Skip to main content

Advertisement

Log in

Complexities in the Relationship Between Infection and Autoimmunity

  • AUTOIMMUNITY (TK TARRANT, SECITON EDITOR)
  • Published:
Current Allergy and Asthma Reports Aims and scope Submit manuscript

Abstract

The possible role of infections in driving autoimmune disease (AD) has long been debated. Many theories have emerged including release of hidden antigens, epitope spread, anti-idiotypes, molecular mimicry, the adjuvant effect, antigenic complementarity, or simply that AD could be a direct consequence of activation or subversion of the immune response by microbes. A number of issues are not adequately addressed by current theories, including why animal models of AD require adjuvants containing microbial peptides in addition to self tissue to induce disease, and why ADs occur more often in one sex than the other. Reviews published in the past 3 years have focused on the role of the innate immune response in driving AD and the possible role of persistent infections in altering immune responses. Overall, recent evidence suggests that microbes activating specific innate immune responses are critical, while antigenic cross-reactivity may perpetuate immune responses leading to chronic autoinflammatory disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Root-Bernstein RS. Antigenic complementarity in the induction of autoimmunity: a general theory and review. Autoimm Rev. 2007;6:272–7.

    Article  CAS  Google Scholar 

  2. Rose NR. Infection and autoimmunity: theme and variations. Curr Opin Rheumatol. 2012;24:380–2. This review is an introduction to a series of articles describing the role of specific infections, or vaccines, in driving autoimmune diseases.

    Article  PubMed  Google Scholar 

  3. Getts DR, Chastain EML, Terry RL, Miller SD. Virus infection, antiviral immunity, and autoimmunity. Immunol Rev. 2013;255:197–209. A comprehensive review of the role of viruses in driving multiple sclerosis with evidence from clinical and animal model studies.

    Article  CAS  PubMed  Google Scholar 

  4. Mangalam AK, Taneja V, David CS. HLA class II molecules influence susceptibility versus protection in inflammatory diseases by determining the cytokine profile. J Immunol. 2013;190:513–8. This review discusses the role of HLA in driving particular cytokine responses that direct adaptive immune responses and AD after presenting microbes or self peptides.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Rigante D, Mazzoni MB, Esposito S. The cryptic interplay between systemic lupus erythematosus and infections. Autoimm Rev. 2014;13:96–102.

    Google Scholar 

  6. Mills KHG. TLR-dependent T cell activation in autoimmunity. Nat Rev Immunol. 2011;11:807–22. A comprehensive review on the role of TLRs in innate immunity and the development of AD, and emerging information about the role of TLR on T cells in driving AD.

    CAS  PubMed  Google Scholar 

  7. Blander JM, Torchinsky MB, Campisi L. Revisiting the old link between infection and autoimmune disease with commensals and T helper 17 cells. Immunol Res. 2012;54:50–68.

    Article  CAS  PubMed  Google Scholar 

  8. Cusick MF, Libbey JE, Fujinami RS. Molecular mimicry as a mechanism of autoimmune disease. Clinic Rev Allerg Immunol. 2012;42:102–11. Detailed table of ADs with microbe and tissue mimics. Provides a history of the theory of molecular mimicry with new thoughts that dual TCR may have been misinterpreted as molecular mimicry.

    Article  CAS  Google Scholar 

  9. Rose NR. The discovery of thyroid autoimmunity. Immunol Today. 1991;12:167–8.

    CAS  PubMed  Google Scholar 

  10. Galli L, Chiappini E, de Marino M. Infections and autoimmunity. Ped Infect Dis J. 2012;31:1295–7.

    Article  Google Scholar 

  11. Fairweather D, Frisancho-Kiss S, Rose NR. Sex differences in autoimmune disease form a pathologic perspective. Am J Pathol. 2008;178:600–9.

    Article  Google Scholar 

  12. Myers JM, Fairweather D, Huber SA, Cunningham MW. Autoimmune myocarditis, valvulitis and cardiomyopathy. Curr Protoc Immunol. 2013;14:1–51. Chapter 15:Unit 15.

    Google Scholar 

  13. De Scheerder IK, de Buyzere ML, Delanghe JR, Clement DL, Wieme RJ. Anti-myosin humoral immune response following cardiac injury. Autoimmunity. 1989;4:51–8.

