Skip to main content

Advertisement

Log in

Follicular Helper T Cells in Autoimmunity

  • Immunology and Transplantation (L Piemonti and V Sordi, Section Editors)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

The development of multiple disease-relevant autoantibodies is a hallmark of autoimmune diseases. In autoimmune type 1 diabetes (T1D), a variable time frame of autoimmunity precedes the clinically overt disease. The relevance of T follicular helper (TFH) cells for the immune system is increasingly recognized. Their pivotal contribution to antibody production by providing help to germinal center (GC) B cells facilitates the development of a long-lived humoral immunity. Their complex differentiation process, involving various stages and factors like B cell lymphoma 6 (Bcl6), is strictly controlled, as anomalous regulation of TFH cells is connected with immunopathologies. While the adverse effects of a TFH cell-related insufficient humoral immunity are obvious, the role of increased TFH frequencies in autoimmune diseases like T1D is currently highlighted. High levels of autoantigen trigger an excessive induction of TFH cells, consequently resulting in the production of autoantibodies. Therefore, TFH cells might provide promising approaches for novel therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ehrlich P, Morgenroth J. Ueber Hämolysine : fünfte Mittheilung. Berliner klinische Wochenschrift. 1901;38:251–7.

    Google Scholar 

  2. Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. 2010;464(7293):1293–300.

    Article  CAS  PubMed  Google Scholar 

  3. Rosenblum MD, Remedios KA, Abbas AK. Mechanisms of human autoimmunity. J Clin Invest. 2015;125(6):2228–33.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Todd JA. Etiology of type 1 diabetes. Immunity. 2010;32(4):457–67.

    Article  CAS  PubMed  Google Scholar 

  5. Zenewicz LA et al. Unraveling the genetics of autoimmunity. Cell. 2010;140(6):791–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Marson A, Housley WJ, Hafler DA. Genetic basis of autoimmunity. J Clin Invest. 2015;125(6):2234–41.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Goris A, Liston A. The immunogenetic architecture of autoimmune disease. Cold Spring Harb Perspect Biol. 2012. 4(3).

  8. Bennett CL et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001;27(1):20–1.

    Article  CAS  PubMed  Google Scholar 

  9. Finnish-German AC. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet. 1997;17(4):399–403.

    Article  Google Scholar 

  10. Ghoreschi K et al. Generation of pathogenic T(H)17 cells in the absence of TGF-beta signalling. Nature. 2010;467(7318):967–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vandenbroeck K. Cytokine gene polymorphisms and human autoimmune disease in the era of genome-wide association studies. J Interferon Cytokine Res. 2012;32(4):139–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Elliott M et al. Ustekinumab: lessons learned from targeting interleukin-12/23p40 in immune-mediated diseases. Ann N Y Acad Sci. 2009;1182:97–110.

    Article  CAS  PubMed  Google Scholar 

  13. Papp KA et al. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N Engl J Med. 2012;366(13):1181–9.

    Article  CAS  PubMed  Google Scholar 

  14. Knip M, Simell O. Environmental triggers of type 1 diabetes. Cold Spring Harb Perspect Med. 2012;2(7):a007690.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Root-Bernstein R, Fairweather D. Complexities in the relationship between infection and autoimmunity. Curr Allerg Asthma Rep. 2014;14(1):407.

    Article  Google Scholar 

  16. Serafini B et al. Dysregulated Epstein-Barr virus infection in the multiple sclerosis brain. J Exp Med. 2007;204(12):2899–912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mikuls TR et al. Periodontitis and Porphyromonas gingivalis in patients with rheumatoid arthritis. Arthrit Rheumatol. 2014;66(5):1090–100.

    Article  Google Scholar 

  18. Ochoa-Reparaz J et al. Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression. J Immunol. 2010;185(7):4101–8.

    Article  CAS  PubMed  Google Scholar 

  19. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Strachan DP. Hay fever, hygiene, and household size. BMJ. 1989;299(6710):1259–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wills-Karp M, Santeliz J, Karp CL. The germless theory of allergic disease: revisiting the hygiene hypothesis. Nat Rev Immunol. 2001;1(1):69–75.

    Article  CAS  PubMed  Google Scholar 

  22. Abdollahi-Roodsaz S et al. Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J Clin Invest. 2008;118(1):205–16.

    Article  CAS  PubMed  Google Scholar 

  23. Wu HJ et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity. 2010;32(6):815–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kuhn A, Wenzel J, Weyd H. Photosensitivity, apoptosis, and cytokines in the pathogenesis of lupus erythematosus: a critical review. Clin Rev Allergy Immunol. 2014;47(2):148–62.

