Skip to main content
Log in

The Negative Effects of Obesity and Poor Glycemic Control on Cognitive Function: A Proposed Model for Possible Mechanisms

  • Obesity (J McCaffery, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Obesity has reached epidemic proportions and is a contributor to many adverse health outcomes, including increased risk for dementia and adverse structural and functional brain changes. Milder forms of cognitive impairment in multiple domains can also be found in obese individuals of all ages that are believed to stem from brain abnormalities long prior to onset of neurologic conditions such as dementia. However, the mechanisms for adverse brain changes and subsequent cognitive dysfunction in obesity are complex and poorly understood. This paper proposes a possible etiologic model for obesity associated cognitive impairment with emphasis on the role of poor glycemic control and conditions like type 2 diabetes mellitus. Clinical implications associated with treatment of obesity in persons with cognitive deficits in addition to the cognitive promoting effects of weight loss surgery are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation. 2013;127:e6–e245.

    Article  PubMed  Google Scholar 

  2. Levi J, Segal LM, Laurent R, et al. F as in Fat: how obesity threatens Americas future. Trust for Americas Health. 2012.

  3. Lenz M, Richter T, Muhlhauser I. The morbidity and mortality associated with overweight and obesity in adulthood. Dtsch Arztebl Int. 2009;106:641–8.

    PubMed Central  PubMed  Google Scholar 

  4. Luchsinger JA. Midlife and late-life obesity and the risk of dementia: cardiovascular health study. Arch Neurol. 2009;66:336–42. This study shows that mid-life obesity is associated with increased risk for dementia.

    PubMed Central  PubMed  Google Scholar 

  5. Karlsson HK, Tuulari JJ, Hirvonen J, et al. Obesity is associated with white matter atrophy: a combined diffusion tensor imaging and voxel-based morphometric study. Obesity. 2013;21:2530–7.

    Article  PubMed  Google Scholar 

  6. Alosco ML, Spitznagel MB, Raz N, et al. Obesity interacts with cerebral hypoperfusion to exacerbate cognitive impairment in older adults with heart failure. Cerebrovasc Dis Extra. 2012;2:88–98.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Gunstad J, Strain G, Devlin MJ, et al. Improved memory function 12 weeks after bariatric surgery. Surg Obes Relat Dis. 2011;7:465–72. The results from this study show that bariatric surgery patients exhibit significant cognitive impairments that improved 12-weeks postoperatively relative to obese controls.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Benito-Leon J, Mitchell AJ, Hernandez-Gallego J, et al. Obesity and impaired cognitive functioning in the elderly: a population-based cross-sectional study (NEDICES). Eur J Neurol. 2013;20:899–906. This study documents the adverse effects of obesity on cognitive function in >1500 persons.

    Article  CAS  PubMed  Google Scholar 

  9. Mond JM, Stich H, Hay PJ. Associations between obesity and development functioning in pre-school children: a population-based study. Int J Obes. 2007;31:1068–73.

    Article  CAS  Google Scholar 

  10. Lokken KL, Boeka AG, Austin AM, et al. Evidence of executive dysfunction in extremely obese adolescents: a pilot study. Surg Obes Relat Dis. 2009;5:547–52.

    Article  PubMed  Google Scholar 

  11. Fedor A, Gunstad J. Higher BMI is associated with reduced cognitive performance in division I athletes. Obes Facts. 2013;6:185–92.

    Article  PubMed  Google Scholar 

  12. Gunstad J, Paul RH, Cohen RA, et al. Elevated body mass index is associated with executive dysfunction in otherwise healthy adults. Compr Psychiatry. 2007;48:57–61.

    Article  PubMed  Google Scholar 

  13. Volkow ND, Wang GJ, Telang G, et al. Inverse association between BMI and prefrontal metabolic activity in healthy adults. Obesity. 2009;17:60–5.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Cournot M, Marqui JC, Ansiau D, et al. Relation between body mass index and cognitive function in healthy middle-aged men and women. Neurology. 2006;67:1208–14.

