Skip to main content

Advertisement

Log in

Gender and Sex Differences in Adipose Tissue

  • Obesity (J McCaffery, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

As the ongoing epidemic of adult and childhood obesity grows, it puts a greater burden on individuals and the healthcare system due to increased prevalence of obesity-associated diseases. An important area that has gained much attention recently is the sex and gender difference related to obesity and associated complications. Basic science and clinical studies have now improved our understanding of obesity and have discovered adipose tissue biology to be key in metabolism.

Recent Findings

There is evidence related to the sex dichotomy in obesity in a variety of areas including adipocyte function, sex hormone effects, genetics, and metabolic inflammation leading to critical differences in adipose tissue biology.

Summary

The sex and gender difference in adipose tissue is a factor that should be considered when studying an individuals’ risk for obesity and metabolic dysfunction. This understanding is important for strategizing treatment and prevention measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. CDC.gov. Products - Health E Stats - Overweight, Obesity, and Extreme Obesity Among Adults 2011–2012 [Available from: https://www.cdc.gov/nchs/data/hestat/obesity_adult_11_12/obesity_adult_11_12.htm.

  2. • Saltiel AR, Olefsky JM. Inflammatory mechanisms linking obesity and metabolic disease. J Clin Invest. 2017;127(1):1–4. An excellent overview of how the inflammatory response to obesity can eventually lead to organ dysfunction, and how targeted therapy aimed inflammation reduction needs to be explored

    Article  PubMed  PubMed Central  Google Scholar 

  3. •• Palmer BF, Clegg DJ. The sexual dimorphism of obesity. Mol Cell Endocrinol. 2015;402:113–9. This article discusses the importance of sexual dimorphisms and the new and novel ways sex hormones can influence body adiposity and metabolic syndrome

    Article  PubMed  CAS  Google Scholar 

  4. Ogden CL, Yanovski SZ, Carroll MD, Flegal KM. The epidemiology of obesity. Gastroenterology. 2007;132(6):2087–102.

    Article  PubMed  Google Scholar 

  5. Arroyo-Johnson C, Mincey KD. Obesity epidemiology worldwide. Gastroenterol Clin N Am. 2016;45(4):571–9.

    Article  Google Scholar 

  6. Varghese M, Griffin C, Singer K. The role of sex and sex hormones in regulating obesity-induced inflammation. Adv Exp Med Biol. 2017;1043:65–86.

    Article  PubMed  Google Scholar 

  7. • Kautzky-Willer A, Harreiter J, Sex PG. Gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr Rev. 2016;37(3):278–316. Presents data on the sex-dimorphic pathophysiological mechanisms of type 2 diabetes mellitus, which is a comorbidity of obesity that continues to increase in prevalence

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Michaud A, Drolet R, Noël S, Paris G, Tchernof A. Visceral fat accumulation is an indicator of adipose tissue macrophage infiltration in women. Metabolism. 2012;61(5):689–98.

    Article  PubMed  CAS  Google Scholar 

  9. Fried SK, Lee MJ, Karastergiou K. Shaping fat distribution: new insights into the molecular determinants of depot- and sex-dependent adipose biology. Obesity (Silver Spring). 2015;23(7):1345–52.

    Article  CAS  Google Scholar 

  10. Schwartz RS, Shuman WP, Larson V, Cain KC, Fellingham GW, Beard JC, et al. The effect of intensive endurance exercise training on body fat distribution in young and older men. Metabolism. 1991;40(5):545–51.

    Article  PubMed  CAS  Google Scholar 

  11. Link JC, Hasin-Brumshtein Y, Cantor RM, Chen X, Arnold AP, Lusis AJ, et al. Diet, gonadal sex, and sex chromosome complement influence white adipose tissue miRNA expression. BMC Genomics. 2017;18(1):89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Geer EB, Shen W. Gender differences in insulin resistance, body composition, and energy balance. Gend Med. 2009;6(Suppl 1):60–75.

