Skip to main content

Advertisement

Log in

Emerging Roles for miRNAs in the Development, Diagnosis, and Treatment of Diabetic Nephropathy

  • Microvascular Complications-Nephropathy (B Roshan, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Although the causes of diabetic nephropathy are not yet fully known, emerging evidence suggests a role for epigenetic factors in the development of the disease. In particular, microRNAs (miRNAs) are becoming recognized as important mediators of biological processes relevant to diabetic nephropathy. Until recently, investigations of miRNAs in the development of diabetic nephropathy have remained relatively limited; however, the number of reports identifying potential new candidates and mechanisms of impact is presently expanding at a rapid pace. This review seeks to summarize these recent findings, focusing on new candidates and/or novel mechanisms, including the intersection between genetic variation and miRNA function in modulating disease expression, emerging in the field. We also review the latest advances in the diagnostic and therapeutic potential of miRNAs in the treatment of diabetic nephropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as:• Of importance •• Of major importance

  1. Whiting DR, Guariguata L, Weil C, Shaw J. IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94:311–21.

    Article  PubMed  Google Scholar 

  2. Jones CA, Krolewski A, Rogus J, Xue JL, Collins A, Warram JH. Epidemic of end-stage renal disease in people with diabetes in the United States population: do we know the cause? Kidney Int. 2005;67:1684–91.

    Article  PubMed  Google Scholar 

  3. Gray SP, Cooper ME. Diabetic nephropathy in 2010: alleviating the burden of diabetic nephropathy. Nat Rev Nephrol. 2011;7:71–3.

    Article  PubMed  CAS  Google Scholar 

  4. Hayden PS, Iyengar SK, Schelling JR, Sedor JR. Kidney disease, genotype and the pathogenesis of vasculopathy. Curr Opin Nephrol Hypertens. 2003;12:71–8.

    Article  PubMed  CAS  Google Scholar 

  5. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86.

    Article  Google Scholar 

  6. Gaede P, Vedel P, Parving HH, Pedersen O. Intensified multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: the Steno type 2 randomized study. Lancet. 1999;353:617–22.

    Article  PubMed  CAS  Google Scholar 

  7. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med. 1993;329:1456–62.

    Article  PubMed  CAS  Google Scholar 

  8. Nelson RG, Knowler WC, Pettitt DJ, Hanson RL, Bennett PH. Incidence and determinants of elevated urinary albumin excretion in Pima Indians with NIDDM. Diabetes Care. 1995;18:182–7.

    Article  PubMed  CAS  Google Scholar 

  9. Pettitt DJ, Saad MF, Bennett PH, Nelson RG, Knowler WC. Familial predisposition to renal disease in two generations of Pima Indians with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1990;33:438–43.

    Article  PubMed  CAS  Google Scholar 

  10. Quinn M, Angelico MC, Warram JH, Krolewski AS. Familial factors determine the development of diabetic nephropathy in patients with IDDM. Diabetologia. 1996;39:940–5.

    Article  PubMed  CAS  Google Scholar 

  11. Ravid M, Brosh D, Ravid-Safran D, Levy Z, Rachmani R. Main risk factors for nephropathy in type 2 diabetes mellitus are plasma cholesterol levels, mean blood pressure, and hyperglycemia. Arch Intern Med. 1998;158:998–1004.

    Article  PubMed  CAS  Google Scholar 

  12. Seaquist ER, Goetz FC, Rich S, Barbosa J. Familial clustering of diabetic kidney disease. Evidence for genetic susceptibility to diabetic nephropathy. N Engl J Med. 1989;320:1161–5.

    Article  PubMed  CAS  Google Scholar 

  13. Craig DW, Millis MP, DiStefano JK. Genome-wide SNP genotyping study using pooled DNA to identify candidate markers mediating susceptibility to end-stage renal disease attributed to type 1 diabetes. Diabet Med. 2009;26:1090–8.

    Article  PubMed  CAS  Google Scholar 

  14. Hanson RL, Craig DW, Millis MP, Yeatts KA, Kobes S, Pearson JV, et al. Identification of PVT1 as a candidate gene for end-stage renal disease in Type 2 Diabetes using a pooling-based genome-wide single nucleotide polymorphism association study. Diabetes. 2007;56:975–83.