    Article  PubMed  Google Scholar 

  14. Lehmann PV, Forsthuber T, Miller A, Sercarz EE. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature. 1992;358:155–7.

    Article  CAS  PubMed  Google Scholar 

  15. Germolic D, Kono DH, Pfau JC, Pollard KM. Animal models used to examine the role of environment in the development of autoimmune disease: findings from an NIEHS Expert Panel Workshop. J Autoimm. 2012;39:285–93. These workshop findings list environmental agents, including infections and chemicals, that they are confident, or very likely, to induce AD in animal models.

    Article  Google Scholar 

  16. Mallampalli MP, Davies E, Wood D, et al. Role of environment and sex differences in the development of autoimmune diseases: a roundtable meeting report. J Women's Health. 2013;22:578–86. Results from this round table highlight how the immune response to infectious and other environmental factors is directed in the context of sex (i.e. predominantly sex hormones).

    Article  Google Scholar 

  17. Triantafyllopoulou A, Moutsopoulos H. Persistent viral infection in primary Sjogren’s syndrome: review and perspectives. Clinic Rev Allerg Immunol. 2007;32:210–4.

    Article  CAS  Google Scholar 

  18. Powell AM, Black MM. Epitope spreading: protection from pathogens, but propagation of autoimmunity? Clin Exp Dermatol. 2001;26:427–32.

    Article  CAS  PubMed  Google Scholar 

  19. Vanderlugt CL, Miller SD. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nature Rev Immunol. 2002;2:85–95.

    Article  CAS  Google Scholar 

  20. Fairweather D, Kaya Z, Shellam GR, Lawson CM, Rose NR. From infection to autoimmunity. J Autoimm. 2001;16:175–86.

    Article  CAS  Google Scholar 

  21. Plotz PH: Autoantibodies are anti-idiotype antibodies to antiviral antibodies. Lancet 1983, ii:824–826.

  22. Eichenbaum Z. The streptococcal hemoprotein receptor: a moonlighting protein or a virulence factor? Virulence. 2012;3:553–5.

    Article  PubMed  Google Scholar 

  23. Nomura R, Naka S, Nemoto H, et al. Potential involvement of collagen-binding proteins of Streptococcus mutans in infective endocarditis. Oral Dis. 2013;19:387–93.

    Article  CAS  PubMed  Google Scholar 

  24. Paque RE, Miller R. Monoclonal anti-idiotypic antibodies regulate the expression of virus-induced murine myocarditis. Infect Immun. 1989;57:2864–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Paque RE, Miller R. Autoanti-idiotypes exhibit mimicry of myocyte antigens in virus-induced myocarditis. J Virol. 1991;65:16–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Cunningham MW, Antone SM, Gulizia JM, et al. Cytotoxic and viral neutralizing antibodies cross-react with streptococcal M protein, enteroviruses and human cardiac myosin. Proc Natl Acad Sci U S A. 1992;89:1320–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Cunningham MW. Streptococcus and rheumatic fever. Curr Opin Rheumatol. 2012;24:408–16. This review gives an overview of patient and animal model evidence for cross-reactive antibodies to Streptococcus and cardiac and brain epitopes.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Root-Bernstein R, Vonck J, Podufaly A. Antigenic complementarity between coxsackievirus and streptococcus in the induction of rheumatic heart disease and autoimmune myocarditis. Autoimmunity. 2009;42:1–16.

    Article  CAS  PubMed  Google Scholar 

  29. Takata S, Nakamura H, Umemoto S, et al. Identification of autoantibodies with the corresponding antigen for repetitive coxsackievirus infection-induced cardiomyopathy. Circ J. 2004;68:677–82.

    Article  CAS  PubMed  Google Scholar 

  30. Weremeichik H, Moraska A, Herzum M, Weller A, Huber SA. Naturally occurring anti-idiotypic antibodies- mechanisms for autoimmunity and immunoregulation? Eur Heart J. 1991;Suppl D:154–7.

  31. Weller AH, Hall M, Huber SA. Polyclonal immunoglobin therapy protects against cardiac damage in experimental coxsackievirus-induced myocarditis. Eur Heart J. 1992;13:115–9.

    CAS  PubMed  Google Scholar 

  32. Root-Bernstein R. Autoreactive T-cell receptor (Vβ/D/Jβ) sequences in diabetes are homologous to insulin, glucagon, the insulin receptor, and the glucagon receptor. J Mol Recognit. 2009;22:177–87.