    Article  PubMed  PubMed Central  Google Scholar 

  13. J. Stevens EGK, R.R. Huxley. Associations between gender, age and waist circumference. Eur J Clin Nutr 2010;64:6–15.

  14. Smith SR, Lovejoy JC, Greenway F, Ryan D, deJonge L, de la Bretonne J, et al. Contributions of total body fat, abdominal subcutaneous adipose tissue compartments, and visceral adipose tissue to the metabolic complications of obesity. Metabolism. 2001;50(4):425–35.

    Article  PubMed  CAS  Google Scholar 

  15. Snijder MB DJ, Visser M, Yudkin JS, Stehouwer CD, Bouter LM, Heine RJ, Nijpels G, Seidell JC. Larger thigh and hip circumferences are associated with better glucose tolerance: the Hoorn study. Obes Res 2003;11(1):104–111.

  16. Frias JP, Macaraeg GB, Ofrecio J, Yu JG, Olefsky JM, Kruszynska YT. Decreased susceptibility to fatty acid-induced peripheral tissue insulin resistance in women. Diabetes. 2001;50(6):1344–50.

    Article  PubMed  CAS  Google Scholar 

  17. Shulman GI. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N Engl J Med. 2014;371(23):2237–8.

    PubMed  Google Scholar 

  18. Arner P. Differences in lipolysis between human subcutaneous and omental adipose tissues. Ann Med. 1995;27(4):435–8.

    Article  PubMed  CAS  Google Scholar 

  19. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev. 2010;11(1):11–8.

    Article  PubMed  Google Scholar 

  21. Crandall DL, Busler DE, Novak TJ, Weber RV, Kral JG. Identification of estrogen receptor beta RNA in human breast and abdominal subcutaneous adipose tissue. Biochem Biophys Res Commun. 1998;248(3):523–6.

    Article  PubMed  CAS  Google Scholar 

  22. Lu SF, McKenna SE, Cologer-Clifford A, Nau EA, Simon NG. Androgen receptor in mouse brain: sex differences and similarities in autoregulation. Endocrinology. 1998;139(4):1594–601.

    Article  PubMed  CAS  Google Scholar 

  23. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197–206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Macotela Y, Boucher J, Tran TT, Kahn CR. Sex and depot differences in adipocyte insulin sensitivity and glucose metabolism. Diabetes. 2009;58(4):803–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Jeffery E, Wing A, Holtrup B, Sebo Z, Kaplan JL, Saavedra-Pena R, et al. The adipose tissue microenvironment regulates depot-specific adipogenesis in obesity. Cell Metab. 2016;24(1):142–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Bloor ID, Symonds ME. Sexual dimorphism in white and brown adipose tissue with obesity and inflammation. Horm Behav. 2014;66(1):95–103.

    Article  PubMed  Google Scholar 

  27. Wu Y, Lee MJ, Ido Y, Fried SK. High-fat diet-induced obesity regulates MMP3 to modulate depot- and sex-dependent adipose expansion in C57BL/6J mice. Am J Physiol Endocrinol Metab. 2017;312(1):E58–71.

    Article  PubMed  Google Scholar 

  28. Ornoy A, Giron S, Aner R, Goldstein M, Boyan BD, Schwartz Z. Gender dependent effects of testosterone and 17 beta-estradiol on bone growth and modelling in young mice. Bone Miner. 1994;24(1):43–58.

    Article  PubMed  CAS  Google Scholar 

  29. Davis KE, D Neinast M, Sun K, M Skiles W, D Bills J, A Zehr J, et al. The sexually dimorphic role of adipose and adipocyte estrogen receptors in modulating adipose tissue expansion, inflammation, and fibrosis. Mol Metab 2013;2(3):227–242.

  30. Heine PA, Taylor JA, Iwamoto GA, Lubahn DB, Cooke PS. Increased adipose tissue in male and female estrogen receptor-alpha knockout mice. Proc Natl Acad Sci U S A. 2000;97(23):12729–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Ohlsson C, Hellberg N, Parini P, Vidal O, Bohlooly YM, Rudling M, et al. Obesity and disturbed lipoprotein profile in estrogen receptor-alpha-deficient male mice. Biochem Biophys Res Commun. 2000;278(3):640–5.