    Article  PubMed  CAS  Google Scholar 

  15. McDonough CW, Palmer ND, Hicks PJ, Roh BH, An SS, Cooke JN, et al. A genome-wide association study for diabetic nephropathy genes in African Americans. Kidney Int. 2011;79:563–72.

    Article  PubMed  Google Scholar 

  16. McKnight AJ, Maxwell AP, Sawcer S, Compston A, Setakis E, Patterson CC, et al. A genome-wide DNA microsatellite association screen to identify chromosomal regions harboring candidate genes in diabetic nephropathy. J Am Soc Nephrol. 2006;17:831–6.

    Article  PubMed  CAS  Google Scholar 

  17. Pezzolesi MG, Poznik GD, Mychaleckyj JC, Paterson AD, Barati MT, Klein JB, et al. Genome-wide association scan for diabetic nephropathy susceptibility genes in type 1 diabetes. Diabetes. 2009;58:1403–10.

    Article  PubMed  CAS  Google Scholar 

  18. Sandholm N, Salem RM, McKnight AJ, Brennan EP, Forsblom C, Isakova T, et al. New susceptibility loci associated with kidney disease in type 1 diabetes. PLoS Genet. 2012;8:e1002921.

    Article  PubMed  CAS  Google Scholar 

  19. Fabian MR, Cieplak MK, Frank F, Morita M, Green J, Srikumar T, et al. miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4-NOT. Nat Struct Mol Biol. 2011;18:1211–7.

    Article  PubMed  CAS  Google Scholar 

  20. Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet. 2011;12:99–110.

    Article  PubMed  CAS  Google Scholar 

  21. Natarajan R, Putta S, Kato M. MicroRNAs and diabetic complications. J Cardiovasc Transl Res. 2012;5:413–22.

    Article  PubMed  Google Scholar 

  22. Tang X, Tang G, Ozcan S. Role of microRNAs in diabetes. Biochim Biophys Acta. 2008;1779:697–701.

    Article  PubMed  CAS  Google Scholar 

  23. Sun Y, Koo S, White N, Peralta E, Esau C, Dean NM, et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res. 2004;32:e188.

    Article  PubMed  Google Scholar 

  24. Kato M, Arce L, Wang M, Putta S, Lanting L, Natarajan R. A microRNA circuit mediates transforming growth factor-β1 autoregulation in renal glomerular mesangial cells. Kidney Int. 2011;80:358–68.

    Article  PubMed  CAS  Google Scholar 

  25. Kato M, Putta S, Wang M, Yuan H, Lanting L, Nair I, et al. TGF-β activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat Cell Biol. 2009;11:881–9.

    Article  PubMed  CAS  Google Scholar 

  26. Kato M, Wang L, Putta S, Wang M, Yuan H, Sun G, et al. Post-transcriptional up-regulation of Tsc-22 by Ybx1, a target of miR-216a, mediates TGF-β-induced collagen expression in kidney cells. J Biol Chem. 2010;285:34004–15.

    Article  PubMed  CAS  Google Scholar 

  27. Kato M, Zhang J, Wang M, Lanting L, Yuan H, Rossi JJ, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci U S A. 2007;104:3432–7.

    Article  PubMed  CAS  Google Scholar 

  28. Long J, Wang Y, Wang W, Chang BH, Danesh FR. MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy. J Biol Chem. 2011;286:11837–48.

    Article  PubMed  CAS  Google Scholar 

  29. Alvarez ML, DiStefano JK. The role of non-coding RNAs in diabetic nephropathy: potential applications as biomarkers for disease development and progression. Diabetes Res Clin Pract. 2013;99:1–11.

    Article  PubMed  CAS  Google Scholar 

  30. Kato M, Park JT, Natarajan R. MicroRNAs and the glomerulus. Exp Cell Res. 2012;318:993–1000.

    Article  PubMed  CAS  Google Scholar 

  31. • Zhang Z, Luo X, Ding S, Chen J, Chen T, Chen X, et al. MicroRNA-451 regulates p38 MAPK signaling by targeting of Ywhaz and suppresses the mesangial hypertrophy in early diabetic nephropathy. FEBS Lett. 2012;586:20–6. This article provides important evidence for the role of a new miRNA player in early diabetic nephropathy..