    Article  CAS  PubMed  Google Scholar 

  15. Gunstad J, Paul RH, Cohen RA, et al. Obesity is associated with memory deficits in young and middle-aged adults. Eat Weight Disor. 2006;11:e15–9.

    Article  CAS  Google Scholar 

  16. Ott A, Stolk RP, van Harksamp F, et al. Diabetes mellitus and the risk of dementia. The Rotterdam Study. Neurology. 1999;53:1937.

    Article  CAS  PubMed  Google Scholar 

  17. Willeumier K, Taylor D, Amen D. Elevated BMI is associated with decreased blood flow in the prefrontal cortex using SPECT imaging in healthy adults. Obesity. 2011;19:1095–7.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Luchsinger JA, Cheng D, Tang MX, et al. Central obesity in the elderly is related to late-onset Alzheimer disease. Alzheimer Dis Assoc Disord. 2012;26:101–5.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Qiu C, Winblad B, Marengoni A, et al. Heart failure and risk of dementia and Alzheimer disease: a population-based cohort study. Arch Intern Med. 2006;166:1003–8.

    Article  PubMed  Google Scholar 

  20. Ruitenberg A, den Heijer T, Bakker SL, et al. Cerebral hypoperfusion and clinical onset of dementia: the Rotterdam Study. Ann Neurol. 2005;57:789–94.

    Article  PubMed  Google Scholar 

  21. Alosco ML, Brickman AM, Spitznagel MB, et al. Cerebral perfusion is associated with white matter hyperintensities in older adults with heart failure. Congest Heart Fail. 2013;19:E29–34.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Mrak RE. Alzheimer-type neuropathological changes in morbidly obese individuals. Clin Neuropathol. 2009;28:40–5.

    Article  CAS  PubMed  Google Scholar 

  23. Ho AJ, Raji CA, Becker JT, et al. Obesity is linked with lower brain volume in 700 AD and MCI patients. Neurobiol Aging. 2010;31:1326–39.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Yokum S, Ng J, Stice E. Relation of regional gray and white matter volumes to current BMI and future increases in BMI: a prospective MRI study. Int J Obes. 2012;36:656–64.

    Article  CAS  Google Scholar 

  25. Gunstad J, Paul RH, Cohen RA, et al. Relationship between body mass index and brain volume in healthy adults. Int J Neurosci. 2008;118:1582–93.

    Article  PubMed  Google Scholar 

  26. Gustafson DR, Steen B, Skoog I. Body mass index and white matter lesions in elderly women. An 18-year longitudinal study. Int Psychogeriatr. 2004;16:327–36.

    Article  CAS  PubMed  Google Scholar 

  27. Jagust W, Harvey D, Mungas D, et al. Central obesity and the aging brain. Arch Neurol. 2005;62:1545–8.

    PubMed  Google Scholar 

  28. Kurth F, Levitt JG, Phillips OR, et al. Relationships between gray matter, body mass index, and waist circumference in healthy adults. Hum Brain Mapp 2013;34:1737–46

    Google Scholar 

  29. Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ. 2010;341:c3666.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Stanek KM, Grieve SM, Brickman AM, et al. Obesity is associated with reduced white matter integrity in otherwise healthy adults. Obesity. 2011;19:500–4.

    Article  PubMed  Google Scholar 

  31. Boyle JP, Thompson TJ, Gregg EW, et al. Projection of the year 2050 burden of diabetes in the U.S. adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul Health Metrics. 2010;8:29.

    Article  Google Scholar 

  32. DeFronzo RA. Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM [review]. Diabetes. 1988;37:667–87.

    Article  CAS  PubMed  Google Scholar 

  33. Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest. 2000;106:171–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Chan JM, Rimm EB, Colditz GA, et al. Obesity., fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care. 1994;17:961–9.

    Article  CAS  PubMed  Google Scholar 

  35. Colditz GA, Willett WC, Stampfer MJ, et al. Weight as a risk factor for clinical diabetes in women. Am J Epidemiol. 1990;132:501–13.

