Skip to main content

Advertisement

Log in

Regulating Autophagy as a Therapeutic Target for Diabetic Nephropathy

  • Microvascular Complications—Nephropathy (M Afkarian, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Autophagy promotes cellular health in response to various cellular stresses and to changes in nutrient conditions. In this review, we focus on the role of autophagy in the pathogenesis of diabetic nephropathy and discuss the regulation of autophagy as a new therapeutic target for the suppression of diabetic nephropathy.

Recent Findings

Previous studies have indicated that autophagy deficiency or insufficiency in renal cells, including podocytes, mesangial cells, endothelial cells and tubular cells, contributes to the pathogenesis of diabetic nephropathy. Alterations in the nutrient-sensing pathways, including mammalian target of rapamycin complex1 (mTORC1), AMP-activated kinase (AMPK) and Sirt1, due to excess nutrition in diabetes are implicated in the impairment of autophagy.

Summary

Maintaining both basal and adaptive autophagy against cellular stress may protect the kidney from diabetes-induced cellular stresses. Therefore, the activation of autophagy through the modulation of nutrient-sensing pathways may be a new therapeutic option for the suppression of diabetic nephropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Kitada M, Kanasaki K, Koya D. Clinical therapeutic strategies for early stage of diabetic kidney disease. World J Diabetes. 2014;5(3):342–56.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kitada M, Kume S, Takeda-Watanabe A, Kanasaki K, Koya D. Sirtuins and renal diseases: relationship with aging and diabetic nephropathy. Clin Sci. 2013;124(3):153–64.

    Article  CAS  PubMed  Google Scholar 

  3. Kitada M, Zhang Z, Mima A, King GL. Molecular mechanisms of diabetic vascular complications. J Diabetes Investig. 2010;1(3):77–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Roscioni SS, Heerspink HJ, de Zeeuw D. The effect of RAAS blockade on the progression of diabetic nephropathy. Nat Rev Nephrol. 2014;10(2):77–87.

    Article  CAS  PubMed  Google Scholar 

  5. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. New Engl J Med. 2016;375(4):323–34.

    Article  CAS  PubMed  Google Scholar 

  6. Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010;40(2):280–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451(7182):1069–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kume S, Koya D, Uzu T, Maegawa H. Role of nutrient-sensing signals in the pathogenesis of diabetic nephropathy. BioMed Res Int. 2014;2014:315494.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. New Engl J Med. 2013;368(7):651–62.

    Article  CAS  PubMed  Google Scholar 

  10. Tanaka Y, Kume S, Kitada M, Kanasaki K, Uzu T, Maegawa H, et al. Autophagy as a therapeutic target in diabetic nephropathy. Exp Diabetes Res. 2012;2012:628978.

    Article  PubMed  Google Scholar 

  11. Koya D, Kitada M, Kume S, Kanasaki K. Interventions against nutrient-sensing pathways represent an emerging new therapeutic approach for diabetic nephropathy. Clin Exp Nephrol. 2014;18(2):210–3.

    Article  CAS  PubMed  Google Scholar 

  12. Kim YC, Guan KL. mTOR: a pharmacologic target for autophagy regulation. J Clin Investig. 2015;125(1):25–32.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jewell JL, Guan KL. Nutrient signaling to mTOR and cell growth. Trends Biochem Sci. 2013;38(5):233–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 2002;4(9):648–57.

    Article  CAS  PubMed  Google Scholar 

  16. Inoki K, Li Y, Xu T, Guan KL. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 2003;17(15):1829–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell. 2007;25(6):903–15.

    Article  CAS  PubMed  Google Scholar 

  18. Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol. 2007;9(3):316–23.

    Article  CAS  PubMed  Google Scholar 

  19. Ma L, Teruya-Feldstein J, Bonner P, Bernardi R, Franz DN, Witte D, et al. Identification of S664 TSC2 phosphorylation as a marker for extracellular signal-regulated kinase mediated mTOR activation in tuberous sclerosis and human cancer. Cancer Res. 2007;67(15):7106–12.

    Article  CAS  PubMed  Google Scholar 

  20. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science. 2008;320(5882):1496–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010;141(2):290–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 2009;20(7):1992–2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577–90.

    Article  CAS  PubMed  Google Scholar 

  24. Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30(2):214–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13(2):132–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mack HI, Zheng B, Asara JM, Thomas SM. AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization. Autophagy. 2012;8(8):1197–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shang L, Chen S, Du F, Li S, Zhao L, Wang X. Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc Natl Acad Sci U S A. 2011;108(12):4788–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 2011;331(6016):456–61.

