Skip to main content

Advertisement

Log in

Cell Therapy for Type 1 Diabetes: Current and Future Strategies

  • Immunology, Transplantation, and Regenerative Medicine (L Piemonti and V Sordi, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Type 1 diabetes (T1D) is defined by an autoimmune destruction of insulin producing β-cells located in the endocrine part of the pancreas, the islets of Langerhans. As exogenous insulin administration fails at preventing severe complications associated with this disease, cell replacement therapies are being considered as a means to treat T1D. The purpose of this manuscript is to review the challenges associated with current strategies and discuss the potential of stem cell therapy for the treatment of T1D.

Recent Findings

The most prominent therapy offered to T1D patients is exogenous insulin administration which, despite formulations improvement, remains a suboptimal treatment, due to the frequency of injections and the issues associated with precise dosing. As immunotherapy approaches have remained unsuccessful, the only cure for T1D is transplantation of donor-derived pancreas or islets. However, donor scarcity, graft loss, and immune response to the foreign tissue are issues challenging this approach and limiting the number of patients who can benefit from such treatments.

Summary

In this review, we discuss the causes of T1D and the shortcomings of the current treatments. Furthermore, we summarize the cutting edge research that aims to tackle the current challenges in reaching a quality-controlled product with long-term effects, with a focus on regenerative medicine approaches using human pluripotent stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Coppieters KT, Dotta F, Amirian N, Campbell PD, Kay TW, Atkinson MA, et al. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J Exp Med. 2012;209(1):51–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Arvan P, Pietropaolo M, Ostrov D, Rhodes CJ. Islet autoantigens: structure, function, localization, and regulation. Cold Spring Harb Perspect Med. 2012;2(8)

  3. Han S, Donelan W, Wang H, Reeves W, Yang LJ. Novel autoantigens in type 1 diabetes. Am J Transl Res. 2013;5(4):379–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Askenasy EM, Askenasy N. Is autoimmune diabetes caused by aberrant immune activity or defective suppression of physiological self-reactivity? Autoimmun Rev. 2013;12(5):633–7.

    Article  CAS  PubMed  Google Scholar 

  5. van Lummel M, Duinkerken G, van Veelen PA, de Ru A, Cordfunke R, Zaldumbide A, et al. Posttranslational modification of HLA-DQ binding islet autoantigens in type 1 diabetes. Diabetes. 2014;63(1):237–47.

    Article  PubMed  Google Scholar 

  6. Noble JA. Immunogenetics of type 1 diabetes: a comprehensive review. J Autoimmun. 2015;64:101–12.

    Article  CAS  PubMed  Google Scholar 

  7. Rossing P, Hougaard P, Borch-Johnsen K, Parving HH. Predictors of mortality in insulin dependent. Diabetes: 10 year observational follow up study. BMJ. 1996;313(7060):779–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huo L, Harding JL, Peeters A, Shaw JE, Magliano DJ. Life expectancy of type 1 diabetic patients during 1997-2010: a national Australian registry-based cohort study. Diabetologia. 2016;59(6):1177–85.

    Article  PubMed  Google Scholar 

  9. Livingstone SJ, Levin D, Looker HC, Lindsay RS, Wild SH, Joss N, et al. Estimated life expectancy in a Scottish cohort with type 1. Diabetes, 2008-2010. JAMA. 2015;313(1):37–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Petrie D, Lung TW, Rawshani A, Palmer AJ, Svensson AM, Eliasson B, et al. Recent trends in life expectancy for people with type 1 diabetes in Sweden. Diabetologia. 2016;59(6):1167–76.

    Article  PubMed  Google Scholar 

  11. Aye MM, Atkin SL. Patient safety and minimizing risk with insulin administration—role of insulin degludec. Drug Healthc Patient Saf. 2014;6:55–67.

    PubMed  PubMed Central  Google Scholar 

  12. Staeva TP, Chatenoud L, Insel R, Atkinson MA. Recent lessons learned from prevention and recent-onset type 1 diabetes immunotherapy trials. Diabetes. 2013;62(1):9–17.

    Article  CAS  PubMed  Google Scholar 

  13. Stiller CR, Dupre J, Gent M, Jenner MR, Keown PA, Laupacis A, et al. Effects of cyclosporine immunosuppression in insulin-dependent diabetes mellitus of recent onset. Science. 1984;223(4643):1362–7.