    Article  CAS  PubMed  Google Scholar 

  33. Root-Bernstein RS, Podufaly A. Autoreactive T-cell receptor (Vβ/D/Jβ) sequences in diabetes recognize insulin, the insulin receptor, and each other, and are targets of insulin antibodies. Open Autoimm J. 2012;4:10–22.

    Article  CAS  Google Scholar 

  34. Damian RT. A theory of immunoselection for eclipsed antigens of parasites and its implications for the problem of antigenic polymorphism in man. J Parasitol. 1962;48:16.

    Google Scholar 

  35. Damian RT. Molecular mimicry: antigen sharing by parasite and host and its consequences. Am Natur. 1964;98:129–49.

    Article  Google Scholar 

  36. Damian RT. Molecular mimicry in biological adaptation. Science. 1965;147:824.

    Article  CAS  PubMed  Google Scholar 

  37. Lane D, Koprowski H. Molecular recognition and the future of monoclonal antibodies. Nature. 1982;296:200–2.

    Article  CAS  PubMed  Google Scholar 

  38. Fujinami RS, Oldstone MBA, Wroblewska Z, Frankel ME, Koprowski H. Molecular mimicry in virus infection: cross-reaction of measles virus phosphoprotein or of herpes simplex virus protein with human intermediate filaments. Proc Natl Acad Sci U S A. 1983;80:2346–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Fujinami RS and Oldstone MBA. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 1985;230:1043–5.

    Google Scholar 

  40. Gauntt CJ, Higdon AL, Arizpe HM, et al. Epitopes shared between coxsackievirus B3 (CVB3) and normal heart tissue contribute to CVB3-induced murine myocarditis. Clin Immunol Immunopathol. 1993;68:129–34.

    Article  CAS  PubMed  Google Scholar 

  41. Lawson CM. Evidence for mimicry by viral antigens in animal models of autoimmune disease including myocarditis. Cell Mol Life Sci. 2000;57:552–60.

    Article  CAS  PubMed  Google Scholar 

  42. Massilamany C, Gangaplara A, Steffen D, Reddy J. Identification of novel mimicry epitopes for cardiac myosin heavy chain-α that induce autoimmune myocarditis in A/J mice. Cell Immunol. 2011;271:438–49. Sequences that mimic cardiac myosin heavy chain were shown to induce myocarditis in mice, including epitopes from Cryptococcus neoformans and Zea mays (corn). However, induction of disease required inoculation of peptides with complete Freund’s adjuvant containing Mycobacterium tuberculosis.

    Article  CAS  PubMed  Google Scholar 

  43. Christen U, Bender C, von Herrath MG. Infection as a cause of type 1 diabetes? Curr Opin Rheumatol. 2012;24:417–23.

    Article  PubMed  Google Scholar 

  44. Smyk D, Rigopoulou EI, Zen Y, et al. Role for mycobacterial infection in pathogenesis of primary biliary cirrhosis? World J Gastroenterol. 2012;18:4855–65.

    Article  PubMed  Google Scholar 

  45. Tandon R, Sharma M, Chandrashekhar Y, Kotb M, Yacoub MH, Narula J. Revisiting the pathogenesis of rheumatic fever and carditis. Nat Rev Cardiol. 2013;10:171–7.

    Article  CAS  PubMed  Google Scholar 

  46. Fairweather D, Petri MA, Coronado MJ, Cooper Jr LT. Autoimmune heart disease: role of sex hormones and autoantibodies in disease pathogenesis. Expert Rev Clin Immunol. 2012;8:269–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Fairweather D, Cooper Jr LT, Blauwet LA. Sex and gender differences in myocarditis and dilated cardiomyopathy. Curr Probl Cardiol. 2013;38:7–46.

    Article  PubMed  Google Scholar 

  48. Owens GP, Bennett JL. Trigger, pathogen, or bystander: the complex nexus linking Epstein-Barr virus and multiple sclerosis. Multiple Sclerosis J. 2012;18:1204–8.