    Article  PubMed  CAS  Google Scholar 

  32. Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta. 2007;1773:1358–75.

    Article  PubMed  CAS  Google Scholar 

  33. Zarubin T, Han J. Activation and signaling of the p38 MAP kinase pathway. Cell Res. 2005;15:11–8.

    Article  PubMed  CAS  Google Scholar 

  34. Kang SW, Adler SG, Lapage J, Natarajan R. p38 MAPK and MAPK kinase 3/6 mRNA and activities are increased in early diabetic glomeruli. Kidney Int. 2001;60:543–52.

    Article  PubMed  CAS  Google Scholar 

  35. Chen YQ, Wang XX, Yao XM, Zhang DL, Yang XF, Tian SF, et al. MicroRNA-195 promotes apoptosis in mouse podocytes via enhanced caspase activity driven by BCL2 insufficiency. Am J Nephrol. 2011;34:549–59.

    Article  PubMed  CAS  Google Scholar 

  36. Stitt-Cavanagh E, MacLeod L, Kennedy C. The podocyte in diabetic kidney disease. SciWorld J. 2009;9:1127–39.

    CAS  Google Scholar 

  37. Chen YQ, Wang XX, Yao XM, Zhang DL, Yang XF, Tian SF, et al. Abated microRNA-195 expression protected mesangial cells from apoptosis in early diabetic renal injury in mice. J Nephrol. 2012;25:566–76.

    Article  PubMed  CAS  Google Scholar 

  38. Wolf G. Molecular mechanisms of diabetic mesangial cell hypertrophy: a proliferation of novel factors. J Am Soc Nephrol. 2002;13:2611–3.

    PubMed  Google Scholar 

  39. •• Putta S, Lanting L, Sun G, Lawson G, Kato M, Natarajan R. Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J Am Soc Nephrol. 2012;23:458–69. This article demonstrates that LNA anti-miR-192 not only diminished kidney fibrosis but also decreased proteinuria in diabetic mice..

    Article  PubMed  CAS  Google Scholar 

  40. Wang B, Komers R, Carew R, Winbanks CE, Xu B, Herman-Edelstein M, et al. Suppression of microRNA-29 expression by TGF-β1 promotes collagen expression and renal fibrosis. J Am Soc Nephrol. 2012;23:252–65.

    Article  PubMed  CAS  Google Scholar 

  41. Du B, Ma LM, Huang MB, Zhou H, Huang HL, Shao P, et al. High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells. FEBS Lett. 2010;584:811–6.

    Article  PubMed  CAS  Google Scholar 

  42. Bauersachs J. miR-21: a central regulator of fibrosis not only in the broken heart. Cardiovasc Res. 2012;96:227–9.

    Article  PubMed  CAS  Google Scholar 

  43. Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med. 2010;207:1589–97.

    Article  PubMed  CAS  Google Scholar 

  44. • Dey N, Das F, Mariappan MM, Mandal CC, Ghosh-Choudhury N, Kasinath BS, et al. MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes. J Biol Chem. 2011;286:25586–603. This article demonstrates that miR-21 increases in kidney cells cultured in the presence of TGF-β1 or high glucose, and downregulates PTEN, which activates AKT kinase and PI3K inducing mesangial hypertrophy and tubulointerstitial fibrosis..

    Article  PubMed  CAS  Google Scholar 

  45. Zarjou A, Yang S, Abraham E, Agarwal A, Liu G. Identification of a microRNA signature in renal fibrosis: role of miR-21. Am J Physiol Renal Physiol. 2011;301:F793–801.

    Article  PubMed  CAS  Google Scholar 

  46. •• Chau BN, Xin C, Hartner J, Ren S, Castano AP, Linn G, et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci Transl Med. 2012;4:121. miR-21 knockout mice showed no overt abnormalities and suffered less interstitial fibrosis in response to kidney injury..

    Article  Google Scholar 

  47. Borel C, Antonarakis SE. Functional genetic variation of human miRNAs and phenotypic consequences. Mamm Genome. 2008;19:503–9.

