Skip to main content

Advertisement

Log in

The Role of Mitochondria in Diabetic Kidney Disease

  • Microvascular Complications—Nephropathy (AP Maxwell, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Despite major improvements in the treatment of patients with diabetes mellitus, many patients still suffer from progressive diabetic kidney disease. More research is needed to improve treatment and to understand why some patients develop complications while others do not. Mitochondrial dysfunction has turned out to be central to the pathogenesis of diabetes, and we will review some new aspects in this field and the potential for treatment. The conventional theory has been that the intracellular surplus of glucose leads to mitochondrial overproduction of superoxide that contributes to general cell damage and activation of deleterious pathways specific for diabetes complications. However, recent data suggests that reduced mitochondrial activity could be the basis for disease progression and complications through increased inflammation and pro-fibrotic factors. Physical exercise is a very strong stimulus to mitochondrial biogenesis, and we now understand many of the underlying signaling pathways. Clinical trials have also shown that training, especially high-intensity training, can delay the onset of diabetes and improve insulin resistance. Furthermore, intermittent fasting and various pharmacological agents are other potential options for stimulating mitochondrial function and reducing the risk of development and progression of diabetic kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Forouzanfar MH, Alexander L, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386(10010):2287–323.

    Article  PubMed  Google Scholar 

  2. Gregg EW, Li Y, Wang J, et al. Changes in diabetes-related complications in the United States, 1990-2010. N Engl J Med. 2014;370(16):1514–23.

    Article  CAS  PubMed  Google Scholar 

  3. Alberti KG, Zimmet P. Global burden of disease--where does diabetes mellitus fit in? Nat Rev Endocrinol. 2013;9(5):258–60.

    Article  PubMed  Google Scholar 

  4. Fried LF, Emanuele N, Zhang JH, et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med. 2013;369(20):1892–903.

    Article  CAS  PubMed  Google Scholar 

  5. Group AC, Patel A, MacMahon S, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72.

    Article  Google Scholar 

  6. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373(22):2117–28.

    Article  CAS  PubMed  Google Scholar 

  7. Sivitz WI, Yorek MA. Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities. Antioxid Redox Signal. 2010;12(4):537–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rask-Madsen C, King GL. Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab. 2013;17(1):20–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615–25.

    Article  CAS  PubMed  Google Scholar 

  10. Sharma K. Mitochondrial hormesis and diabetic complications. Diabetes. 2015;64(3):663–72. This article summarizes current information on ROS activity in diabetes and hypothesizes that reduced mitochondrial function is central for pathogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gabbay KH, Merola LO, Field RA. Sorbitol pathway: presence in nerve and cord with substrate accumulation in diabetes. Science. 1966;151(3707):209–10.

    Article  CAS  PubMed  Google Scholar 

  12. Lee AY, Chung SS. Contributions of polyol pathway to oxidative stress in diabetic cataract. FASEB J. 1999;13(1):23–30.

    CAS  PubMed  Google Scholar 

  13. Singh R, Barden A, Mori T, Beilin L. Advanced glycation end-products: a review. Diabetologia. 2001;44(2):129–46.

    Article  CAS  PubMed  Google Scholar 

  14. Nowotny K, Jung T, Hohn A, Weber D, Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules. 2015;5(1):194–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Koya D, King GL. Protein kinase C activation and the development of diabetic complications. Diabetes. 1998;47(6):859–66.

    Article  CAS  PubMed  Google Scholar 

  16. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.

    Article  CAS  PubMed  Google Scholar 

  17. Naudi A, Jove M, Ayala V, et al. Cellular dysfunction in diabetes as maladaptive response to mitochondrial oxidative stress. Exp Diabetes Res. 2012;2012:696215.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–70. Excellent review of major pathways involved in the pathogenesis of diabetes complications.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Du X, Matsumura T, Edelstein D, et al. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest. 2003;112(7):1049–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Unger RH, Orci L. Diseases of liporegulation: new perspective on obesity and related disorders. FASEB J. 2001;15(2):312–21.

    Article  CAS  PubMed  Google Scholar 

  21. McGavock JM, Victor RG, Unger RH, Szczepaniak LS. Adiposity of the heart, revisited. Ann Intern Med. 2006;144(7):517–24.

    Article  CAS  PubMed  Google Scholar 

  22. Gordon JW, Dolinsky VW, Mughal W, Gordon GR, McGavock J. Targeting skeletal muscle mitochondria to prevent type 2 diabetes in youth. Biochem Cell Biol. 2015:1–14. This review summarizes data on skeletal muscle mitochondrial function and insulin resistance and provide information on high-intensity.

  23. Herlein JA, Fink BD, Sivitz WI. Superoxide production by mitochondria of insulin-sensitive tissues: mechanistic differences and effect of early diabetes. Metabolism. 2010;59(2):247–57.