    Article  CAS  PubMed  Google Scholar 

  29. Hariharan N, Maejima Y, Nakae J, Paik J, Depinho RA, Sadoshima J. Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circulation Res. 2010;107(12):1470–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ao X, Zou L, Wu Y. Regulation of autophagy by the Rab GTPase network. Cell Death Diff. 2014;21(3):348–58.

    Article  CAS  Google Scholar 

  31. Sengupta A, Molkentin JD, Yutzey KE. FoxO transcription factors promote autophagy in cardiomyocytes. J Biol Chem. 2009;284(41):28319–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kume S, Uzu T, Horiike K, Chin-Kanasaki M, Isshiki K, Araki S, et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Investig. 2010;120(4):1043–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kaufmann A, Beier V, Franquelim HG, Wollert T. Molecular mechanism of autophagic membrane-scaffold assembly and disassembly. Cell. 2014;156(3):469–81.

    Article  CAS  PubMed  Google Scholar 

  34. Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci U S A. 2008;105(9):3374–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang R, Xu Y, Wan W, Shou X, Qian J, You Z, et al. Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol Cell. 2015;57(3):456–66.

    Article  CAS  PubMed  Google Scholar 

  36. Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012;15(5):675–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009;458(7241):1056–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ghosh HS, McBurney M, Robbins PD. SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One. 2010;5(2):e9199.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Takeda-Watanabe A, Kitada M, Kanasaki K, Koya D. SIRT1 inactivation induces inflammation through the dysregulation of autophagy in human THP-1 cells. Biochem Biophys Res Commun. 2012;427(1):191–6.

    Article  CAS  PubMed  Google Scholar 

  40. Coresh J, Astor BC, Greene T, Eknoyan G, Levey AS. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am J Kidney Dis: Off J Nat Kidney Found. 2003;41(1):1–12.

    Article  Google Scholar 

  41. Rule AD, Amer H, Cornell LD, Taler SJ, Cosio FG, Kremers WK, et al. The association between age and nephrosclerosis on renal biopsy among healthy adults. Ann Int Med. 2010;152(9):561–7.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hsu CY, Iribarren C, McCulloch CE, Darbinian J, Go AS. Risk factors for end-stage renal disease: 25-year follow-up. Arch Int Med. 2009;169(4):342–50.

    Article  Google Scholar 

  43. Verzola D, Gandolfo MT, Gaetani G, Ferraris A, Mangerini R, Ferrario F, et al. Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy. Am J Physiol Renal Physiol. 2008;295(5):F1563–73.

    Article  CAS  PubMed  Google Scholar 

  44. Jha JC, Banal C, Chow BS, Cooper ME, Jandeleit-Dahm K. Diabetes and kidney disease: role of oxidative stress. Antioxidants Redox Signal. 2016;25(12):657–84.

    Article  CAS  Google Scholar 

  45. Kitada M, Koya D, Sugimoto T, Isono M, Araki S, Kashiwagi A, et al. Translocation of glomerular p47phox and p67phox by protein kinase C-beta activation is required for oxidative stress in diabetic nephropathy. Diabetes. 2003;52(10):2603–14.

    Article  CAS  PubMed  Google Scholar 

  46. Kitada M, Kume S, Imaizumi N, Koya D. Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1-independent pathway. Diabetes. 2011;60(2):634–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cunard R, Sharma K. The endoplasmic reticulum stress response and diabetic kidney disease. Am J Physiol Renal Physiol. 2011;300(5):F1054–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Takiyama Y, Haneda M. Hypoxia in diabetic kidneys. BioMed Res Int. 2014;2014:837421.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Takiyama Y, Harumi T, Watanabe J, Fujita Y, Honjo J, Shimizu N, et al. Tubular injury in a rat model of type 2 diabetes is prevented by metformin: a possible role of HIF-1alpha expression and oxygen metabolism. Diabetes. 2011;60(3):981–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kitada M, Ogura Y, Suzuki T, Sen S, Lee SM, Kanasaki K, et al. A very-low-protein diet ameliorates advanced diabetic nephropathy through autophagy induction by suppression of the mTORC1 pathway in Wistar fatty rats, an animal model of type 2 diabetes and obesity. Diabetologia. 2016;59(6):1307–17.