    Article  PubMed  CAS  Google Scholar 

  48. Papagregoriou G, Erguler K, Dweep H, Voskarides K, Koupepidou P, Athanasiou Y, et al. A miR-1207-5p binding site polymorphism abolishes regulation of HBEGF and is associated with disease severity in CFHR5 nephropathy. PLoS One. 2012;7:e31021.

    Article  PubMed  CAS  Google Scholar 

  49. Sun G, Yan J, Noltner K, Feng J, Li H, Sarkis DA, et al. SNPs in human miRNA genes affect biogenesis and function. RNA. 2009;15:1640–51.

    Article  PubMed  CAS  Google Scholar 

  50. Xu J, Hu Z, Xu Z, Gu H, Yi L, Cao H, et al. Functional variant in microRNA-196a2 contributes to the susceptibility of congenital heart disease in a Chinese population. Hum Mutat. 2009;30:1231–6.

    Article  PubMed  CAS  Google Scholar 

  51. Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5.

    Article  PubMed  CAS  Google Scholar 

  52. Saunders MA, Liang H, Li WH. Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci U S A. 2007;104:3300–5.

    Article  PubMed  CAS  Google Scholar 

  53. Martin MM, Buckenberger JA, Jiang J, Malana GE, Nuovo GJ, Chotani M, et al. The human angiotensin II type 1 receptor +1166 A/C polymorphism attenuates microrna-155 binding. J Biol Chem. 2007;282:24262–9.

    Article  PubMed  CAS  Google Scholar 

  54. Tan Z, Randall G, Fan J, Camoretti-Mercado B, Brockman-Schneider R, Pan L, et al. Allele-specific targeting of microRNAs to HLA-G and risk of asthma. Am J Hum Genet. 2007;81:829–34.

    Article  PubMed  CAS  Google Scholar 

  55. Rademakers R, Eriksen JL, Baker M, Robinson T, Ahmed Z, Lincoln SJ, et al. Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia. Hum Mol Genet. 2008;17:3631–42.

    Article  PubMed  CAS  Google Scholar 

  56. Brendle A, Lei H, Brandt A, Johansson R, Enquist K, Henriksson R, et al. Polymorphisms in predicted microRNA-binding sites in integrin genes and breast cancer: ITGB4 as prognostic marker. Carcinogenesis. 2008;29:1394–9.

    Article  PubMed  CAS  Google Scholar 

  57. Chin LJ, Ratner E, Leng S, Zhai R, Nallur S, Babar I, et al. A SNP in a let-7 microRNA complementary site in the KRAS 3' untranslated region increases non-small cell lung cancer risk. Cancer Res. 2008;68:8535–40.

    Article  PubMed  CAS  Google Scholar 

  58. He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, et al. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci U S A. 2005;102:19075–80.

    Article  PubMed  CAS  Google Scholar 

  59. Nicoloso MS, Sun H, Spizzo R, Kim H, Wickramasinghe P, Shimizu M, et al. Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Res. 2010;70:2789–98.

    Article  PubMed  CAS  Google Scholar 

  60. Saetrom P, Biesinger J, Li SM, Smith D, Thomas LF, Majzoub K, et al. A risk variant in an miR-125b binding site in BMPR1B is associated with breast cancer pathogenesis. Cancer Res. 2009;69:7459–65.

    Article  PubMed  CAS  Google Scholar 

  61. Abelson JF, Kwan KY, O'Roak BJ, Baek DY, Stillman AA, Morgan TM, et al. Sequence variants in SLITRK1 are associated with Tourette's syndrome. Science. 2005;310:317–20.

    Article  PubMed  CAS  Google Scholar 

  62. Dickson DW, Baker M, Rademakers R. Common variant in GRN is a genetic risk factor for hippocampal sclerosis in the elderly. Neurodegener Dis. 2010;7:170–4.

    Article  PubMed  CAS  Google Scholar 

  63. Wang G, van der Walt JM, Mayhew G, Li YJ, Zuchner S, Scott WK, et al. Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet. 2008;82:283–9.

    Article  PubMed  CAS  Google Scholar 

  64. Bruno AE, Li L, Kalabus JL, Pan Y, Yu A, Hu Z. miRdSNP: a database of disease-associated SNPs and microRNA target sites on 3'UTRs of human genes. BMC Genomics. 2012;13:44.