    CAS  PubMed  Google Scholar 

  36. Cowie CC, Rust KF, Ford ES, et al. Full accounting of diabetes and prediabetes in the U.S. population in 1988–1994 and 2005–2006. Diabetes Care. 2011;32:287–94.

    Article  Google Scholar 

  37. Geiss LS, James C, Gregg EW, et al. Diabetes risk reduction behaviors among U.S. adults with prediabetes. Am J Prev Med. 2010;38:403–9.

    Article  PubMed  Google Scholar 

  38. Xu W, Caracciolo B, Wang HX, et al. Accelerated progression from mild cognitive impairment to dementia in people with diabetes. Diabetes. 2010;59:2928–35.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Awad N, Gagnon M, Messier C. The relationship between impaired glucose tolerance, type 2 diabetes, and cognitive function. J Clin Exp Neuropsychol. 2004;26:1044–80.

    Article  PubMed  Google Scholar 

  40. Yaffe K, Blackwell T, Kanaya AM, et al. Diabetes, impaired fasting glucose, and development of cognitive impairment in older women. Neurology. 2004;63:658–63.

    Article  CAS  PubMed  Google Scholar 

  41. Yau PL, Javier DC, Ryan CM, et al. Preliminary evidence for brain complications in obese adolescents with type 2 diabetes mellitus. Diabetologia. 2010;53:2298–306.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Luchsinger JA. Type 2 diabetes and cognitive impairment: linking mechanisms. J Alzheimers Dis. 2012;30:S185–98. This is a recent review paper highlighting the common mechanisms of cognitive impairment in type 2 diabetes mellitus.

    PubMed Central  PubMed  Google Scholar 

  43. Schmidt R, Launer LJ, Nilsson LG, et al. Magnetic resonance imaging of the brain in diabetes: the Cardiovascular Determinants of Dementia (CASCADE) Study. Diabetes. 2004;53:687–92.

    Article  CAS  PubMed  Google Scholar 

  44. Peila R, Rodriguez BL, Launer LJ. Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: the Honolulu-Asia Aging Study. Diabetes. 2002;51:1256–62.

    Google Scholar 

  45. Li ZG, Zhang W, Grunberger G, et al. Hippocampal neuronal apoptosis in type 1 diabetes. Brain Res. 2002;946:221–31.

    Article  CAS  PubMed  Google Scholar 

  46. Novak V, Last D, Alsop DC, et al. Cerebral blood flow velocity and periventricular white matter hyperintensities in type 2 diabetes. Diabetes Care. 2006;29:1529–34.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Xia W, Wang S, Sun Z, et al. Altered baseline brain activity in type 2 diabetes: a resting-state fMRI study. Psychoneuroendocrinology. 2013;38:2493–501.

    Article  PubMed  Google Scholar 

  48. Bruehl H, Sweat V, Tirsi A, Shah B, et al. Obese adolescents with type 2 diabetes mellitus have hippocampal and frontal lobe volume reductions. Neurosci Med. 2011;2:34–42.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Toda N. Age-related changes in endothelial function and blood flow regulation. Pharmacol Ther. 2012;133:159–76.

    Article  CAS  PubMed  Google Scholar 

  50. Whitmer RA, Gunderson EP, Quesenberry CP, et al. Body mass index in midlife and risk of Alzheimer disease and vascular dementia. Curr Alzheimer Res. 2007;4:103–9.

    Article  CAS  PubMed  Google Scholar 

  51. Park HS, Park JY, Yu R. Relationship of obesity and visceral adiposity with serum concentrations of CRP, TNF-alpha and IL-6. Diabetes Res Clin Prac. 2005;69:29–35.

    Article  CAS  Google Scholar 

  52. Weaver JD, Huang MH, Albert M, et al. Interleukin-6 and risk of cognitive decline: MacArthur studies of successful aging. Neurology. 2002;59:371–8.