    Article  PubMed  CAS  Google Scholar 

  32. Wang Y, Shoemaker R, Thatcher SE, Batifoulier-Yiannikouris F, English VL, Cassis LA. Administration of 17β-estradiol to ovariectomized obese female mice reverses obesity-hypertension through an ACE2-dependent mechanism. Am J Physiol Endocrinol Metab. 2015;308(12):E1066–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Simpson ER, Jones ME. Of mice and men: the many guises of estrogens. Ernst Schering Found Symp Proc. 2006;1:45–67.

    Google Scholar 

  34. Jones ME, Thorburn AW, Britt KL, Hewitt KN, Wreford NG, Proietto J, et al. Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity. Proc Natl Acad Sci U S A. 2000;97(23):12735–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Nikolaenko L, Jia Y, Wang C, Diaz-Arjonilla M, Yee JK, French SW, et al. Testosterone replacement ameliorates nonalcoholic fatty liver disease in castrated male rats. Endocrinology. 2014;155(2):417–28.

    Article  PubMed  Google Scholar 

  36. Inoue T, Zakikhani M, David S, Algire C, Blouin MJ, Pollak M. Effects of castration on insulin levels and glucose tolerance in the mouse differ from those in man. Prostate. 2010;70(15):1628–35.

    Article  PubMed  CAS  Google Scholar 

  37. Xia F, Xu X, Zhai H, Meng Y, Zhang H, Du S, et al. Castration-induced testosterone deficiency increases fasting glucose associated with hepatic and extra-hepatic insulin resistance in adult male rats. Reprod Biol Endocrinol. 2013;11:106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Floryk D, Kurosaka S, Tanimoto R, Yang G, Goltsov A, Park S, et al. Castration-induced changes in mouse epididymal white adipose tissue. Mol Cell Endocrinol. 2011;345(1–2):58–67.

    Article  PubMed  CAS  Google Scholar 

  39. • Dubois V, Laurent MR, Jardi F, Antonio L, Lemaire K, Goyvaerts L, et al. Androgen deficiency exacerbates high-fat diet-induced metabolic alterations in male mice. Endocrinology. 2016;157(2):648–65. Animal study that provides evidence that androgen deficiency in males can potentiate HFD-induced metabolic alterations. This highlights the negative implication of endogenous hypogonadism in men

    Article  PubMed  CAS  Google Scholar 

  40. Rubinow KB, Wang S, den Hartigh LJ, Subramanian S, Morton GJ, Buaas FW, et al. Hematopoietic androgen receptor deficiency promotes visceral fat deposition in male mice without impairing glucose homeostasis. Andrology. 2015;3(4):787–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Fan W, Yanase T, Nomura M, Okabe T, Goto K, Sato T, et al. Androgen receptor null male mice develop late-onset obesity caused by decreased energy expenditure and lipolytic activity but show normal insulin sensitivity with high adiponectin secretion. Diabetes. 2005;54(4):1000–8.

    Article  PubMed  CAS  Google Scholar 

  42. Mayes JS, Watson GH. Direct effects of sex steroid hormones on adipose tissues and obesity. Obes Rev. 2004;5(4):197–216.

    Article  PubMed  CAS  Google Scholar 

  43. Burgoyne PS, Thornhill AR, Boudrean SK, Darling SM, Bishop CE, Evans EP. The genetic basis of XX-XY differences present before gonadal sex differentiation in the mouse. Philos Trans R Soc Lond Ser B Biol Sci 1995;350(1333):253–60 discussion 260–1.

  44. Arnold AP. Mouse models for evaluating sex chromosome effects that cause sex differences in non-gonadal tissues. J Neuroendocrinol. 2009;21(4):377–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Arnold AP, Chen X. What does the “four core genotypes” mouse model tell us about sex differences in the brain and other tissues? Front Neuroendocrinol. 2009;30(1):1–9.

    Article  PubMed  Google Scholar 

  46. Arnold AP. The end of gonad-centric sex determination in mammals. Trends Genet. 2012;28(2):55–61.

    Article  PubMed  CAS  Google Scholar 

  47. Chen X, McClusky R, Chen J, Beaven SW, Tontonoz P, Arnold AP, et al. The number of x chromosomes causes sex differences in adiposity in mice. PLoS Genet. 2012;8(5):e1002709.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Goodfellow PN, Lovell-Badge R. SRY and sex determination in mammals. Annu Rev Genet. 1993;27:71–92.

