Skip to main content

Advertisement

Log in

The Future of Thiazolidinedione Therapy in the Management of Type 2 Diabetes Mellitus

  • Pharmacologic Treatment of Type 2 Diabetes and Obesity (A Vella, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Since their approval, thiazolidinediones (TZDs) have been used extensively as insulin-sensitizers for the management of type 2 diabetes mellitus (T2DM). Activation of peroxisomal proliferator-activated receptor gamma (PPARγ) nuclear receptors by TZDs leads to a vast spectrum of metabolic and antiinflammatory effects. In the past decade, clinicians and scientists across the fields of metabolism, diabetes, liver disease (NAFLD), atherosclerosis, inflammation, infertility, and even cancer have had high hopes about the potential for TZDs to treat many of these diseases. However, an increasing awareness about undesirable “off-target” effects of TZDs have made us rethink their role and be more cautious about the long-term benefits and risks related to their use. This review examines the most relevant work on the benefits and risks associated with TZD treatment, with a focus on the only PPARγ agonist currently available (pioglitazone), aiming to offer the reader a balanced overview about the current and future role of TZDs in the management of insulin-resistant states and T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Cusi K, DeFronzo R. Metformin: a review of its metabolic effects. Diabetes Rev. 1998;6:89–131.

    Google Scholar 

  2. From the Food and Drug Adminsitration. JAMA. 2000;283:2228.

    Article  Google Scholar 

  3. FDA significantly restricts access to the diabetes drug Avandia. In: U.S. Food and Drug Administration; 2010.

  4. Miyazaki Y, Mahankali A, Matsuda M, et al. Improved glycemic control and enhanced insulin sensitivity in type 2 diabetic subjects treated with pioglitazone. Diabetes Care. 2001;24:710–9.

    Article  PubMed  CAS  Google Scholar 

  5. Belfort R, Harrison SA, Brown K, et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. New Engl J Med. 2006;355:2297–307.

    Article  PubMed  CAS  Google Scholar 

  6. Tiikkainen M, Hakkinen A-M, Korsheninnikova E, et al. Effects of rosiglitazone and metformin on liver fat content, hepatic insulin resistance, insulin clearance, and gene expression in adipose tissue in patients with type 2 diabetes. Diabetes. 2004;53:2169–76.

    Article  PubMed  CAS  Google Scholar 

  7. Tontonoz P, Spiegelman BM. Fat and beyond: the diverse biology of PPARγ. Annu Rev Biochem. 2008;77:289–312.

    Article  PubMed  CAS  Google Scholar 

  8. Mazzone T, Meyer PM, Feinstein SB, et al. Effect of pioglitazone compared with glimepiride on carotid intima-media thickness in type 2 diabetes: a randomized trial. JAMA. 2006;296:2572–81.

    Article  PubMed  CAS  Google Scholar 

  9. Nissen SE, Nicholls SJ, Wolski K, et al. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA. 2008;299:1561–73.

    Article  PubMed  CAS  Google Scholar 

  10. Pavo I, Jermendy G, Varkonyi TT, et al. Effect of pioglitazone compared with metformin on glycemic control and indicators of insulin sensitivity in recently diagnosed patients with type 2 diabetes. J Clin Endocrinol Metab. 2003;88:1637–45.

    Article  PubMed  CAS  Google Scholar 

  11. Aljabri K, Kozak SE, Thompson DM. Addition of pioglitazone or bedtime insulin to maximal doses of sulfonylurea and metformin in type 2 diabetes patients with poor glucose control: a prospective, randomized trial. Am J Med. 2004;116:230–5.

    Article  PubMed  CAS  Google Scholar 

  12. Bell DS, Ovalle F. Long-term glycaemic efficacy and weight changes associated with thiazolidinediones when added at an advanced stage of type 2 diabetes. Diabetes Obes Metab. 2006;8:110–5.

    Article  PubMed  CAS  Google Scholar 

  13. Charbonnel B, DeFronzo R, Davidson J, et al. Pioglitazone use in combination with insulin in the prospective pioglitazone clinical trial in macrovascular events study (PROactive19). J Clin Endocrinol Metab. 2010;95:2163–71.

    Article  PubMed  CAS  Google Scholar 

  14. Scheen AJ. Combined thiazolidinedione-insulin therapy: should we be concerned about safety? Drug Saf. 2004;27:841–56.

    Article  PubMed  CAS  Google Scholar 

  15. Hohberg C, Pfutzner A, Forst T, et al. Successful switch from insulin therapy to treatment with pioglitazone in type 2 diabetes patients with residual beta-cell function: results from the PioSwitch study. Diabetes Obes Metab. 2009;11:464–71.

    Article  PubMed  CAS  Google Scholar 

  16. Okamoto T, Okamoto L, Lisanti MP, Akishita M. Switch to oral hypoglycemic agent therapy from insulin injection in patients with type 2 diabetes. Geriatr Gerontol Int. 2008;8:218–26.