    Article  CAS  PubMed  Google Scholar 

  14. Torikai H, Reik A, Soldner F, Warren EH, Yuen C, Zhou Y, et al. Toward eliminating HLA class I expression to generate universal cells from allogeneic donors. Blood. 2013;122(8):1341–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Keymeulen B, Walter M, Mathieu C, Kaufman L, Gorus F, Hilbrands R, et al. Four-year metabolic outcome of a randomised controlled CD3-antibody trial in recent-onset type 1 diabetic patients depends on their age and baseline residual beta cell mass. Diabetologia. 2010;53(4):614–23.

    Article  CAS  PubMed  Google Scholar 

  16. Keymeulen B, Vandemeulebroucke E, Ziegler AG, Mathieu C, Kaufman L, Hale G, et al. Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med. 2005;352(25):2598–608.

    Article  CAS  PubMed  Google Scholar 

  17. Herold KC, Gitelman SE, Masharani U, Hagopian W, Bisikirska B, Donaldson D, et al. A single course of anti-CD3 monoclonal antibody hOKT3gamma1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes. 2005;54(6):1763–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bluestone JA, Trotta E, Xu D. The therapeutic potential of regulatory T cells for the treatment of autoimmune disease. Expert Opin Ther Targets. 2015;19(8):1091–103.

    Article  CAS  PubMed  Google Scholar 

  19. Tang Q, Henriksen KJ, Bi M, Finger EB, Szot G, Ye J, et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med. 2004;199(11):1455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bluestone JA, Buckner JH, Fitch M, Gitelman SE, Gupta S, Hellerstein MK, et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci Transl Med. 2015;7(315) 315ra189

  21. Song J. Development of auto antigen-specific regulatory T cells for diabetes immunotherapy. Immune Netw. 2016;16(5):281–5.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gruessner AC, Gruessner RW. Pancreas transplantation of US and non-US cases from 2005 to 2014 as reported to the united network for organ sharing (UNOS) and the international pancreas transplant registry (IPTR). Rev Diabet Stud. 2016;13(1):35–58.

    Article  PubMed  Google Scholar 

  23. Warnock GL, Ellis D, Rajotte RV, Dawidson I, Baekkeskov S, Egebjerg J. Studies of the isolation and viability of human islets of Langerhans. Transplantation. 1988;45(5):957–63.

    Article  CAS  PubMed  Google Scholar 

  24. • Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343(4):230–8. A landmark paper that improves islet transplantation by modifying the immune-suppressive regimen

  25. Biarnes M, Montolio M, Nacher V, Raurell M, Soler J, Montanya E. Beta-cell death and mass in syngeneically transplanted islets exposed to short- and long-term hyperglycemia. Diabetes. 2002;51(1):66–72.

    Article  CAS  PubMed  Google Scholar 

  26. Sigrist S, Mechine-Neuville A, Mandes K, Calenda V, Braun S, Legeay G, et al. Influence of VEGF on the viability of encapsulated pancreatic rat islets after transplantation in diabetic mice. Cell Transplant. 2003;12(6):627–35.

    Article  CAS  PubMed  Google Scholar 

  27. Cheng Y, Liu YF, Zhang JL, Li TM, Zhao N. Elevation of vascular endothelial growth factor production and its effect on revascularization and function of graft islets in diabetic rats. World J Gastroenterol. 2007;13(20):2862–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lai Y, Schneider D, Kidszun A, Hauck-Schmalenberger I, Breier G, Brandhorst D, et al. Vascular endothelial growth factor increases functional beta-cell mass by improvement of angiogenesis of isolated human and murine pancreatic islets. Transplantation. 2005;79(11):1530–6.

    Article  CAS  PubMed  Google Scholar 

  29. Springer ML, Hortelano G, Bouley DM, Wong J, Kraft PE, Blau HM. Induction of angiogenesis by implantation of encapsulated primary myoblasts expressing vascular endothelial growth factor. J Gene Med. 2000;2(4):279–88.

    Article  CAS  PubMed  Google Scholar 

  30. Hiscox AM, Stone AL, Limesand S, Hoying JB, Williams SK. An islet-stabilizing implant constructed using a preformed vasculature. Tissue Eng Part A. 2008;14(3):433–40.