    Article  PubMed  CAS  Google Scholar 

  49. Grove KL, Fried SK, Greenberg AS, Xiao XQ, Clegg DJ. A microarray analysis of sexual dimorphism of adipose tissues in high-fat-diet-induced obese mice. Int J Obes. 2010;34(6):989–1000.

    Article  CAS  Google Scholar 

  50. Yang X, Schadt EE, Wang S, Wang H, Arnold AP, Ingram-Drake L, et al. Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res. 2006;16(8):995–1004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Brune JE, Kern M, Kunath A, Flehmig G, Schön MR, Lohmann T, et al. Fat depot-specific expression of HOXC9 and HOXC10 may contribute to adverse fat distribution and related metabolic traits. Obesity (Silver Spring). 2016;24(1):51–9.

    Article  CAS  Google Scholar 

  52. Itoh Y, Melamed E, Yang X, Kampf K, Wang S, Yehya N, et al. Dosage compensation is less effective in birds than in mammals. J Biol. 2007;6(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Berletch JB, Yang F, Disteche CM. Escape from X inactivation in mice and humans. Genome Biol. 2010;11(6):213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Yang F, Babak T, Shendure J, Disteche CM. Global survey of escape from X inactivation by RNA-sequencing in mouse. Genome Res. 2010;20(5):614–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Lopes AM, Burgoyne PS, Ojarikre A, Bauer J, Sargent CA, Amorim A, et al. Transcriptional changes in response to X chromosome dosage in the mouse: implications for X inactivation and the molecular basis of Turner Syndrome. BMC Genomics. 2010;11:82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Ebert MS, Sharp PA. Roles for microRNAs in conferring robustness to biological processes. Cell. 2012;149(3):515–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature. 2008;455(7209):64–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Dai R, Ahmed SA. Sexual dimorphism of miRNA expression: a new perspective in understanding the sex bias of autoimmune diseases. Ther Clin Risk Manag. 2014;10:151–63.

    PubMed  PubMed Central  CAS  Google Scholar 

  59. Morgan CP, Bale TL. Sex differences in microRNA regulation of gene expression: no smoke. just miRs Biol Sex Differ. 2012;3(1):22.

    Article  PubMed  CAS  Google Scholar 

  60. Pinheiro I, Dejager L, Libert C. X-chromosome-located microRNAs in immunity: might they explain male/female differences? The X chromosome-genomic context may affect X-located miRNAs and downstream signaling, thereby contributing to the enhanced immune response of females. BioEssays. 2011;33(11):791–802.

    Article  PubMed  CAS  Google Scholar 

  61. Victoria B, Nunez Lopez YO, Masternak MM. MicroRNAs and the metabolic hallmarks of aging. Mol Cell Endocrinol. 2017;455:131–47.

    Article  PubMed  CAS  Google Scholar 

  62. Xie H, Lim B, Lodish HF. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes. 2009;58(5):1050–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Trajkovski M, Ahmed K, Esau CC, Stoffel M. MyomiR-133 regulates brown fat differentiation through Prdm16. Nat Cell Biol. 2012;14(12):1330–5.

    Article  PubMed  CAS  Google Scholar 

  64. • Greenhill C. Non-coding RNA: Exosomal microRNAs as novel adipokines. Nat Rev Genet. 2017;18(4):212. Study that highlights how adipose-derived exosomal miRNAs is a class of adipokines that needs to be explored more, for it can play a role in metabolism regulation within the adipose tissue but also in distant tissues

    Article  PubMed  CAS  Google Scholar 

  65. Thomou T, Mori MA, Dreyfuss JM, Konishi M, Sakaguchi M, Wolfrum C, et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature. 2017;542(7642):450–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Ying W, Riopel M, Bandyopadhyay G, Dong Y, Birmingham A, Seo JB, et al. Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell 2017;171(2):372–384.e12.

