Skip to main content
Log in

Obesity is associated with memory deficits in young and middle-aged adults

  • Brief Report
  • Published:
Eating and Weight Disorders - Studies on Anorexia, Bulimia and Obesity Aims and scope Submit manuscript

Abstract

Recent findings suggest obesity is associated with reduced memory performance in older adults. The present study examined whether similar deficits also exist in younger adults and the degree to which the relationship between body mass index (BMI) and memory varies as a function of age. Prior to inclusion, participants were rigorously screened and excluded for medical conditions known to impact cognitive functioning, including neurological disorders, head injury, cardiovascular disease, and diabetes. A total of 486 healthy adults completed a verbal list-learning task. Participants were categorized into normal weight, overweight, and obese groups based on their BMI. Performance on learning, delayed recall, and recognition performance were compared across BMI groups. Results showed obese individuals had poorer memory performance when comparing persons across the adult lifespan (age 21–82 yr), but also when examining only younger and middle-aged adults (age 21–50 yr). Regression analyses found no evidence of an interaction between BMI and age on any memory variable, suggesting the relationship between BMI and memory does not vary with age. These findings provide further support for an independent relationship between obesity and reduced memory performance and suggest these effects are not limited to older adults. Further research is needed to identify etiological factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bray G.: Medical consequences of obesity. J. Clin. Endocrinol. Metab., 89, 2583–2589, 2004.

    Article  PubMed  CAS  Google Scholar 

  2. Mokdad A., Marks J., Stroup D., Gerberding J.: Actual causes of death in the United States, 2000. JAMA, 291, 1238–1245, 2004.

    Article  PubMed  Google Scholar 

  3. Stein C., Colditz G.: The epidemic of obesity. J. Clin. Endocrinol. Metab., 89, 2522–2525, 2004.

    Article  PubMed  CAS  Google Scholar 

  4. Gustafson D., Rothenberg E., Blennow K., Steen B., Skoog I.: An 18-year follow-up of overweight and risk of Alzheimer disease. Arch. Intern. Med., 163, 1524–1528, 2003.

    Article  PubMed  Google Scholar 

  5. Gustafson D., Lissner L., Bengtsson C., Bjorkelund C., Skoog I.: A 24-year follow-up of body mass index and cerebral atrophy. Neurology, 63, 1876–1881, 2004.

    Article  PubMed  CAS  Google Scholar 

  6. Elias M., Elias P., Sullivan L., Wolf P., D’Agostino R.: Lower cognitive function in the presence of obesity and hypertension: the Framingham heart study. Int. J. Obes. Relat. Metab. Disord., 27, 260–268, 2003.

    Article  PubMed  CAS  Google Scholar 

  7. Trakas K., Oh P., Singh S., Risebrough N., Shear N: The health status of obese individuals in Canada. Int. J. Obes. Relat. Metab. Disord., 25, 662–668, 2001.

    Article  PubMed  CAS  Google Scholar 

  8. Gordon E.: Integrative neuroscience in psychiatry: The role of a standardized database. Australasian Psychiatry, 11, 156–163, 2003.

    Article  Google Scholar 

  9. Gordon E.: Integrative neuroscience. Neuropsychopharmacology, 28, 52–58, 2003.

    Article  Google Scholar 

  10. World Health Organization: Composite International Diagnostic Interview — Version 1.1. Geneva, WHO, 1993.

    Google Scholar 

  11. Lovibond S., Lovibond P.: Manual for the Depression Anxiety Stress Scales, 2nd ed. Sydney, Psychology Foundation, 1995.

    Google Scholar 

  12. National Heart, Lung, and Blood Institute: National Institutes of Health. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults (No. 98-4083), dy1998.

  13. Paul R., Lawrence J., Williams L., Clark R., Cooper N., Gordon E.: Validity of IntegNeuro™: A new automated, computerized and standardized battery of neurocognitive tests. J. Integrat. Neurosci. in press.

  14. Baddeley A., Emslie H., Nimmo-Smith I.: The Spot-the-Word test: a robust estimate of verbal intelligence based on lexical decision. Br. J. Clin. Psychol., 32, 55–65, 1993.

    Article  PubMed  Google Scholar 

  15. Sullivan R., Senior G., Hennessy M.: Australian age-education and premorbid cognitive/intellectual estimates for the WAIS-III. Poster presented at the 6th Annual Conference of the APS College of Clinical Neuropsychologists, Hunter Balley, NSW, Australia, 2000.

    Google Scholar 

  16. Ylikoski R., Ylikoski A., Raininko R., Keskivaara P., Sulkava R., Tilvis R., Erkinjuntti T.: Cardiovascular diseases, health status, brain imaging findings and neuropsychological functioning in neurologically healthy elderly individuals. Arch. Gerontol. Geriatr., 30, 115–130, 2000.

    Article  PubMed  CAS  Google Scholar 

  17. Rahmouni K., Correia M., Haynes W., Mark A.: Obesity-associated hypertension: new insights into mechanisms. Hypertension, 45, 9–14, 2005.

    Article  PubMed  CAS  Google Scholar 

  18. Convit A., Wolf O., Tarshish C., de Leon M.: Reduced glucose tolerance is associated with poor memory performance and hippocampal atrophy among normal elderly. Proc. Natl. Acad. Sci. USA, 100, 2019–2022, 2003.

    Article  PubMed  CAS  Google Scholar 

  19. Teunissen C., van Boxtel M., Bosma H., Bosmans E., Delanghe J., De Bruijn C., Wauters A., Maes M., Jolles J., Steinbusch H.W., de Vente J.: Inflammation markers in relation to cognition in a healthy aging population. J. Neuroimmunol., 134, 142–150, 2003.

    Article  PubMed  CAS  Google Scholar 

  20. Colcombe S., Kramer A.F.: Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychol. Sci., 14, 125–130, 2003.

    Article  PubMed  Google Scholar 

  21. Hariri A., Goldberg T., Mattay V., Kolachana B.S., Callicott J.H., Egan M.F., Weinberger D.R.: Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. J. Neurosci., 23, 6690–6694, 2003.

    PubMed  CAS  Google Scholar 

  22. Friedel S., Horro F.F., Wermter A.K., Geller F., Dempfle A., Reichwald K., Smidt J., Bronner G., Konrad K., Herpertz-Dahlmann B., Warnke A., Hemminger U., Linder M., Kiefl H., Goldschmidt H.P., Siegfried W., Remschmidt H., Hinney A., Hebebrand J.: Mutation screen of the brain derived neurotrophic factor gene (BDNF): Identification of several genetic variants and association studies in patients with obesity, eating disorders, and attention-deficit/hyperactivity disorder. Am. J. Med. Genet., 132, 96–99, 2005.

    Article  Google Scholar 

  23. Carlini V., Varas M., Cragnolini A.B., Schioth H.B., Scimonelli T.N., de Barioglio S.R.: Differential role of the hippocampus, amygdala, and dorsal raphe nucleus in regulating feeding, memory, and anxiety-like behavioral responses to ghrelin. Biochem. Biophys. Res. Commun., 313, 635–41, 2004.

    Article  PubMed  CAS  Google Scholar 

  24. Paulus K., Schulz C., Lehnert H.: Central nervous system effects of leptin and insulin on hippocampal leptin and insulin receptor expression following a learning task in Wistar rats. Neuropsychobiology, 51, 100–106, 2005.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Gunstad Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunstad, J., Paul, R.H., Cohen, R.A. et al. Obesity is associated with memory deficits in young and middle-aged adults. Eat Weight Disord 11, e15–e19 (2006). https://doi.org/10.1007/BF03327747

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03327747

Key words

Navigation