    Article  CAS  PubMed  Google Scholar 

  25. Yurasov S et al. Defective B cell tolerance checkpoints in systemic lupus erythematosus. J Exp Med. 2005;201(5):703–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bluestone JA, Tang Q, Sedwick CE. T regulatory cells in autoimmune diabetes: past challenges, future prospects. J Clin Immunol. 2008;28(6):677–84.

    Article  CAS  PubMed  Google Scholar 

  27. Buckner JH. Mechanisms of impaired regulation by CD4(+)CD25(+)FOXP3(+) regulatory T cells in human autoimmune diseases. Nat Rev Immunol. 2010;10(12):849–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gale EA. The rise of childhood type 1 diabetes in the 20th century. Diabetes. 2002;51(12):3353–61.

    Article  CAS  PubMed  Google Scholar 

  29. Ziegler AG, Nepom GT. Prediction and pathogenesis in type 1 diabetes. Immunity. 2010;32(4):468–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Insel RA et al. Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care. 2015;38(10):1964–74.

    Article  CAS  PubMed  Google Scholar 

  31. McLaughlin KA, Richardson CC, Ravishankar A, Brigatti C, Liberati D, Lampasona V, et al. Identification of tetraspanin-7 as a target of autoantibodies in type 1 diabetes. Diabetes. 2016.

  32. Ziegler AG et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA. 2013;309(23):2473–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Krischer JP, Type 1 Diabetes TrialNet Study Group . The use of intermediate endpoints in the design of type 1 diabetes prevention trials. Diabetologia. 2013;56(9):1919–24.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Katz JD, Benoist C, Mathis D. T helper cell subsets in insulin-dependent diabetes. Science. 1995;268(5214):1185–8.

    Article  CAS  PubMed  Google Scholar 

  35. Anderson JT et al. Insulin-dependent diabetes in the NOD mouse model. II. Beta cell destruction in autoimmune diabetes is a TH2 and not a TH1 mediated event. Autoimmunity. 1993;15(2):113–22.

    Article  CAS  PubMed  Google Scholar 

  36. Ferraro A et al. Expansion of Th17 cells and functional defects in T regulatory cells are key features of the pancreatic lymph nodes in patients with type 1 diabetes. Diabetes. 2011;60(11):2903–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Baumjohann D et al. Persistent antigen and germinal center B cells sustain T follicular helper cell responses and phenotype. Immunity. 2013;38(3):596–605. This is an important paper showing that the amount of antigen determines the quantity and duration of the TFH cell response in a murine model.

    Article  CAS  PubMed  Google Scholar 

  38. Kenefeck R et al. Follicular helper T cell signature in type 1 diabetes. J Clin Invest. 2015;125(1):292–303. This paper highlights a clear association between TFH cells and T1D in a murine model and in human peripheral blood.

    Article  PubMed  Google Scholar 

  39. Crotty S. T follicular helper cell differentiation, function, and roles in disease. Immunity. 2014;41(4):529–42. This is a useful, broad review of TFH cell differentiation, regulation, function, and their role in disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ansel KM et al. In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J Exp Med. 1999;190(8):1123–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schaerli P et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med. 2000;192(11):1553–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Haynes NM et al. Role of CXCR5 and CCR7 in follicular Th cell positioning and appearance of a programmed cell death gene-1high germinal center-associated subpopulation. J Immunol. 2007;179(8):5099–108.

    Article  CAS  PubMed  Google Scholar 

  43. Breitfeld D et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J Exp Med. 2000;192(11):1545–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chtanova T et al. T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J Immunol. 2004;173(1):68–78.