    Article  CAS  PubMed  Google Scholar 

  53. Yaffe K, Lindquist K, Penninx BW, et al. Inflammatory markers and cognition in well-functioning African-American and White elders. Neurology. 2003;61:76–80.

    Article  CAS  PubMed  Google Scholar 

  54. Vlassara H, Striker LJ, Teichberg S, et al. Advanced glycation end products induce glomerular sclerosis and albuminuria in normal rats. Proc Natl Acad Sci U S A. 1994;91:11704–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Stitt AW. Advanced glycation: an important pathological event in diabetic and age related ocular disease. Br J Ophthalmol. 2001;85:746–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Brownlee M. Advanced protein glycosylation in diabetes and aging. Annu Rev Med. 1995;46:223–34.

    Article  CAS  PubMed  Google Scholar 

  57. Frolich L, Blum-Degen D, Bernstein HG, et al. Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm. 1998;105:423–38.

    Article  CAS  PubMed  Google Scholar 

  58. Small SA, Perera GM, DeLaPaz R, et al. Differential regional dysfunction of the hippocampal formation among elderly with memory decline and Alzheimer’s disease. Ann Neurol. 1999;45:466–72.

    Article  CAS  PubMed  Google Scholar 

  59. Vanhanen M, Soininen H. Glucose intolerance, cognitive impairment and Alzheimer’s disease. Curr Opin Neurol. 1998;11:673–7.

    Article  CAS  PubMed  Google Scholar 

  60. Craft S. Insulin resistance and Alzheimer’s disease pathogenesis: potential mechanisms and implications for treatment. Curr Alzheimer Res. 2007;4:147–52.

    Article  CAS  PubMed  Google Scholar 

  61. Wakisaka M, Nagamachi S, Inoue K, et al. Reduced regional cerebral blood flow in aged noninsulin-dependent diabetic patients with not history of cerebrovascular disease: evaluation by N-isopropyl-123I-p-iodoamphetamine with single-photon emission computed tomography. J Diabet Complicat. 1990;4:170–4.

    Article  CAS  Google Scholar 

  62. Jakobsen J, Nedergaard M, Aarsle-jensen M, et al. Regional brain glucose metabolism and blood flow in streptozocin-induced diabetic rats. Diabetes. 1990;39:437–40.

    Article  CAS  PubMed  Google Scholar 

  63. Moll L, Schubert M. The role of insulin and insulin-like growth factor-1/FoxO-Mediated transcription for the pathogenesis of obesity-associated dementia. Curr Gerontol Geriatr Res. 2012;2012:384094.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Sagare A, Deane R, Bell RD, Johnson B, et al. Clearance of amyloid-beta by circulating lipoprotein receptors. Nat Med. 2007;13:1029–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Ravona-Springer R, Moshier E, et al. Changes in glycemic control are associated with changes in cognition in nondiabetic elderly. J Alzheimers Dis. 2012;30:299–309.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Yaffe K, Blackwell T, Whitmer RA, et al. Glycosated hemoglobin level and development of mild cognitive impairment or dementia in older women. J Nutr Health Aging. 2006;10:293–5.

    CAS  PubMed  Google Scholar 

  67. Jorgensen L, Jenssen T, Joakimsen O, et al. Glycated hemoglobin level is strongly related to the prevalence of carotid artery plaques with high echogenicity in nondiabetic individuals: the Tromoso study. Circulation. 2004;110:466–70.

    Article  CAS  PubMed  Google Scholar 

  68. Duckrow RB, Beard DC, Brennan RW. Regional cerebral blood flow decreases during chronic and acute hyperglycemia. Stroke. 1987;18:52–8.

    Article  CAS  PubMed  Google Scholar 

  69. Enzinger C, Fazekas F, Matthews PM, et al. Risk factors for progression of brain atrophy in aging: 6 year follow-up of normal subjects. Neurology. 2005;64:1704–11.