    Article  PubMed  Google Scholar 

  17. Buchanan TA. (How) Can we prevent type 2 diabetes? Diabetes. 2007;56:1502–7.

    Article  PubMed  CAS  Google Scholar 

  18. Xiang AH, Peters RK, Kjos SL, et al. Effect of pioglitazone on pancreatic b-cell function and diabetes risk in Hispanic women with prior gestational diabetes. Diabetes. 2006;55:517–22.

    Article  PubMed  CAS  Google Scholar 

  19. •• DeFronzo RA, Tripathy D, Schwenke DC, et al. Pioglitazone for diabetes prevention in impaired glucose tolerance. New Engl J Med. 2011;364:1104–15. Very important RCT on the role of pioglitazone to prevent the development of T2DM in subjects with prediabetes.

    Article  PubMed  CAS  Google Scholar 

  20. Chiquette E, Ramirez G, Defronzo R. A meta-analysis comparing the effect of thiazolidinediones on cardiovascular risk factors. Arch Intern Med. 2004;164:2097–104.

    Article  PubMed  CAS  Google Scholar 

  21. Nagashima K, Lopez C, Donovan D, et al. Effects of the PPARg agonist pioglitazone on lipoprotein metabolism in patients with type 2 diabetes mellitus. J Clin Invest. 2005;115:1323–32.

    PubMed  CAS  Google Scholar 

  22. Betteridge DJ. Effects of pioglitazone on lipid and lipoprotein metabolism. Diabetes Obes Metab. 2007;9:640–7.

    Article  PubMed  CAS  Google Scholar 

  23. Al Majali K, Cooper MB, Staels B, et al. The effect of sensitisation to insulin with pioglitazone on fasting and postprandial lipid metabolism, lipoprotein modification by lipases, and lipid transfer activities in type 2 diabetic patients. Diabetologia. 2006;49:527–37.

    Article  PubMed  CAS  Google Scholar 

  24. Deeg MA, Buse JB, Goldberg RB, et al. Pioglitazone and rosiglitazone have different effects on serum lipoprotein particle concentrations and sizes in patients with type 2 diabetes and dyslipidemia. Diabetes Care. 2007;30:2458–64.

    Article  PubMed  CAS  Google Scholar 

  25. Kahn SE, Haffner SM, Heise MA, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. New Engl J Med. 2006;355:2427–43.

    Article  PubMed  CAS  Google Scholar 

  26. The DREAM. (Diabetes REduction Assessment with ramipril and rosiglitazone Medication) Trial Investigators. Role of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet. 2006;368:1096–105.

    Article  CAS  Google Scholar 

  27. Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet. 2005;366:1279–89.

    Article  PubMed  CAS  Google Scholar 

  28. Horio T, Suzuki M, Suzuki K, et al. Pioglitazone improves left ventricular diastolic function in patients with essential hypertension. Am J Hyperts. 2005;18:949–57.

    Article  CAS  Google Scholar 

  29. Ogawa S, Takeuchi K, Ito S. Plasma BNP levels in the treatment of type 2 diabetes with pioglitazone. J Clin Endocrinol Metab. 2003;88:3993–6.

    Article  PubMed  CAS  Google Scholar 

  30. Sambanis C, Tziomalos K, Kountana E, et al. Effect of pioglitazone on heart function and N-terminal pro-brain natriuretic peptide levels of patients with type 2 diabetes. Acta Diabetol. 2008;45:23–30.

    Article  PubMed  CAS  Google Scholar 

  31. Guan Y, Zhang Y, Davis L, Breyer MD. Expression of peroxisome proliferator-activated receptors in urinary tract of rabbits and humans. Am J Phys. 1997;273:F1013–1022.

    CAS  Google Scholar 

  32. Zanchi A, Chiolero A, Maillard M, et al. Effects of the peroxisomal proliferator-activated receptor-gamma agonist pioglitazone on renal and hormonal responses to salt in healthy men. J Clin Endocrinol Metab. 2004;89:1140–5.

    Article  PubMed  CAS  Google Scholar 

  33. Zanchi A, Maillard M, Jornayvaz FR, et al. Effects of the peroxisome proliferator-activated receptor (PPAR)-gamma agonist pioglitazone on renal and hormonal responses to salt in diabetic and hypertensive individuals. Diabetologia. 2010;53:1568–75.

    Article  PubMed  CAS  Google Scholar 

  34. Guan Y, Hao C, Cha DR, et al. Thiazolidinediones expand body fluid volume through PPARgamma stimulation of ENaC-mediated renal salt absorption. Nat Med. 2005;11:861–6.

    Article  PubMed  CAS  Google Scholar 

  35. Balas B, Belfort R, Harrison S, et al. Pioglitazone treatment increases whole body fat but not total body water in patients with non-alcoholic steatohepatitis. J Hepatol. 2007;47:565–70.

    Article  PubMed  CAS  Google Scholar 

  36. Berria R, Gastaldelli A, Lucidi S, et al. Reduction in hematocrit level after pioglitazone treatment is correlated with decreased plasma free testosterone level, not hemodilution, in women with polycystic ovary syndrome. Clin Pharmacol Ther. 2006;80:105–12.