    Article  CAS  PubMed  Google Scholar 

  31. Cheng JY, Raghunath M, Whitelock J, Poole-Warren L. Matrix components and scaffolds for sustained islet function. Tissue Eng Part B Rev. 2011;17(4):235–47.

    Article  CAS  PubMed  Google Scholar 

  32. Brizzi MF, Tarone G, Defilippi P. Extracellular matrix, integrins, and growth factors as tailors of the stem cell niche. Curr Opin Cell Biol. 2012;24(5):645–51.

    Article  CAS  PubMed  Google Scholar 

  33. Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 2009;5(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  34. Kenneth WW. A review of the foreign-body response to subcutaneously-implanted devices: the role of macrophages and cytokines in biofouling and fibrosis. J Diabetes Sci Technol. 2008;2(5):768–77.

    Article  Google Scholar 

  35. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20(2):86–100.

    Article  CAS  PubMed  Google Scholar 

  36. Fujiwara N, Kobayashi K. Macrophages in inflammation. Curr Drug Targets Inflamm Allergy. 2005;4(3):281–6.

    Article  CAS  PubMed  Google Scholar 

  37. van Amerongen MJ, Molema G, Plantinga J, Moorlag H, van Luyn MJ. Neovascularization and vascular markers in a foreign body reaction to subcutaneously implanted degradable biomaterial in mice. Angiogenesis. 2002;5(3):173–80.

    Article  PubMed  Google Scholar 

  38. • Pepper AR, Gala-Lopez B, Pawlick R, Merani S, Kin T, Shapiro AM. A prevascularized subcutaneous device-less site for islet and cellular transplantation. Nat Biotechnol. 2015;33(5):518–23. This study describes the use of subcutaneous device-less (DL) transplant technique that enables successful transplantation of mouse or human islets in mice

    Article  CAS  PubMed  Google Scholar 

  39. McCracken KW, Wells JM. Molecular pathways controlling pancreas induction. Semin Cell Dev Biol. 2012;23(6):656–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Burlison JS, Long Q, Fujitani Y, Wright CV, Magnuson MA. Pdx-1 and Ptf1a concurrently determine fate specification of pancreatic multipotent progenitor cells. Dev Biol. 2008;316(1):74–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sander M, Sussel L, Conners J, Scheel D, Kalamaras J, Dela Cruz F, et al. Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas. Development. 2000;127(24):5533–40.

    CAS  PubMed  Google Scholar 

  42. Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, Wright CV. The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet. 2002;32(1):128–34.

    Article  CAS  PubMed  Google Scholar 

  43. Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development. 2002;129(10):2447–57.

    CAS  PubMed  Google Scholar 

  44. • Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008;26(4):443–52. This study provides the first evidence that hESC-derived beta cells can restore normoglycemia in diabetic mice

    Article  CAS  PubMed  Google Scholar 

  45. McLean AB, D'Amour KA, Jones KL, Krishnamoorthy M, Kulik MJ, Reynolds DM, et al. Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed. Stem Cells. 2007;25(1):29–38.

    Article  CAS  PubMed  Google Scholar 

  46. D'Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol. 2005;23(12):1534–41.

    Article  PubMed  Google Scholar 

  47. D'Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24(11):1392–401.

    Article  PubMed  Google Scholar 

  48. Gouon-Evans V, Boussemart L, Gadue P, Nierhoff D, Koehler CI, Kubo A, et al. BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nat Biotechnol. 2006;24(11):1402–11.

    Article  CAS  PubMed  Google Scholar 

  49. Hebrok M, Kim SK, Melton DA. Notochord repression of endodermal sonic hedgehog permits pancreas development. Genes Dev. 1998;12(11):1705–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nostro MC, Sarangi F, Yang C, Holland A, Elefanty AG, Stanley EG, et al. Efficient generation of NKX6-1+ pancreatic progenitors from multiple human pluripotent stem cell lines. Stem Cell Reports. 2015;4(4):591–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rezania A, Bruin JE, Riedel MJ, Mojibian M, Asadi A, Xu J, et al. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes. 2012;61(8):2016–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen S, Borowiak M, Fox JL, Maehr R, Osafune K, Davidow L, et al. A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nat Chem Biol. 2009;5(4):258–65.