    Article  CAS  PubMed  Google Scholar 

  70. Cameron AJ, Welborn TA, Zimmel PZ, et al. Overweight and obesity in Australia: the 1999-2000 Australian diabetes, obesity and lifestyle study (AusDiab). Med J Aust. 2003;178:427–32.

    PubMed  Google Scholar 

  71. Luppino FS, de Wit LM, Bouvy PF, et al. Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies. Arch Gen Psychiatry. 2010;67:220–9.

    Article  PubMed  Google Scholar 

  72. Knopman D, Boland LL, Mosley T, et al. Cardiovascular risk factors and cognitive decline in middle-aged adults. Neurology. 2001;56:42–8.

    Article  CAS  PubMed  Google Scholar 

  73. Erickson KI, Weinstein AM, Lopez OL. Physical activity, brain plasticity, and Alzheimer’s disease. Arch Med Res. 2012;43:615–21.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Alosco ML, Spitznagel MB, Raz N, et al. The interactive effects of cerebral perfusion and depression on cognitive function in older adults with heart failure. Psychosom Med. 2013;75:632–9.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Wolf PA, Beiser A, Elias MF, et al. Relation of obesity to cognitive function: importance of central obesity and synergistic influence of concomitant hypertension. The Framingham Heart Study. Curr Alzheimer Res. 2007;4:111–6.

    Article  CAS  PubMed  Google Scholar 

  76. Marks BL, Katz LM, Styner M, et al. Aerobic fitness and obesity: relationship to cerebral white matter integrity in the brain of active and sedentary older adults. Br J Sport Med. 2011;45:1208–15.

    Article  CAS  Google Scholar 

  77. Peng S, Zhu Y, Xu F, et al. FTO gene polymorphisms and obesity risk: a meta-analysis. BMC Med. 2011;9:71.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Ho AJ, Stein JL, Hua X, et al. A commonly carried allele of the obesity-related gene is associated with reduced brain volume in the healthy elderly. Proc Natl Acad Sci U S A. 2010;107:8404–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Mielke MM, Leoutsakos JM, Tschanz JT, et al. Interaction between vascular factors and the APOE ε4 allele in predicting rate of progression in Alzheimer's disease. J Alzheimer Dis. 2011;26:127–34.

    Article  CAS  Google Scholar 

  80. Wren AM, Seal LJ, Cohen MA, et al. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab. 2001;86:5992–5.

    Article  CAS  PubMed  Google Scholar 

  81. Xu B, Goulding EH, Zang K, et al. Brain-derived neurotrophic factor regulates energy balance downstream of menacortin-4 receptor. Nat Neurosci. 2003;6:736–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Sorensen T, Echwald SM, Holm J. Leptin in obesity. BMJ. 1996;313:953–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Lee Y, Martin JM, Maple RL, et al. Plasma Amyloid-beta peptide levels correlate with adipocyte amyloid precursor protein gene expression in obese individuals. Neuroendocrinology. 2009;90:383–90.

    Article  CAS  PubMed  Google Scholar 

  84. Gunstad J, Bausserman L, Paul RH, et al. C-reactive protein, but not homocysteine, is related to cognitive dysfunction in older adults with cardiovascular disease. J Clin Neurosci. 2006;13:540–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Finch CE, Morgan TE. Systemic inflammation, infection, ApoE alleles, and Alzheimer disease: a position Paper. Curr Alzheimer Res. 2007;4:185–9.

    Article  CAS  PubMed  Google Scholar 

  86. Lee EB. Obesity, leptin, and Alzheimer’s disease. Ann N Y Acad Sci. 2011;1243:15–29.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Diano S, Farr SA, Benoit SC, et al. Ghrelin controls hippocampal spine synapse density and memory performance. Nat Neurosci. 2006;9:381–8.

    Article  CAS  PubMed  Google Scholar 

  88. Diniz BS, Teizeira AL. Brain-derived neurotrophic factor and Alzheimer’s disease: physiopathology and beyond. Neuromol Med. 2011;13:217–22.