    Article  Google Scholar 

  49. Gorton D, Blyth S, Gorton JG, Govan B, Ketheesan N. An alternative technique for the induction of autoimmune valvulitis in a rat model of rheumatic heart disease. J Immunol Methods. 2010;355:80–5.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang P, Cox CJ, Alvarez KM, Cunningham MW. Cutting edge: cardiac myosin activates innate immune responses through TLRs. J Immunol. 2009;183:27–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Abston ED, Coronado MJ, Bucek A, et al. TLR3 deficiency induces chronic inflammatory cardiomyopathy in resistant mice following coxsackievirus B3 infection: role for IL-4. Am J Physiol Regul Integr Comp Physiol. 2013;304:R267–77.

    Article  CAS  PubMed  Google Scholar 

  52. Barin JG, Baldeviano GC, Talor MV, et al. Fatal eosinophilic myocarditis develops in the absence of IFNγ and IL-17A. J Immunol. 2013;191:4038–47.

    Article  CAS  PubMed  Google Scholar 

  53. Westall FC, Root-Bernstein RS. An explanation of prevention and suppression of experimental allergic encephalomyelitis. Mol Immunol. 1983;20:169–77.

    Article  CAS  PubMed  Google Scholar 

  54. Westall FC, Root-Bernstein RS. The cause and prevention of post-infectious and post-vaccinal encephalopathies in light of a new theory of autoimmunity. Lancet. 1986;2:251–2.

    Article  CAS  PubMed  Google Scholar 

  55. Root-Bernstein RS. Multiple antigen mediated autoimmunity (MAMA) in AIDS: a possible model for post-infectious autoimmunity. Res Immunol. 1990;141:321–39.

    Article  CAS  PubMed  Google Scholar 

  56. Root-Bernstein RS. A modular hierarchy-based theory of the chemical origins of life based on molecular complementarity. Acc Chem Res. 2012;45:2169–77.

    Article  CAS  PubMed  Google Scholar 

  57. Xie X, Zhou H, Huang J, et al. An animal model of chronic rheumatic valvulitis induced by formalin-killed streptococci. Rheumatol Int. 2010;30:1621–5.

    Article  PubMed  Google Scholar 

  58. Fairweather D, Stafford KA, Sung YK. Update on coxsackievirus B3 myocarditis. Curr Opin Rheumatol. 2012;24:401–7.

    Article  PubMed  Google Scholar 

  59. Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282:2085–8.

    Article  CAS  PubMed  Google Scholar 

  60. Clark PM, Dawany N, Dampier W, et al. Bioinformatics analysis reveals transcriptome and microRNA signatures and drug repositioning targets for IBD and other autoimmune diseases. Inflamm Bowel Dis. 2012;12:2315–33.

    Article  Google Scholar 

  61. Hanamsagar R, Hanke ML, Kielian T. Toll-like receptor (TLR) and inflammasome actions in the central nervous system. Trends Immunol. 2012;33:333–42. Reviews recent evidence for TLR2, TLR4 and the inflammasome in the pathogenesis of multiple sclerosis mainly from animal models of disease.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Shakya AK, Nandakumar KS. Applications of polymeric adjuvants in studying autoimmune responses and vaccination against infectious diseases. J R Soc Interface. 2012;10:20120536.

    Article  Google Scholar 

  63. Masters SL. Specific inflammasomes in complex diseases. Clin Immunol. 2013;143:223–8.

    Article  Google Scholar 

  64. Rosenbaum JT, Kim HW. Innate immune signals in autoimmune and autoinflammatory uveitis. Int Rev Immunol. 2013;32:68–75.

    Article  CAS  PubMed  Google Scholar 

  65. Stubgen J-P. Immune-mediated myelitis following hepatitis B vaccination. Autoimm Rev. 2012;12:144–9.

    Article  CAS  Google Scholar 

  66. Yeter D, Deth R. ITPKC susceptibility in Kawasaki syndrome as a sensitizing factor for autoimmunity and coronary arterial wall relaxation induced by thimerosal’s effects on calcium signaling via IP3. Autoimm Rev. 2012;11:903–8.

    Article  CAS  Google Scholar 

  67. Dungan LS, Mills KHG. Caspase-1-processed IL-1 family cytokines play a vital role in driving innate IL-17. Cytokine. 2011;56:126–32. This review describes evidence that innate TLR4/caspase-1/inflammasome activation can produce IL-17 that promotes AD.

