, Javanmard P, Tabarsi P, Masjedi MR. Diabetes mellitus and tuberculosis facts and controversies. J Diabetes Metab Disord. 2013;12(1):58. https://doi.org/10.1186/2251-6581-12-58.

    Article  PubMed  PubMed Central  Google Scholar 

  82. • Ali Abdelhamid Y, Kar P, Finnis ME, Phillips LK, Plummer MP, Shaw JE, et al. Stress hyperglycaemia in critically ill patients and the subsequent risk of diabetes: a systematic review and meta-analysis. Crit Care. 2016;20(1):301. https://doi.org/10.1186/s13054-016-1471-6. A review that reported stress hyperglycemia during hospitalization is associated with increased risk of incident diabetes after discharge.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Alisjahbana B, Sahiratmadja E, Nelwan EJ, Purwa AM, Ahmad Y, Ottenhoff THM, Nelwan RHH, Parwati I, Meer JWM, Crevel R The effect of type 2 diabetes mellitus on the presentation and treatment response of pulmonary tuberculosis. Clin Infect Dis 2007;45(4):428–435. doi:https://doi.org/10.1086/519841.

  84. Faurholt-Jepsen D, Range N, PrayGod G, Jeremiah K, Faurholt-Jepsen M, Aabye MG, et al. The role of diabetes on the clinical manifestations of pulmonary tuberculosis. Tropical Med Int Health. 2012;17(7):877–83. https://doi.org/10.1111/j.1365-3156.2012.03002.x.

    Article  Google Scholar 

  85. Restrepo BI, Fisher-Hoch SP, Crespo JG, Whitney E, Perez A, Smith B, et al. Type 2 diabetes and tuberculosis in a dynamic bi-national border population. Epidemiol Infect. 2007;135(3):483–91. https://doi.org/10.1017/S0950268806006935.

    Article  PubMed  CAS  Google Scholar 

  86. Critchley JA, Restrepo BI, Ronacher K, Kapur A, Bremer AA, Schlesinger LS, et al. Defining a research agenda to address the converging epidemics of tuberculosis and diabetes: part 1: epidemiology and clinical management. Chest. 2017;152(1):165–73. https://doi.org/10.1016/j.chest.2017.04.155.

    Article  PubMed  PubMed Central  Google Scholar 

  87. El-Osta A, Brasacchio D, Yao D, Pocai A, Jones PL, Roeder RG, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med. 2008;205(10):2409–17. https://doi.org/10.1084/jem.20081188.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Jayaraman S. Epigenetic mechanisms of metabolic memory in diabetes. Circ Res. 2012;110(8):1039–41. https://doi.org/10.1161/CIRCRESAHA.112.268375.

    Article  PubMed  CAS  Google Scholar 

  89. Fernandez-Morera JL, Rodriguez-Rodero S, Menendez-Torre E, Fraga MF. The possible role of epigenetics in gestational diabetes: cause, consequence, or both. Obstet Gynecol Int. 2010;2010:605163. https://doi.org/10.1155/2010/605163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Bouchard L, Thibault S, Guay SP, Santure M, Monpetit A, St-Pierre J, et al. Leptin gene epigenetic adaptation to impaired glucose metabolism during pregnancy. Diabetes Care. 2010;33(11):2436–41. https://doi.org/10.2337/dc10-1024.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Bandaru P, Shankar A. Association between plasma leptin levels and diabetes mellitus. Metab Syndr Relat Disord. 2011;9(1):19–23. https://doi.org/10.1089/met.2010.0037.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Nathan DM, Cleary PA, Backlund JYC, Genuth SM, Lachin JM, Orchard TJ, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353(25):2643–53.

    Article  PubMed  Google Scholar 

  93. Yessoufou A, Moutairou K. Maternal diabetes in pregnancy: early and long-term outcomes on the offspring and the concept of “metabolic memory”. Exp Diabetes Res. 2011;2011:218598. https://doi.org/10.1155/2011/218598.

    Article  PubMed  PubMed Central  Google Scholar 

  94. WorldHealthOrganization. Global Tuberculosis Report 2016. Geneva: World Health Organization; 2016.

    Google Scholar 

Download references

Funding

This publication was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under Award Numbers R03AI133172 (Magee) and K23AI134182 (Auld). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Magee.

Ethics declarations

Conflict of Interest

Matthew J. Magee, Argita D. Salindri, Nang Thu Thu Kyaw, Sara C. Auld, J. Sonya Haw, and Guillermo E. Umpierrez declare they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Other Forms of Diabetes and Its Complications

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magee, M.J., Salindri, A.D., Kyaw, N.T.T. et al. Stress Hyperglycemia in Patients with Tuberculosis Disease: Epidemiology and Clinical Implications. Curr Diab Rep 18, 71 (2018). https://doi.org/10.1007/s11892-018-1036-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-018-1036-y

Keywords

Navigation