    Article  CAS  PubMed  Google Scholar 

  51. Sakaguchi M, Isono M, Isshiki K, Sugimoto T, Koya D, Kashiwagi A. Inhibition of mTOR signaling with rapamycin attenuates renal hypertrophy in the early diabetic mice. Biochem Biophys Res Commun. 2006;340(1):296–301.

    Article  CAS  PubMed  Google Scholar 

  52. Kitada M, Takeda A, Nagai T, Ito H, Kanasaki K, Koya D. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabetes. Exp Diabetes Res. 2011;2011:908185.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Asanuma K, Mundel P. The role of podocytes in glomerular pathobiology. Clin Exp Nephrol. 2003;7(4):255–9.

    Article  CAS  PubMed  Google Scholar 

  54. Ding Y, Choi ME. Autophagy in diabetic nephropathy. J Endocrinol. 2015;224(1):R15–30.

    Article  CAS  PubMed  Google Scholar 

  55. Reidy K, Kang HM, Hostetter T, Susztak K. Molecular mechanisms of diabetic kidney disease. J Clin Investig. 2014;124(6):2333–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hartleben B, Godel M, Meyer-Schwesinger C, Liu S, Ulrich T, Kobler S, et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Investig. 2010;120(4):1084–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. • Tagawa A, Yasuda M, Kume S, Yamahara K, Nakazawa J, Chin-Kanasaki M, et al. Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy. Diabetes. 2016;65(3):755–67. This study show that the impaired autophagy in podocytes is implicated in the pathogenesis of advanced diabetic nephropathy in human and animal models, and that serum factors that promote podocyte stress and dysfunction with the blunting of autophagy in proteinuric individuals may exist.

  58. Gödel M, Hartleben B, Herbach N, Liu S, Zschiedrich S, Lu S, et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Investig. 2011;121(6):2197–209.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Inoki K, Mori H, Wang J, Suzuki T, Hong S, Yoshida S, et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Investig. 2011;121(6):2181–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fang L, Zhou Y, Cao H, Wen P, Jiang L, He W, et al. Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury. PLoS One. 2013; 8(4):e60546.

  61. Haneda M, Koya D, Isono M, Kikkawa R. Overview of glucose signaling in mesangial cells in diabetic nephropathy. J Am Soc Nephrol. 2003;14(5):1374–82.

    Article  PubMed  Google Scholar 

  62. Kim SI, Na HJ, Ding Y, Wang Z, Lee SJ, Choi ME. Autophagy promotes intracellular degradation of type I collagen induced by transforming growth factor (TGF)-beta1. J Biol Chem. 2012;287(15):11677–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fiorentino L, Cavalera M, Menini S, Marchetti V, Mavilio M, Fabrizi M, et al. Loss of TIMP3 underlies diabetic nephropathy via FoxO1/STAT1 interplay. EMBO Mol Med. 2013;5(3):441–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yamagishi S, Matsui T. Advanced glycation end products, oxidative stress and diabetic nephropathy. Oxidative Med Cell Longev. 2010;3(2):101–8.

    Article  Google Scholar 

  65. Xu L, Fan Q, Wang X, Zhao X, Wang L. Inhibition of autophagy increased AGE/ROS-mediated apoptosis in mesangial cells. Cell Death Dis. 2016;7(11):e2445.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Fu J, Lee K, Chuang PY, Liu Z, He JC. Glomerular endothelial cell injury and cross talk in diabetic kidney disease. Am J Physiol Renal Physiol. 2015;308(4):F287–97.

    Article  CAS  PubMed  Google Scholar 

  67. • Lenoir O, Jasiek M, Henique C, Guyonnet L, Hartleben B, Bork T, et al. Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis. Autophagy. 2015;11(7):1130–45. This study provides that autophagy is a key protective mechanism on both cellular layers, glomerular endothelial cells and podocytes, in the glomerular filtration barrier.

  68. Fan Y, Li X, Xiao W, Fu J, Harris RC, Lindenmeyer M, et al. BAMBI elimination enhances alternative TGF-beta signaling and glomerular dysfunction in diabetic mice. Diabetes. 2015;64(6):2220–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xavier S, Gilbert V, Rastaldi MP, Krick S, Kollins D, Reddy A, et al. BAMBI is expressed in endothelial cells and is regulated by lysosomal/autolysosomal degradation. PLoS One. 2010;5(9), e12995.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Risdon RA, Sloper JC, De Wardener HE. Relationship between renal function and histologic changes found in renal-biopsy specimens from patients with persistent glomerular nephritis. Lancet. 1968;2(7564):363–6.