  67. Pettersson US, Waldén TB, Carlsson PO, Jansson L, Phillipson M. Female mice are protected against high-fat diet induced metabolic syndrome and increase the regulatory T cell population in adipose tissue. PLoS One. 2012;7(9):e46057.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Nickelson KJ, Stromsdorfer KL, Pickering RT, Liu TW, Ortinau LC, Keating AF, et al. A comparison of inflammatory and oxidative stress markers in adipose tissue from weight-matched obese male and female mice. Exp Diabetes Res. 2012;859395:2012.

    Google Scholar 

  69. Hamdy O, Porramatikul S, Al-Ozairi E. Metabolic obesity: the paradox between visceral and subcutaneous fat. Curr Diabetes Rev. 2006;2(4):367–73.

    Article  PubMed  Google Scholar 

  70. Halberg N, Khan T, Trujillo ME, Wernstedt-Asterholm I, Attie AD, Sherwani S, et al. Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue. Mol Cell Biol. 2009;29(16):4467–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Ban JJ, Ruthenborg RJ, Cho KW, Kim JW. Regulation of obesity and insulin resistance by hypoxia-inducible factors. Hypoxia (Auckl). 2014;2:171–83.

    Google Scholar 

  72. Kim M, Neinast MD, Frank AP, Sun K, Park J, Zehr JA, et al. ERα upregulates Phd3 to ameliorate HIF-1 induced fibrosis and inflammation in adipose tissue. Mol Metab. 2014;3(6):642–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Cutolo M, Capellino S, Sulli A, Serioli B, Secchi ME, Villaggio B, et al. Estrogens and autoimmune diseases. Ann N Y Acad Sci. 2006;1089:538–47.

    Article  PubMed  CAS  Google Scholar 

  74. Jansson L, Holmdahl R. Estrogen-mediated immunosuppression in autoimmune diseases. Inflamm Res. 1998;47(7):290–301.

    Article  PubMed  CAS  Google Scholar 

  75. Cuchacovich M, Gatica H, Tchernitchin AN. Role of sex hormones in autoimmune diseases. Rev Med Chil. 1993;121(9):1045–52.

    PubMed  CAS  Google Scholar 

  76. Singer K, Maley N, Mergian T, DelProposto J, Cho KW, Zamarron BF, et al. Differences in hematopoietic stem cells contribute to sexually dimorphic inflammatory responses to high fat diet-induced obesity. J Biol Chem. 2015;290(21):13250–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Kim SN, Jung YS, Kwon HJ, Seong JK, Granneman JG, Lee YH. Sex differences in sympathetic innervation and browning of white adipose tissue of mice. Biol Sex Differ. 2016;7:67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. González-García I, Tena-Sempere M, López M. Estradiol regulation of Brown adipose tissue thermogenesis. Adv Exp Med Biol. 2017;1043:315–35.

    Article  PubMed  Google Scholar 

  79. Taylor RW, Grant AM, Williams SM, Goulding A. Sex differences in regional body fat distribution from pre- to postpuberty. Obesity (Silver Spring). 2010;18(7):1410–6.

    Article  Google Scholar 

  80. Lovejoy JC, Champagne CM, de Jonge L, Xie H, Smith SR. Increased visceral fat and decreased energy expenditure during the menopausal transition. Int J Obes. 2008;32(6):949–58.

    Article  CAS  Google Scholar 

  81. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360(15):1509–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Nookaew I, Svensson PA, Jacobson P, Jernås M, Taube M, Larsson I, et al. Adipose tissue resting energy expenditure and expression of genes involved in mitochondrial function are higher in women than in men. J Clin Endocrinol Metab. 2013;98(2):E370–8.

    Article  PubMed  CAS  Google Scholar 

  83. Gambacciani M, Ciaponi M, Cappagli B, Piaggesi L, De Simone L, Orlandi R, et al. Body weight, body fat distribution, and hormonal replacement therapy in early postmenopausal women. J Clin Endocrinol Metab. 1997;82(2):414–7.

    Article  PubMed  CAS  Google Scholar 

  84. Dieudonné MNLM, Giudicelli Y, Pecquery R. Evidence for functional estrogen receptors α and β in human adipose cells: regional specificities and regulation by estrogens. Am J Physiol Cell Physiol. 2004;286:655–61.