    Article  CAS  PubMed  Google Scholar 

  53. Bruin JE, Rezania A, Xu J, Narayan K, Fox JK, O'Neil JJ, et al. Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice. Diabetologia. 2013;56(9):1987–98.

    Article  PubMed  Google Scholar 

  54. Rezania A, Bruin JE, Xu J, Narayan K, Fox JK, O'Neil JJ, et al. Enrichment of human embryonic stem cell-derived NKX6.1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cells. 2013;31(11):2432–42.

    Article  CAS  PubMed  Google Scholar 

  55. Schulz TC, Young HY, Agulnick AD, Babin MJ, Baetge EE, Bang AG, et al. A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. PLoS One. 2012;7(5):e37004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. • Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I, Asadi A, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol. 2014;32(11):1121–33.

    Article  CAS  PubMed  Google Scholar 

  57. • Pagliuca FW, Millman JR, Gurtler M, Segel M, Van Dervort A, Ryu JH, et al. Generation of functional human pancreatic beta cells in vitro. Cell. 2014;159(2):428–39. The studies in ref. 56 and 57 demonstrate for the first time the generation of human insulin-producing cells in vitro through differentiation of PSCs. These cells successfully lower blood glucose levels in diabetic mouse models

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Millman JR, Xie C, Van Dervort A, Gurtler M, Pagliuca FW, Melton DA. Generation of stem cell-derived beta-cells from patients with type 1 diabetes. Nat Commun. 2016;7:11463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sugiura M, Kasama Y, Araki R, Hoki Y, Sunayama M, Uda M, et al. Induced pluripotent stem cell generation-associated point mutations arise during the initial stages of the conversion of these cells. Stem Cell Reports. 2014;2(1):52–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liang G, Zhang Y. Genetic and epigenetic variations in iPSCs: potential causes and implications for application. Cell Stem Cell. 2013;13(2):149–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bar-Nur O, Russ HA, Efrat S, Benvenisty N. Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell. 2011;9(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  62. Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, et al. Epigenetic memory in induced pluripotent stem cells. Nature. 2010;467(7313):285–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gao Y, Chen J, Li K, Wu T, Huang B, Liu W, et al. Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming. Cell Stem Cell. 2013;12(4):453–69.

    Article  CAS  PubMed  Google Scholar 

  64. Kobayashi T, Yamaguchi T, Hamanaka S, Kato-Itoh M, Yamazaki Y, Ibata M, et al. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell. 2010;142(5):787–99.

    Article  CAS  PubMed  Google Scholar 

  65. Yamaguchi T, Sato H, Kato-Itoh M, Goto T, Hara H, Sanbo M, et al. Interspecies organogenesis generates autologous functional islets. Nature. 2017;542(7640):191–6.

    Article  CAS  PubMed  Google Scholar 

  66. Wu J, Greely HT, Jaenisch R, Nakauchi H, Rossant J, Belmonte JC. Stem cells and interspecies chimaeras. Nature. 2016;540(7631):51–9.

    Article  CAS  PubMed  Google Scholar 

  67. Bruni A, Gala-Lopez B, Pepper AR, Abualhassan NS, Shapiro AJ. Islet cell transplantation for the treatment of type 1 diabetes: recent advances and future challenges. Diabetes Metab Syndr Obes. 2014;7:211–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Johannesson B, Sui L, Freytes DO, Creusot RJ, Egli D. Toward beta cell replacement for diabetes. EMBO J. 2015;34(7):841–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hallett PJ, Deleidi M, Astradsson A, Smith GA, Cooper O, Osborn TM, et al. Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease. Cell Stem Cell. 2015;16(3):269–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Boyd AS, Wood KJ. Characteristics of the early immune response following transplantation of mouse ES cell derived insulin-producing cell clusters. PLoS One. 2010;5(6):e10965.

    Article  PubMed  PubMed Central  Google Scholar 

  71. English K, Wood KJ. Immunogenicity of embryonic stem cell-derived progenitors after transplantation. Curr Opin Organ Transplant. 2011;16(1):90–5.