    Article  CAS  PubMed  Google Scholar 

  71. Gilbert RE, Cooper ME. The tubulointerstitium in progressive diabetic kidney disease: more than an aftermath of glomerular injury? Kidney Int. 1999;56(5):1627–37.

    Article  CAS  PubMed  Google Scholar 

  72. Lindenmeyer MT, Rastaldi MP, Ikehata M, Neusser MA, Kretzler M, Cohen CD, et al. Proteinuria and hyperglycemia induce endoplasmic reticulum stress. J Am Soc Nephrol. 2008;19(11):2225–36.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Vallon V. The proximal tubule in the pathophysiology of the diabetic kidney. Am J Physiol Regulatory, Integrative Comparative Physiol. 2011;300(5):R1009–22.

    Article  CAS  Google Scholar 

  74. Kimura T, Takabatake Y, Takahashi A, Kaimori JY, Matsui I, Namba T, et al. Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J Am Soc Nephrol. 2011;22(5):902–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. • Yamamoto T, Takabatake Y, Kimura T, Takahashi A, Namba T, Matsuda J, et al. Time-dependent dysregulation of autophagy: implications in aging and mitochondrial homeostasis in the kidney proximal tubule. Autophagy. 2016;12(5):801–13. This study provides an importance of age-dependent high basal autophagy for mitochondrial quality control, and show that a reduced capacity for upregulation of autophagic flux in response to metabolic stress is associated with age-related kidney diseases.

  76. Yamahara K, Kume S, Koya D, Tanaka Y, Morita Y, Chin-Kanasaki M, et al. Obesity-mediated autophagy insufficiency exacerbates proteinuria-induced tubulointerstitial lesions. J Am Soc Nephrol. 2013;24(11):1769–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fioretto P, Zambon A, Rossato M, Busetto L, Vettor R. SGLT2 Inhibitors and the Diabetic Kidney. Diabetes Care. 2016;39 Suppl 2:S165–71.

    Article  PubMed  Google Scholar 

  78. Wanner C, Inzucchi SE, Zinman B. Empagliflozin and progression of kidney disease in type 2 diabetes. New Engl J Med. 2016;375(18):1801–2.

    PubMed  Google Scholar 

  79. Vallon V, Rose M, Gerasimova M, Satriano J, Platt KA, Koepsell H, et al. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am J Physiol Renal Physiol. 2013;304(2):F156–67.

    Article  CAS  PubMed  Google Scholar 

  80. Vestri S, Okamoto MM, de Freitas HS. Aparecida Dos Santos R, Nunes MT, Morimatsu M, et al. Changes in sodium or glucose filtration rate modulate expression of glucose transporters in renal proximal tubular cells of rat. J Membrane Biol. 2001;182(2):105–12.

    Article  CAS  Google Scholar 

  81. Vidotti DB, Arnoni CP, Maquigussa E, Boim MA. Effect of long-term type 1 diabetes on renal sodium and water transporters in rats. Am J Nephrol. 2008;28(1):107–14.

    Article  PubMed  Google Scholar 

  82. Tabatabai NM, Sharma M, Blumenthal SS, Petering DH. Enhanced expressions of sodium-glucose cotransporters in the kidneys of diabetic Zucker rats. Diabetes Res Clin Pract. 2009;83(1):e27–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munehiro Kitada.

Ethics declarations

Conflict of Interest

Boehringer Ingelheim, Mitsubishi Tanabe Pharma, Kyowa Hakko Kirin, Taisho Toyama Pharmaceutical Co., and Ono Pharmaceutical Co. contributed to establishing the Division of Anticipatory Molecular Food Science and Technology. Munehiro Kitada, Yoshio Ogura, Itaru Monno, and Daisuke Koya declare that there are no conflicts of interest associated with this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Funding

This work was financially supported by a Grant for Promoted Research from Kanazawa Medical University (S2016-11) to M.K.; a Grant-in-Aid for Challenging Exploratory Research (16 K15472), the Science Research Promotion Fund for the promotion and mutual corporation for private schools of Japan, and a Grant for Collaborative Research from Kanazawa Medical University (C2015-2) to D.K.

Additional information

This article is part of the Topical Collection on Microvascular Complications—Nephropathy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitada, M., Ogura, Y., Monno, I. et al. Regulating Autophagy as a Therapeutic Target for Diabetic Nephropathy. Curr Diab Rep 17, 53 (2017). https://doi.org/10.1007/s11892-017-0879-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-017-0879-y

Keywords

Navigation