    Article  Google Scholar 

  85. Pedersen SB, JMB FH, Kristensen K, Hauner H, Richelsen B. Demonstration of estrogen receptor subtypes alpha and beta in human adipose tissue: influences of adipose cell differentiation and fat depot localization. Mol Cell Endocrinol. 2001;182:27–37.

    Article  PubMed  CAS  Google Scholar 

  86. Cnop M, Havel PJ, Utzschneider KM, Carr DB, Sinha MK, Boyko EJ, et al. Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia. 2003;46(4):459–69.

    Article  PubMed  CAS  Google Scholar 

  87. Nishizawa H, Shimomura I, Kishida K, Maeda N, Kuriyama H, Nagaretani H, et al. Androgens decrease plasma adiponectin, an insulin-sensitizing adipocyte-derived protein. Diabetes. 2002;51(9):2734–41.

    Article  PubMed  CAS  Google Scholar 

  88. Finkelstein JS, Yu EW, Burnett-Bowie SA. Gonadal steroids and body composition, strength, and sexual function in men. N Engl J Med. 2013;369(25):2457.

    Article  PubMed  Google Scholar 

  89. Orphanet: aromatase deficiency [Available from: https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=GB&Expert=91.

  90. Fui MN, Dupuis P, Grossmann M. Lowered testosterone in male obesity: mechanisms, morbidity and management. Asian J Androl. 2014;16(2):223–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Dati E, Baroncelli GI, Mora S, Russo G, Baldinotti F, Parrini D, et al. Body composition and metabolic profile in women with complete androgen insensitivity syndrome. Sex Dev. 2009;3(4):188–93.

    Article  PubMed  CAS  Google Scholar 

  92. Grossmann M. Low testosterone in men with type 2 diabetes: significance and treatment. J Clin Endocrinol Metab. 2011;96(8):2341–53.

    Article  PubMed  CAS  Google Scholar 

  93. Hamilton EJ, Gianatti E, Strauss BJ, Wentworth J, Lim-Joon D, Bolton D, et al. Increase in visceral and subcutaneous abdominal fat in men with prostate cancer treated with androgen deprivation therapy. Clin Endocrinol. 2011;74(3):377–83.

    Article  CAS  Google Scholar 

  94. Mauras N, Hayes V, Welch S, Rini A, Helgeson K, Dokler M, et al. Testosterone deficiency in young men: marked alterations in whole body protein kinetics, strength, and adiposity. J Clin Endocrinol Metab. 1998;83(6):1886–92.

    PubMed  CAS  Google Scholar 

  95. Francesca Amati MP, Azuma K, Dubé JJ, Toledo FGS, Rossi AP, Kelley DE, et al. Lower thigh subcutaneous and higher visceral abdominal adipose tissue content both contribute to insulin resistance. Obesity. 2012;20(5):1115–7.

    Article  PubMed  CAS  Google Scholar 

  96. Meyer MR, Haas E, Barton M. Gender differences of cardiovascular disease: new perspectives for estrogen receptor signaling. Hypertension. 2006;47:1019–26.

    Article  PubMed  CAS  Google Scholar 

  97. Jones THAS, Behre HM, et al. Testosterone replacement in hypogonadal men with type 2 diabetes and/or metabolic syndrome (the TIMES2 study). Diabetes Care. 2011;34:828–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Kelley DEMT, Hegazi RA, et al. Fatty liver in type 2 diabetes mellitus: relation to regional adiposity, fatty acids, and insulin resistance. Am J Physiol Endocrinol Metab. 2003;285:E906–E16.

    Article  PubMed  CAS  Google Scholar 

  99. Geer WS EB. Gender differences in insulin resistance, body composition, and energy balance. Gend Med. 2009;6(Suppl. 1):60–75.

    Article  Google Scholar 

  100. Cancello R, Tordjman J, Poitou C, Guilhem G, Bouillot JL, Hugol D, et al. Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes. 2006;55(6):1554–61.

    Article  PubMed  CAS  Google Scholar 

  101. Tchoukalova YD, Koutsari C, Votruba SB, Tchkonia T, Giorgadze N, Thomou T, et al. Sex- and depot-dependent differences in adipogenesis in normal-weight humans. Obesity (Silver Spring). 2010;18(10):1875–80.