    Article  CAS  PubMed  Google Scholar 

  45. Morita R et al. Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity. 2011;34(1):108–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fazilleau N et al. Follicular helper T cells: lineage and location. Immunity. 2009;30(3):324–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu X et al. Transcription factor achaete-scute homologue 2 initiates follicular T-helper-cell development. Nature. 2014;507(7493):513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Goenka R et al. Cutting edge: dendritic cell-restricted antigen presentation initiates the follicular helper T cell program but cannot complete ultimate effector differentiation. J Immunol. 2011;187(3):1091–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Odegard JM et al. ICOS-dependent extrafollicular helper T cells elicit IgG production via IL-21 in systemic autoimmunity. J Exp Med. 2008;205(12):2873–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Poholek AC et al. In vivo regulation of Bcl6 and T follicular helper cell development. J Immunol. 2010;185(1):313–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Choi YS et al. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity. 2011;34(6):932–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nurieva RI et al. Bcl6 mediates the development of T follicular helper cells. Science. 2009;325(5943):1001–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Johnston RJ et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science. 2009;325(5943):1006–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stone EL et al. ICOS coreceptor signaling inactivates the transcription factor FOXO1 to promote Tfh cell differentiation. Immunity. 2015;42(2):239–51. This paper indicates that ICOS transiently inactivates Foxo1 to promote Bcl6 expression and generation of TFH cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xiao N et al. The E3 ubiquitin ligase Itch is required for the differentiation of follicular helper T cells. Nat Immunol. 2014;15(7):657–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang H et al. The transcription factor Foxp1 is a critical negative regulator of the differentiation of follicular helper T cells. Nat Immunol. 2014;15(7):667–75. This paper demonstrates that CD4+ T cells deficient in Foxp1 might enhance TFH cell differentiation and GC and antibody responses.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vogelzang A et al. A fundamental role for interleukin-21 in the generation of T follicular helper cells. Immunity. 2008;29(1):127–37.

    Article  CAS  PubMed  Google Scholar 

  58. Johnston RJ et al. STAT5 is a potent negative regulator of TFH cell differentiation. J Exp Med. 2012;209(2):243–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Akiba H et al. The role of ICOS in the CXCR5+ follicular B helper T cell maintenance in vivo. J Immunol. 2005;175(4):2340–8.

    Article  CAS  PubMed  Google Scholar 

  60. Obst R et al. Antigen persistence is required throughout the expansion phase of a CD4(+) T cell response. J Exp Med. 2005;201(10):1555–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Weinstein JS et al. B cells in T follicular helper cell development and function: separable roles in delivery of ICOS ligand and antigen. J Immunol. 2014;192(7):3166–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hu J, Havenar-Daughton C, Crotty S. Modulation of SAP dependent T:B cell interactions as a strategy to improve vaccination. Curr Opin Virol. 2013;3(3):363–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Crotty S. Follicular helper CD4 T cells (TFH). Annu Rev Immunol. 2011;29:621–63.

    Article  CAS  PubMed  Google Scholar 

  64. Shulman Z et al. T follicular helper cell dynamics in germinal centers. Science. 2013;341(6146):673–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kitano M et al. Bcl6 protein expression shapes pre-germinal center B cell dynamics and follicular helper T cell heterogeneity. Immunity. 2011;34(6):961–72.

    Article  CAS  PubMed  Google Scholar 

  66. Wang CJ et al. CTLA-4 controls follicular helper T-cell differentiation by regulating the strength of CD28 engagement. Proc Natl Acad Sci U S A. 2015;112(2):524–9. Useful paper that shows that CTLA-4 deficiency causes excessive CD28 stimulation and thereby regulation of TFH cell differentiation and GC formation.

    Article  CAS  PubMed  Google Scholar 

  67. Kuipers H et al. Dicer-dependent microRNAs control maturation, function, and maintenance of Langerhans cells in vivo. J Immunol. 2010;185(1):400–9.

    Article  CAS  PubMed  Google Scholar 

  68. Kuipers H, Schnorfeil FM, Brocker T. Differentially expressed microRNAs regulate plasmacytoid vs. conventional dendritic cell development. Mol Immunol. 2010;48(1–3):333–40.

    Article  CAS  PubMed  Google Scholar 

  69. Turner ML, Schnorfeil FM, Brocker T. MicroRNAs regulate dendritic cell differentiation and function. J Immunol. 2011;187(8):3911–7.

    Article  CAS  PubMed  Google Scholar 

  70. Baumjohann D et al. The microRNA cluster miR-17 approximately 92 promotes TFH cell differentiation and represses subset-inappropriate gene expression. Nat Immunol. 2013;14(8):840–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Victora GD, Nussenzweig MC. Germinal centers. Annu Rev Immunol. 2012;30:429–57.

    Article  CAS  PubMed  Google Scholar 

  72. Linterman MA et al. Follicular helper T cells are required for systemic autoimmunity. J Exp Med. 2009;206(3):561–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hams E et al. Blockade of B7-H1 (programmed death ligand 1) enhances humoral immunity by positively regulating the generation of T follicular helper cells. J Immunol. 2011;186(10):5648–55.