    Article  CAS  PubMed  Google Scholar 

  68. Coronado MJ, Brandt JE, Kim E, et al. Testosterone and interleukin-1β increase cardiac remodeling during coxsackievirus B3 myocarditis via serpin A 3n. Am J Physiol Heart Circ Physiol. 2012;308:H1726–36.

    Article  Google Scholar 

  69. Kawasaki T, Kawai T, Akira S. Recognition of nucleic acids by pattern-recognition receptors and its relevance in autoimmunity. Immunol Rev. 2011;243:61–73.

    Article  CAS  PubMed  Google Scholar 

  70. Buskiewicz IA, Koenig A, Huber SA, Budd RC. Caspase-8 and FLIP regulate RIG-1/MDA5-induced immune host response to picornaviruses. Future Virol. 2012;7:1221–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Kulkarni OP, Anders H-J. Lupus nephritis: how latest insights into its pathogenesis promote novel therapies. Curr Opin Rheumatol. 2012;24:457–65.

    Article  CAS  PubMed  Google Scholar 

  72. Brencicova E, Diebold SS. Nucleic acids and endosomal pattern recognition: how to tell friend from foe? Front Cell Infect Microbiol. 2013;3:37.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Indolfi G, Bartolini E, Olivito B, Azzari C, Resti M. Autoimmunity and extrahepatic manifestations in treatment-naïve children with chronic hepatitis C virus infection. Clin Dev Immunol. 2012;2012:785627.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Paroli M, Iannucci G, Accapezzato D. Hepatitis C virus infection and autoimmune diseases. Inter J Gen Med. 2012;5:903–7.

    Article  Google Scholar 

  75. Igoe A, Scofield RH. Autoimmunity and infection in Sjogren’s syndrome. Curr Opin Rheumatol. 2013;25:480–7.

    Article  CAS  PubMed  Google Scholar 

  76. Dreyfus DH. Autoimmune disease: a role for new anti-viral therapies? Autoimm Rev. 2011;11:88–97.

    Article  CAS  Google Scholar 

  77. Holbro A, Jauch A, Lardinois D, et al. High prevalence of infections and autoimmunity in patients with thymoma. Human Immunol. 2012;73:287–90.

    Article  CAS  Google Scholar 

  78. Lucchesi D, Bombardieri M. The role of viruses in autoreactive B cell activation within tertiary lymphoid structures in autoimmune diseases. J Leukoc Biol. 2013;94:1191–9.

    Google Scholar 

  79. Goronzy JJ, Weyand CM. Understanding immunosenescence to improve responses to vaccines. Nat Immunol. 2013;14:428–36.

    Article  CAS  PubMed  Google Scholar 

  80. Cavalcante P, Bernasconi P, Mantegazza R. Autoimmune mechanisms in myasthenia gravis. Curr Opin Neurol. 2012;25:621–9.

    Article  CAS  PubMed  Google Scholar 

  81. Stack G, Stacey MA, Humphreys IR. Herpesvirus exploitation of host immune inhibitory pathways. Viruses. 2012;4:1182–201.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Vergani D, Mieli-Vergani G. Autoimmune manifestations in viral hepatitis. Semin Immunopathol. 2013;35:73–85.

    Article  CAS  PubMed  Google Scholar 

  83. Aichele P, Bachmann MF, Hengartner H, Zinkernagel RM. Immunopathology or organ-specific autoimmunity as a consequence of virus infection. Immunol Rev. 1996;152:21–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This article is funded in part by the National Institutes of Health (R01s HL087033 and HL111938) and the American Heart Association (12GRNT1205000) (to DeLisa Fairweather).

Compliance with Ethics Guidelines

Conflict of Interest

DeLisa Fairweather is a board member of the Myocarditis Foundation.

Robert Root-Bernstein declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with animal subjects performed by any of the authors. With regard to the authors’ research cited in this paper, all procedures were followed in accordance with the ethical standards of the responsible committee on human experimentation and with the Helsinki Declaration of 1975, as revised in 2000 and 2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DeLisa Fairweather.

Additional information

This article is part of the Topical Collection on Autoimmunity

Rights and permissions

Reprints and permissions

About this article

Cite this article

Root-Bernstein, R., Fairweather, D. Complexities in the Relationship Between Infection and Autoimmunity. Curr Allergy Asthma Rep 14, 407 (2014). https://doi.org/10.1007/s11882-013-0407-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11882-013-0407-3

Keywords

Navigation