    Article  PubMed  CAS  Google Scholar 

  65. Millis MP, Bowen D, Kingsley C, Watanabe RM, Wolford JK. Variants in the plasmacytoma variant translocation gene (PVT1) are associated with end-stage renal disease attributed to type 1 diabetes. Diabetes. 2007;56:3027–32.

    Article  PubMed  CAS  Google Scholar 

  66. Alvarez ML, DiStefano JK. Functional characterization of the plasmacytoma variant translocation 1 gene (PVT1) in diabetic nephropathy. PLoS One. 2010;6:e18671.

    Article  Google Scholar 

  67. Bao L, Zhou M, Wu L, Lu L, Goldowitz D, Williams RW, et al. PolymiRTS Database: linking polymorphisms in microRNA target sites with complex traits. Nucleic Acids Res. 2007;35:D51–4.

    Article  PubMed  CAS  Google Scholar 

  68. Hariharan M, Scaria V, Brahmachari SK. dbSMR: a novel resource of genome-wide SNPs affecting microRNA mediated regulation. BMC Bioinforma. 2009;10:108.

    Article  Google Scholar 

  69. Hiard S, Charlier C, Coppieters W, Georges M, Baurain D. Patrocles: a database of polymorphic miRNA-mediated gene regulation in vertebrates. Nucleic Acids Res. 2010;38:D640–51.

    Article  PubMed  CAS  Google Scholar 

  70. Blumenthal SS. Evolution of treatment for diabetic nephropathy: historical progression from RAAS inhibition and onward. Postgrad Med. 2011;123:166–79.

    Article  PubMed  Google Scholar 

  71. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8.

    Article  PubMed  CAS  Google Scholar 

  72. Bhatt K, Mi QS, Dong Z. microRNAs in kidneys: biogenesis, regulation, and pathophysiological roles. Am J Physiol Renal Physiol. 2011;300:F602–10.

    Article  PubMed  CAS  Google Scholar 

  73. Wang G, Kwan BC, Lai FM, Chow KM, Kam-Tao Li P, Szeto CC. Expression of microRNAs in the urinary sediment of patients with IgA nephropathy. Dis Markers. 2010;28:79–86.

    Article  PubMed  Google Scholar 

  74. • Wang G, Kwan BC, Lai FM, Chow KM, Li PK, Szeto CC. Urinary miR-21, miR-29, and miR-93: novel biomarkers of fibrosis. Am J Nephrol. 2012;36:412–8. This study shows correlation of specific miRNAs and renal fibrosis..

    Article  PubMed  CAS  Google Scholar 

  75. • Szeto CC, Ching-Ha KB, Ka-Bik L, Mac-Moune LF, Cheung-Lung CP, Gang W, et al. Micro-RNA expression in the urinary sediment of patients with chronic kidney diseases. Dis Markers. 2012;33:137–44. This study shows a correlation between rate of GFR decline and urinary levels of specific miRNAs..

    Article  PubMed  CAS  Google Scholar 

  76. Wang G, Kwan BC, Lai FM, Chow KM, Li PK, Szeto CC. Urinary sediment miRNA levels in adult nephrotic syndrome. Clin Chim Acta. 2013;418C:5–11.

    Article  Google Scholar 

  77. Luo Y, Wang C, Chen X, Zhong T, Cai X, Chen S, et al. Increased serum and urinary micrornas in children with Idiopathic Nephrotic syndrome. Clin Chem. 2013;59:658–66.

    Google Scholar 

  78. •• Argyropoulos C, Wang K, McClarty S, Huang D, Bernardo J, Ellis D, et al. Urinary microRNA profiling in the nephropathy of type 1 diabetes. PLoS One. 2013;8:e54662. This study shows important preliminary evidence supporting the value of miRNAs as molecular signatures associated with distinct clinical stages of diabetic kidney disease..

    Article  PubMed  CAS  Google Scholar 

  79. Gilad S, Meiri E, Yogev Y, Benjamin S, Lebanony D, Yerushalmi N, et al. Serum microRNAs are promising novel biomarkers. PLoS One. 2008;3:e3148.

    Article  PubMed  Google Scholar 

  80. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.

    Article  PubMed  CAS  Google Scholar 

  81. Miranda KC, Bond DT, McKee M, Skog J, Paunescu TG, Da Silva N, et al. Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease. Kidney Int. 2010;78:191–9.