    Article  CAS  PubMed  Google Scholar 

  74. Good-Jacobson KL et al. PD-1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells. Nat Immunol. 2010;11(6):535–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bentebibel SE. Induction of ICOS + CXCR3 + CXCR5+ TH cells correlates with antibody responses to influenza vaccination. Sci Transl Med. 2013;5(176):176ra32.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Petrovas C et al. CD4 T follicular helper cell dynamics during SIV infection. J Clin Invest. 2012;122(9):3281–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Harker JA et al. Late interleukin-6 escalates T follicular helper cell responses and controls a chronic viral infection. Science. 2011;334(6057):825–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fahey LM et al. Viral persistence redirects CD4 T cell differentiation toward T follicular helper cells. J Exp Med. 2011;208(5):987–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rivino L et al. Differential targeting of viral components by CD4+ versus CD8+ T lymphocytes in dengue virus infection. J Virol. 2013;87(5):2693–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kawamoto S, Maruya M, Kato LM, Suda W, Atarashi K, Doi Y, et al. Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity. 2014;41:152–65.

    Article  CAS  PubMed  Google Scholar 

  81. Al-Herz W et al. Primary immunodeficiency diseases: an update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Front Immunol. 2014;5:162.

    PubMed  PubMed Central  Google Scholar 

  82. Cubas RA et al. Inadequate T follicular cell help impairs B cell immunity during HIV infection. Nat Med. 2013;19(4):494–9.

    Article  CAS  PubMed  Google Scholar 

  83. Ballesteros-Tato A et al. T follicular helper cell plasticity shapes pathogenic T helper 2 cell-mediated immunity to inhaled house dust mite. Immunity. 2016;44(2):259–73.

    Article  CAS  PubMed  Google Scholar 

  84. Bubier JA et al. A critical role for IL-21 receptor signaling in the pathogenesis of systemic lupus erythematosus in BXSB-Yaa mice. Proc Natl Acad Sci U S A. 2009;106(5):1518–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Szabo K et al. A comprehensive investigation on the distribution of circulating follicular T helper cells and B cell subsets in primary Sjogren’s syndrome and systemic lupus erythematosus. Clin Exp Immunol. 2016;183(1):76–89.

    Article  CAS  PubMed  Google Scholar 

  86. Fan X et al. Circulating CCR7 + ICOS+ memory T follicular helper cells in patients with multiple sclerosis. PLoS One. 2015;10(7):e0134523.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ferreira RC et al. IL-21 production by CD4+ effector T cells and frequency of circulating follicular helper T cells are increased in type 1 diabetes patients. Diabetologia. 2015;58(4):781–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Xu H et al. Follicular T-helper cell recruitment governed by bystander B cells and ICOS-driven motility. Nature. 2013;496(7446):523–7.

    Article  CAS  PubMed  Google Scholar 

  89. Yoon JW, Jun HS. Autoimmune destruction of pancreatic beta cells. Am J Ther. 2005;12(6):580–91.

    Article  PubMed  Google Scholar 

  90. Butler NS et al. Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection. Nat Immunol. 2012;13(2):188–95.

    Article  CAS  Google Scholar 

  91. Obeng-Adjei N et al. Circulating Th1-Cell-type Tfh cells that exhibit impaired B cell help are preferentially activated during acute malaria in children. Cell Rep. 2015;13(2):425–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wei M et al. Mice carrying a knock-in mutation of Aicda resulting in a defect in somatic hypermutation have impaired gut homeostasis and compromised mucosal defense. Nat Immunol. 2011;12(3):264–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolin Daniel.

Ethics declarations

Conflict of Interest

Carolin Daniel (CD) is supported by a Junior Research Group at Helmholtz Zentrum München. CD received support through an associated membership in the CRC1054 of the Deutsche Forschungsgemeinschaft. The work was supported by grants from the Juvenile Diabetes Research Foundation (JDRF 2-SRA-2014-161-Q-R).

Verena B. Ott is supported by Technische Universität München–Institute for Advanced Study, funded by the German Excellence Initiative and the European Union Seventh Framework Programme under grant agreement n° 291763.

Martin G. Scherm is supported by a Helmholtz Diabetes Center Portfolio Grant.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Immunology and Transplantation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scherm, M.G., Ott, V.B. & Daniel, C. Follicular Helper T Cells in Autoimmunity. Curr Diab Rep 16, 75 (2016). https://doi.org/10.1007/s11892-016-0770-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-016-0770-2

Keywords

Navigation