    Article  CAS  Google Scholar 

  89. Gunstad J, Spitznagel M, Keary T, et al. Serum leptin levels are associated with cognitive function in older adults. Brain Res. 2008;1230:233–6.

    Article  CAS  PubMed  Google Scholar 

  90. Ghanim H, Monte SV, Sia CL, et al. Reduction in inflammation and the expression of amyloid precursor protein and other proteins related to Alzheimer’s disease following gastric bypass surgery. J Clin Endocrinol Metab. 2012;97:E1197–201.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Strohacker K, McCaffery JM, Maclean PS, et al. Adaptation of leptin, ghrelin or insulin during weight loss as predictors weight regain: a review of current literature. Int J Obes (London) 2014;38:388–96.

    Google Scholar 

  92. Ades PA, Savage PD. Potential benefits of weight loss in coronary heart disease. Prog Cardiovasc Dis. 2014;56:448–56.

    Article  PubMed  Google Scholar 

  93. Terra X, Auguet T, Guiu-Jurado E, et al. Long-term changes in leptin, chemerin, and Ghrelin levels following different bariatric surgery procedures: Roux-en-Y Gastric bypass and sleeve gastrectomy. Obes Surg. 2013;23:1790–8.

    Article  PubMed  Google Scholar 

  94. Luchsinger JA, Palmas W, Teresi JA, et al. Improved diabetes control in the elderly delays global cognitive decline. J Nutr Health Aging. 2011;15:445–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Launer LJ, Miller ME, Williamson JD, et al. Effects of intensive glucose lowering on brain structure and function in people with type 2 diabetes (ACCORD MIND): a randomized open-label substudy. Lancet Neurol. 2011;10:969–77.

    Article  PubMed Central  PubMed  Google Scholar 

  96. Shaik MM, Hua GS, Kamal MA. Epigenomic approach in understanding Alzheimer’s disease and type 2 diabetes mellitus. CNS Neurol Disord Drug Targets. 2014;13(2):283–9.

    Google Scholar 

  97. Stilley CS, Bender CM, Dunbar-Jacob J, et al. The impact of cognitive function on medication management: three studies. Health Psychol. 2010;29:50–5.

    Article  PubMed Central  PubMed  Google Scholar 

  98. Alosco ML, Spitznagel MB, van Dulmen M, et al. Cognitive function and treatment adherence in older adults with heart failure. Psychosom Med. 2012;74:965–73.

    Article  PubMed Central  PubMed  Google Scholar 

  99. Spitznagel MB, Galioto R, Limbach K, et al. Cognitive function is linked to adherence to bariatric postoperative guidelines. Surg Obes Relat Dis. 2013;9:580–5.

    Article  PubMed Central  PubMed  Google Scholar 

  100. Alosco ML, Spitznagel MB, Strain G, et al. Improved memory function two years after bariatric surgery. Obesity (Silver Spring). 2014;22:32–8.

    Google Scholar 

  101. Brethauer SA, Aminian A, Romera-Talamas H, et al. Can diabetes be surgically cured? Long-term metabolic effects of bariatric surgery in obese patients with type 2 diabetes mellitus. Ann Surg. 2013;258:628–37. Bariatric surgery with sustainable remission and improvement in T2DM.

    PubMed Central  PubMed  Google Scholar 

  102. Siervo M, Nasti G, Stephan BC, et al. Effects of intentional weight loss on physical and cognitive function in middle-aged and older obese participants: a pilot study. J Am Coll Nutr. 2012;31:79–86.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Michael L. Alosco and John Gunstad declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Gunstad.

Additional information

This article is part of the Topical Collection on Obesity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alosco, M.L., Gunstad, J. The Negative Effects of Obesity and Poor Glycemic Control on Cognitive Function: A Proposed Model for Possible Mechanisms. Curr Diab Rep 14, 495 (2014). https://doi.org/10.1007/s11892-014-0495-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-014-0495-z

Keywords

Navigation