    Article  Google Scholar 

  102. Tchoukalova YD, Koutsari C, Karpyak MV, Votruba SB, Wendland E, Jensen MD. Subcutaneous adipocyte size and body fat distribution. Am J Clin Nutr. 2008;87(1):56–63.

    Article  PubMed  CAS  Google Scholar 

  103. White UA, Tchoukalova YD. Sex dimorphism and depot differences in adipose tissue function. Biochim Biophys Acta. 2014;1842(3):377–92.

    Article  PubMed  CAS  Google Scholar 

  104. Shadid S, Koutsari C, Jensen MD. Direct free fatty acid uptake into human adipocytes in vivo: relation to body fat distribution. Diabetes. 2007;56(5):1369–75.

    Article  PubMed  CAS  Google Scholar 

  105. Singer K, Lumeng CN. The initiation of metabolic inflammation in childhood obesity. J Clin Invest. 2017;127(1):65–73.

    Article  PubMed  PubMed Central  Google Scholar 

  106. • Griffin C, Lanzetta N, Eter L, Singer K. Sexually dimorphic myeloid inflammatory and metabolic responses to diet-induced obesity. Am J Physiol Regul Integr Comp Physiol. 2016;311(2):R211–6. Discusses about the sex differences in high-fat diet-induced inflammatory activation

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Huang ZH, Manickam B, Ryvkin V, Zhou XJ, Fantuzzi G, Mazzone T, et al. PCOS is associated with increased CD11c expression and crown-like structures in adipose tissue and increased central abdominal fat depots independent of obesity. J Clin Endocrinol Metab. 2013;98(1):E17–24.

    Article  PubMed  CAS  Google Scholar 

  108. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Executive summary: heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2014;129(3):399–410.

    Article  PubMed  Google Scholar 

  109. Sutton-Tyrrell K, Wildman RP, Matthews KA, Chae C, Lasley BL, Brockwell S, et al. Sex-hormone-binding globulin and the free androgen index are related to cardiovascular risk factors in multiethnic premenopausal and perimenopausal women enrolled in the Study of Women Across the Nation (SWAN). Circulation. 2005;111(10):1242–9.

    Article  PubMed  CAS  Google Scholar 

  110. Perry AC, Martin L. Race differences in obesity and its relationship to the sex hormone milieu. Horm Mol Biol Clin Investig. 2014;19(3):151–61.

    PubMed  CAS  Google Scholar 

  111. • Tangpricha V, den Heijer M. Oestrogen and anti-androgen therapy for transgender women. Lancet Diabetes Endocrinol. 2017;5(4):291–300. This is an overview regarding transgender women on cross-sex hormone treatment and its effect pertaining to multiple areas

    Article  PubMed  CAS  Google Scholar 

  112. Moore E, Wisniewski A, Dobs A. Endocrine treatment of transsexual people: a review of treatment regimens, outcomes, and adverse effects. J Clin Endocrinol Metab. 2003;88(8):3467–73.

    Article  PubMed  CAS  Google Scholar 

  113. Hembree WC, Cohen-Kettenis P, Delemarre-van de Waal HA, Gooren LJ, Meyer WJ, Spack NP, et al. Endocrine treatment of transsexual persons: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2009;94(9):3132–54.

    Article  PubMed  CAS  Google Scholar 

  114. Gooren LJ, Giltay EJ, Bunck MC. Long-term treatment of transsexuals with cross-sex hormones: extensive personal experience. J Clin Endocrinol Metab. 2008;93(1):19–25.

    Article  PubMed  CAS  Google Scholar 

  115. Elbers JM, Giltay EJ, Teerlink T, Scheffer PG, Asscheman H, Seidell JC, et al. Effects of sex steroids on components of the insulin resistance syndrome in transsexual subjects. Clin Endocrinol. 2003;58(5):562–71.

    Article  CAS  Google Scholar 

  116. • Vita R, Settineri S, Liotta M, Benvenga S, Trimarchi F. Changes in hormonal and metabolic parameters in transgender subjects on cross-sex hormone therapy: a cohort study. Maturitas. 2018;107:92–6. This study provides data on transgender individuals being treated with cross-sex hormone treatment. It focuses on the hormonal and metabolic parameters which is a useful insight on how sex hormones influence BMI, glucose homeostasis, lipids, etc

    Article  PubMed  CAS  Google Scholar 

  117. Brion MJ. Commentary: can maternal-paternal comparisons contribute to our understanding of maternal pre-pregnancy obesity and its association with offspring cognitive outcomes? Int J Epidemiol. 2013;42(2):518–9.