    Article  PubMed  Google Scholar 

  82. Gonzales PA, Pisitkun T, Hoffert JD, Tchapyjnikov D, Star RA, Kleta R, et al. Large-scale proteomics and phosphoproteomics of urinary exosomes. J Am Soc Nephrol. 2009;20:363–79.

    Article  PubMed  CAS  Google Scholar 

  83. Gonzales PA, Zhou H, Pisitkun T, Wang NS, Star RA, Knepper MA, et al. Isolation and purification of exosomes in urine. Methods Mol Biol. 2010;641:89–99.

    Article  PubMed  CAS  Google Scholar 

  84. Pisitkun T, Johnstone R, Knepper MA. Discovery of urinary biomarkers. Mol Cell Proteomics. 2006;5:1760–71.

    Article  PubMed  CAS  Google Scholar 

  85. Zhou H, Yuen PS, Pisitkun T, Gonzales PA, Yasuda H, Dear JW, et al. Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int. 2006;69:1471–6.

    PubMed  CAS  Google Scholar 

  86. Cheruvanky A, Zhou H, Pisitkun T, Kopp JB, Knepper MA, Yuen PS, et al. Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. Am J Physiol Renal Physiol. 2007;292:F1657–61.

    Article  PubMed  CAS  Google Scholar 

  87. Merchant ML, Powell DW, Wilkey DW, Cummins TD, Deegens JK, Rood IM, et al. Microfiltration isolation of human urinary exosomes for characterization by MS. Proteomics Clin Appl. 2010;4:84–96.

    Article  PubMed  CAS  Google Scholar 

  88. Taylor DD, Zacharias W, Gercel-Taylor C. Exosome isolation for proteomic analyses and RNA profiling. Methods Mol Biol. 2011;728:235–46.

    Article  PubMed  CAS  Google Scholar 

  89. Alvarez ML, Khosroheidari M, Kanchi Ravi R, DiStefano JK. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int. 2012;82:1024–32.

    Article  PubMed  CAS  Google Scholar 

  90. Alvarez ML, DiStefano JK. Towards microRNA-based therapeutics for diabetic nephropathy. Diabetologia. 2012;56:444–56.

    Article  PubMed  Google Scholar 

  91. Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007;4:721–6.

    Article  PubMed  CAS  Google Scholar 

  92. Stenvang J, Petri A, Lindow M, Obad S, Kauppinen S. Inhibition of microRNA function by antimiR oligonucleotides. Silence. 2012;3:1.

    Article  PubMed  CAS  Google Scholar 

  93. Esau CC. Inhibition of microRNA with antisense oligonucleotides. Methods. 2008;44:55–60.

    Article  PubMed  CAS  Google Scholar 

  94. •• Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438:685–9. Intravenous administration of antagomirs against miR-16, miR-122, miR-192 and miR-194 resulted in a marked reduction of corresponding miRNA levels in many organs including kidney.

  95. Broderick JA, Zamore PD. MicroRNA therapeutics. Gene Ther. 2011;18:1104–10.

  96. Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature. 2006;441:537–41.

    Article  PubMed  CAS  Google Scholar 

  97. An DS, Qin FX, Auyeung VC, Mao SH, Kung SK, Baltimore D, et al. Optimization and functional effects of stable short hairpin RNA expression in primary human lymphocytes via lentiviral vectors. Mol Ther. 2006;14:494–504.

    Article  PubMed  CAS  Google Scholar 

  98. Giering JC, Grimm D, Storm TA, Kay MA. Expression of shRNA from a tissue-specific pol II promoter is an effective and safe RNAi therapeutic. Mol Ther. 2008;16:1630–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

Johanna K. DiStefano declares that she has no conflict of interest.

Matthew Taila declares that he has no conflict of interest.

M. Lucrecia Alvarez declares that she has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna K. DiStefano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DiStefano, J.K., Taila, M. & Alvarez, M.L. Emerging Roles for miRNAs in the Development, Diagnosis, and Treatment of Diabetic Nephropathy. Curr Diab Rep 13, 582–591 (2013). https://doi.org/10.1007/s11892-013-0386-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-013-0386-8

Keywords

Navigation