    Article  CAS  PubMed  Google Scholar 

  72. van der Torren C, Zaldumbide A, Roelen DL, Duinkerken G, Brand-Schaaf SH, Peakman M, et al. Innate and adaptive immunity to human beta cell lines: implications for beta cell therapy. Diabetologia. 2016;59(1):170–5.

    Article  PubMed  Google Scholar 

  73. Taylor CJ, Bolton EM, Pocock S, Sharples LD, Pedersen RA, Bradley JA. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet. 2005;366(9502):2019–25.

    Article  PubMed  Google Scholar 

  74. Szot GL, Yadav M, Lang J, Kroon E, Kerr J, Kadoya K, et al. Tolerance induction and reversal of diabetes in mice transplanted with human embryonic stem cell-derived pancreatic endoderm. Cell Stem Cell. 2015;16(2):148–57.

    Article  CAS  PubMed  Google Scholar 

  75. Agulnick AD, Ambruzs DM, Moorman MA, Bhoumik A, Cesario RM, Payne JK, et al. Insulin-producing endocrine cells differentiated in vitro from human embryonic stem cells function in macroencapsulation devices in vivo. Stem Cells Transl Med. 2015;4(10):1214–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ludwig B, Reichel A, Steffen A, Zimerman B, Schally AV, Block NL, et al. Transplantation of human islets without immunosuppression. Proc Natl Acad Sci U S A. 2013;110(47):19054–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Krishnan R, Alexander M, Robles L, Foster 3rd CE, Lakey JR. Islet and stem cell encapsulation for clinical transplantation. Rev Diabet Stud. 2014;11(1):84–101.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Vegas AJ, Veiseh O, Gurtler M, Millman JR, Pagliuca FW, Bader AR, et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat Med. 2016;22(3):306–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Williams SJ, Huang HH, Kover K, Moore W, Berkland C, Singh M, et al. Reduction of diffusion barriers in isolated rat islets improves survival, but not insulin secretion or transplantation outcome. Organ. 2010;6(2):115–24.

    Google Scholar 

  80. Elliott RB, Escobar L, Tan PL, Garkavenko O, Calafiore R, Basta P, et al. Intraperitoneal alginate-encapsulated neonatal porcine islets in a placebo-controlled study with 16 diabetic cynomolgus primates. Transplant Proc. 2005;37(8):3505–8.

    Article  CAS  PubMed  Google Scholar 

  81. O'Sullivan ES, Vegas A, Anderson DG, Weir GC. Islets transplanted in immunoisolation devices: a review of the progress and the challenges that remain. Endocr Rev. 2011;32(6):827–44.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Morch YA, Donati I, Strand BL, Skjak-Braek G. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules. 2006;7(5):1471–80.

    Article  CAS  PubMed  Google Scholar 

  83. Tomei AA, Manzoli V, Fraker CA, Giraldo J, Velluto D, Najjar M, et al. Device design and materials optimization of conformal coating for islets of Langerhans. Proc Natl Acad Sci U S A. 2014;111(29):10514–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Riolobos L, Hirata RK, Turtle CJ, Wang PR, Gornalusse GG, Zavajlevski M, et al. HLA engineering of human pluripotent stem cells. Mol Ther. 2013;21(6):1232–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wang D, Quan Y, Yan Q, Morales JE, Wetsel RA. Targeted disruption of the beta 2-microglobulin gene minimizes the immunogenicity of human embryonic stem cells. Stem Cells Transl Med. 2015;4(10):1234–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the McEwen Centre for Regenerative Medicine and the Toronto General and Western Hospital Foundation, the Ontario Institute for Regenerative Medicine, Canada First Research Excellence Funds and JDRF to M.C.N. We would like to thank Emily McGaugh and Farida Sarangi for discussion and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Cristina Nostro.

Ethics declarations

Conflict of Interest

Yasaman Aghazadeh declares no conflict of interest. Maria Cristina Nostro has a patent PCT/CA2013/000432 licensed to Sernova.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Immunology, Transplantation, and Regenerative Medicine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghazadeh, Y., Nostro, M.C. Cell Therapy for Type 1 Diabetes: Current and Future Strategies. Curr Diab Rep 17, 37 (2017). https://doi.org/10.1007/s11892-017-0863-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-017-0863-6

Keywords

Navigation