    Article  PubMed  Google Scholar 

  118. Butte NF, Ellis KJ, Wong WW, Hopkinson JM, Smith EO. Composition of gestational weight gain impacts maternal fat retention and infant birth weight. Am J Obstet Gynecol. 2003;189(5):1423–32.

    Article  PubMed  Google Scholar 

  119. Gale CR, Javaid MK, Robinson SM, Law CM, Godfrey KM, Cooper C. Maternal size in pregnancy and body composition in children. J Clin Endocrinol Metab. 2007;92(10):3904–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Ferrara A, Kahn HS, Quesenberry CP, Riley C, Hedderson MM. An increase in the incidence of gestational diabetes mellitus: Northern California, 1991–2000. Obstet Gynecol. 2004;103(3):526–33.

    Article  PubMed  Google Scholar 

  121. Langer O, Conway DL. Level of glycemia and perinatal outcome in pregestational diabetes. J Matern Fetal Med. 2000;9(1):35–41.

    PubMed  CAS  Google Scholar 

  122. Basu S, Haghiac M, Surace P, Challier JC, Guerre-Millo M, Singh K, et al. Pregravid obesity associates with increased maternal endotoxemia and metabolic inflammation. Obesity (Silver Spring). 2011;19(3):476–82.

    Article  CAS  Google Scholar 

  123. Challier JC, Basu S, Bintein T, Minium J, Hotmire K, Catalano PM, et al. Obesity in pregnancy stimulates macrophage accumulation and inflammation in the placenta. Placenta. 2008;29(3):274–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Perrin EM, O'Shea TM, Skinner AC, Bose C, Allred EN, Fichorova RN, et al. Elevations of inflammatory proteins in neonatal blood are associated with obesity and overweight among 2-year-old children born extremely premature. Pediatr Res. 2017;

  125. Evans L, Myatt L. Sexual dimorphism in the effect of maternal obesity on antioxidant defense mechanisms in the human placenta. Placenta. 2017;51:64–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Segovia SA, Vickers MH, Gray C, Reynolds CM. Maternal obesity, inflammation, and developmental programming. Biomed Res Int. 2014;2014:418975.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Samuelsson AM, Matthews PA, Argenton M, Christie MR, McConnell JM, Jansen EH, et al. Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension. 2008;51(2):383–92.

    Article  PubMed  CAS  Google Scholar 

  128. Bayol SA, Farrington SJ, Stickland NC. A maternal ‘junk food’ diet in pregnancy and lactation promotes an exacerbated taste for ‘junk food’ and a greater propensity for obesity in rat offspring. Br J Nutr. 2007;98(4):843–51.

    Article  PubMed  CAS  Google Scholar 

  129. Pettitt DJ, Knowler WC. Long-term effects of the intrauterine environment, birth weight, and breast-feeding in Pima Indians. Diabetes Care. 1998;21(Suppl 2):B138–41.

    PubMed  Google Scholar 

  130. McPherson NO, Fullston T, Aitken RJ, Lane M. Paternal obesity, interventions, and mechanistic pathways to impaired health in offspring. Ann Nutr Metab. 2014;64(3–4):231–8.

    Article  PubMed  CAS  Google Scholar 

  131. Patro B, Liber A, Zalewski B, Poston L, Szajewska H, Koletzko B. Maternal and paternal body mass index and offspring obesity: a systematic review. Ann Nutr Metab. 2013;63(1–2):32–41.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanakadurga Singer.

Ethics declarations

Conflict of Interest

Eric Chang, Mita Varghese, and Kanakadurga Singer declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Obesity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, E., Varghese, M. & Singer, K. Gender and Sex Differences in Adipose Tissue. Curr Diab Rep 18, 69 (2018). https://doi.org/10.1007/s11892-018-1031-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-018-1031-3

Keywords

Navigation