    Article  CAS  PubMed  Google Scholar 

  24. Anello M, Lupi R, Spampinato D, et al. Functional and morphological alterations of mitochondria in pancreatic beta cells from type 2 diabetic patients. Diabetologia. 2005;48(2):282–9.

    Article  CAS  PubMed  Google Scholar 

  25. Dugan LL, You YH, Ali SS, et al. AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J Clin Invest. 2013;123(11):4888–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. DeRubertis FR, Craven PA, Melhem MF, Salah EM. Attenuation of renal injury in db/db mice overexpressing superoxide dismutase: evidence for reduced superoxide-nitric oxide interaction. Diabetes. 2004;53(3):762–8.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang CY, Baffy G, Perret P, et al. Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell. 2001;105(6):745–55.

    Article  CAS  PubMed  Google Scholar 

  28. Ristow M, Schmeisser K. Mitohormesis: promoting health and lifespan by increased levels of reactive oxygen species (ROS). Dose Response. 2014;12(2):288–341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sena LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Mol Cell. 2012;48(2):158–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eckel RH, Kahn SE, Ferrannini E, et al. Obesity and type 2 diabetes: what can be unified and what needs to be individualized? Diabetes Care. 2011;34(6):1424–30.

    Article  PubMed  PubMed Central  Google Scholar 

  31. McGarry JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes. 2002;51(1):7–18.

    Article  CAS  PubMed  Google Scholar 

  32. Erion DM, Shulman GI. Diacylglycerol-mediated insulin resistance. Nat Med. 2010;16(4):400–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Karaa A, Goldstein A. The spectrum of clinical presentation, diagnosis, and management of mitochondrial forms of diabetes. Pediatr Diabetes. 2015;16(1):1–9.

    Article  PubMed  Google Scholar 

  34. Li HZ, Li RY, Li M. A review of maternally inherited diabetes and deafness. Front Biosci (Landmark Ed). 2014;19:777–82.

    Article  Google Scholar 

  35. de Wit HM, Westeneng HJ, van Engelen BG, Mudde AH. MIDD or MELAS: that’s not the question MIDD evolving into MELAS: a severe phenotype of the m.3243A>G mutation due to paternal co-inheritance of type 2 diabetes and a high heteroplasmy level. Neth J Med. 2012;70(10):460–2.

    PubMed  Google Scholar 

  36. Liu RLK, He J. Genetics and Epigenetics of Diabetic Nephropathy. Kidney Dis. 2015;1:42–51.

    Article  Google Scholar 

  37. Santos JM, Moreli ML, Tewari S, Benite-Ribeiro SA. The effect of exercise on skeletal muscle glucose uptake in type 2 diabetes: an epigenetic perspective. Metabolism. 2015;64(12):1619–28. This paper propose that aerobic exercise attenuates epigenetic modifications caused by high-energy diets and thereby delays the onset of diabetes.

    Article  PubMed  Google Scholar 

  38. Cheng Z, Almeida FA. Mitochondrial alteration in type 2 diabetes and obesity: an epigenetic link. Cell Cycle. 2014;13(6):890–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sharma K, Karl B, Mathew AV, et al. Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J Am Soc Nephrol. 2013;24(11):1901–12. This paper provides data showing reduced mitochondrial function in diabetic kidney disease using a wide range of techniques and samples in both humans and rats.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kang HM, Ahn SH, Choi P, et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med. 2015;21(1):37–46.

    Article  CAS  PubMed  Google Scholar 

  41. Zhao LC, Zhang XD, Liao SX, Gao HC, Wang HY, Lin DH. A metabonomic comparison of urinary changes in Zucker and GK rats. J Biomed Biotechnol. 2010;2010:431894.

    PubMed  PubMed Central  Google Scholar 

  42. Heinonen S, Buzkova J, Muniandy M, et al. Impaired Mitochondrial Biogenesis in Adipose Tissue in Acquired Obesity. Diabetes. 2015;64(9):3135–45.

    Article  CAS  PubMed  Google Scholar 

  43. Mendes R, Sousa N, Almeida A, et al. Exercise prescription for patients with type 2 diabetes-a synthesis of international recommendations: narrative review. Br J Sports Med. 2015

  44. Gregg EW, Chen H, Wagenknecht LE, et al. Association of an intensive lifestyle intervention with remission of type 2 diabetes. JAMA. 2012;308(23):2489–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Balk EM, Earley A, Raman G, Avendano EA, Pittas AG, Remington PL. Combined diet and physical activity promotion programs to prevent type 2 diabetes among persons at increased risk: a systematic review for the community preventive services task force. Ann Intern Med. 2015;163(6):437–51.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Herzig KH, Ahola R, Leppaluoto J, Jokelainen J, Jamsa T, Keinanen-Kiukaanniemi S. Light physical activity determined by a motion sensor decreases insulin resistance, improves lipid homeostasis and reduces visceral fat in high-risk subjects: PreDiabEx study RCT. Int J Obes (Lond). 2014;38(8):1089–96.

    Article  CAS  Google Scholar 

  47. Bishop DJ, Granata C, Eynon N. Can we optimise the exercise training prescription to maximise improvements in mitochondria function and content? Biochimica et biophysica acta. 2014;1840(4):1266–75.

    Article  CAS  PubMed  Google Scholar 

  48. Ljubicic V, Joseph AM, Saleem A, et al. Transcriptional and post-transcriptional regulation of mitochondrial biogenesis in skeletal muscle: effects of exercise and aging. Biochimica et biophysica acta. 2010;1800(3):223–34.

    Article  CAS  PubMed  Google Scholar 

  49. Balkau B, Mhamdi L, Oppert JM, et al. Physical activity and insulin sensitivity: the RISC study. Diabetes. 2008;57(10):2613–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hood MS, Little JP, Tarnopolsky MA, Myslik F, Gibala MJ. Low-volume interval training improves muscle oxidative capacity in sedentary adults. Med Sci Sports Exerc. 2011;43(10):1849–56.

    Article  CAS  PubMed  Google Scholar 

  51. Walhin JP, Richardson JD, Betts JA, Thompson D. Exercise counteracts the effects of short-term overfeeding and reduced physical activity independent of energy imbalance in healthy young men. J Physiol. 2013;591(Pt 24):6231–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hatori M, Vollmers C, Zarrinpar A, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012;15(6):848–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Patterson RE, Laughlin GA, LaCroix AZ, et al. Intermittent Fasting and Human Metabolic Health. J Acad Nutr Diet. 2015;115(8):1203–12. Interesting review on the mechanisms and effects of various types of fasting.

    Article  PubMed  Google Scholar 

  54. Zamora M, Pardo R, Villena JA. Pharmacological induction of mitochondrial biogenesis as a therapeutic strategy for the treatment of type 2 diabetes. Biochem Pharmacol. 2015;98(1):16–28.

    Article  CAS  PubMed  Google Scholar 

  55. Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond). 2012;122(6):253–70. Important review of the mechanisms underly the effects of our most commonly used diabetes drug.

    Article  CAS  Google Scholar 

  56. Hundal RS, Petersen KF, Mayerson AB, et al. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J Clin Invest. 2002;109(10):1321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Steinberg GR, Dandapani M, Hardie DG. AMPK: mediating the metabolic effects of salicylate-based drugs? Trends Endocrinol Metab. 2013;24(10):481–7.

    Article  CAS  PubMed  Google Scholar 

  58. Goldfine AB, Fonseca V, Jablonski KA, et al. Salicylate (salsalate) in patients with type 2 diabetes: a randomized trial. Ann Intern Med. 2013;159(1):1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bogacka I, Xie H, Bray GA, Smith SR. Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes. 2005;54(5):1392–9.

    Article  CAS  PubMed  Google Scholar 

  60. DeFronzo RA, Tripathy D, Schwenke DC, et al. Pioglitazone for diabetes prevention in impaired glucose tolerance. N Engl J Med. 2011;364(12):1104–15.

    Article  CAS  PubMed  Google Scholar 

  61. Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366(9493):1279–89.

    Article  CAS  PubMed  Google Scholar 

  62. Pold R, Jensen LS, Jessen N, et al. Long-term AICAR administration and exercise prevents diabetes in ZDF rats. Diabetes. 2005;54(4):928–34.

    Article  CAS  PubMed  Google Scholar 

  63. Boon H, Bosselaar M, Praet SF, et al. Intravenous AICAR administration reduces hepatic glucose output and inhibits whole body lipolysis in type 2 diabetic patients. Diabetologia. 2008;51(10):1893–900.

    Article  CAS  PubMed  Google Scholar 

  64. Zheng J, Ramirez VD. Inhibition of mitochondrial proton F0F1-ATPase/ATP synthase by polyphenolic phytochemicals. Br J Pharmacol. 2000;130(5):1115–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Timmers S, Konings E, Bilet L, et al. Calorie restriction-like effects of 30 days of resveratrol supplementation on energy metabolism and metabolic profile in obese humans. Cell Metab. 2011;14(5):612–22.

    Article  CAS  PubMed  Google Scholar 

  66. Baur JA, Pearson KJ, Price NL, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444(7117):337–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumar Sharma.

Ethics declarations

Conflict of Interest

Stein Hallan declares that he has no conflict of interest.

Kumar Sharma reports research funding from Stealth Peptides testing use of their mitochondrial peptide in diabetic kidney disease, and research funding from Merck and Boerhinger Ingelheim regarding new targets for treatment of diabetic kidney disease.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Microvascular Complications—Nephropathy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hallan, S., Sharma, K. The Role of Mitochondria in Diabetic Kidney Disease. Curr Diab Rep 16, 61 (2016). https://doi.org/10.1007/s11892-016-0748-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-016-0748-0

Keywords

Navigation