    Article  PubMed  CAS  Google Scholar 

  37. Berria R, Glass L, Mahankali A, et al. Reduction in hematocrit and hemoglobin following pioglitazone treatment is not hemodilutional in Type II diabetes mellitus. Clin Pharmacol Ther. 2007;82:275–81.

    Article  PubMed  CAS  Google Scholar 

  38. Lincoff AM, Wolski K, Nicholls SJ, Nissen SE. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA. 2007;298:1180–8.

    Article  PubMed  CAS  Google Scholar 

  39. Hernandez AV, Usmani A, Rajamanickam A, Moheet A. Thiazolidinediones and risk of heart failure in patients with or at high risk of type 2 diabetes mellitus: a meta-analysis and meta-regression analysis of placebo-controlled randomized clinical trials. Am J Cardiovasc Drugs. 2011;11:115–28.

    Article  PubMed  CAS  Google Scholar 

  40. Dahabreh IJ, Economopoulos K. Meta-analysis of rare events: an update and sensitivity analysis of cardiovascular events in randomized trials of rosiglitazone. Clin Trials. 2008;5:116–20.

    Article  PubMed  Google Scholar 

  41. Singh S, Loke YK, Furberg CD. Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis. JAMA. 2007;298:1189–95.

    Article  PubMed  CAS  Google Scholar 

  42. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. New Engl J Med. 2007;356:2457–71.

    Article  PubMed  CAS  Google Scholar 

  43. Nesto RW, Bell D, Bonow RO, et al. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. Diabetes Care. 2004;27:256–63.

    Article  PubMed  CAS  Google Scholar 

  44. Dream Trial Investigators, Dagenais GR, Gerstein HC, et al. Effects of ramipril and rosiglitazone on cardiovascular and renal outcomes in people with impaired glucose tolerance or impaired fasting glucose: results of the Diabetes REduction Assessment with ramipril and rosiglitazone Medication (DREAM) trial. Diabetes Care. 2008;31:1007–14.

    Article  PubMed  CAS  Google Scholar 

  45. Lago RM, Singh PP, Nesto RW. Congestive heart failure and cardiovascular death in patients with prediabetes and type 2 diabetes given thiazolidinediones: a meta-analysis of randomised clinical trials. Lancet. 2007;370:1129–36.

    Article  PubMed  CAS  Google Scholar 

  46. Masoudi FA, Inzucchi SE, Wang Y, et al. Thiazolidinediones, metformin, and outcomes in older patients with diabetes and heart failure: an observational study. Circulation. 2005;111:583–90.

    Article  PubMed  CAS  Google Scholar 

  47. Rosmarakis ES, Falagas ME. Effect of thiazolidinedione therapy on restenosis after coronary stent implantation: a meta-analysis of randomized controlled trials. Am Heart J. 2007;154:144–50.

    Article  PubMed  CAS  Google Scholar 

  48. Riche DM, Valderrama R, Henyan NN. Thiazolidinediones and risk of repeat target vessel revascularization following percutaneous coronary intervention: a meta-analysis. Diabetes Care. 2007;30:384–8.

    Article  PubMed  CAS  Google Scholar 

  49. • Dormandy J, Bhattacharya M. van Troostenburg de Bruyn AR, et al.: Safety and tolerability of pioglitazone in high-risk patients with type 2 diabetes: an overview of data from PROactive. Drug Saf. 2009;32:187–202. A comprehensive in-depth analysis about the efficacy and safety of a TZD in the largest RCT ever perfromed in patients with T2DM and CVD.

    Article  PubMed  CAS  Google Scholar 

  50. Hirano M, Nakamura T, Kitta Y, et al. Rapid improvement of carotid plaque echogenicity within 1 month of pioglitazone treatment in patients with acute coronary syndrome. Atherosclerosis. 2009;203:483–8.

    Article  PubMed  CAS  Google Scholar 

  51. Saremi A, Schwenke DC, Buchanan TA, et al. Pioglitazone slows progression of atherosclerosis in prediabetes independent of changes in cardiovascular risk factors. Arterioscler Thromb Vasc Biol. 2013;33:393–9.

    Article  PubMed  CAS  Google Scholar 

  52. Erdmann E, Dormandy JA, Charbonnel B, et al. The effect of pioglitazone on recurrent myocardial infarction in 2,445 patients with type 2 diabetes and previous myocardial infarction: results from the PROactive (PROactive 05) Study. JACC. 2007;49:1772–80.

    Article  PubMed  CAS  Google Scholar 

  53. Grey A. Skeletal consequences of thiazolidinedione therapy. Osteoporos Int. 2008;19:129–37.

    Article  PubMed  CAS  Google Scholar 

  54. Kahn SE, Zinman B, Lachin JM, et al. Rosiglitazone-associated fractures in type 2 diabetes: an Analysis from A Diabetes Outcome Progression Trial (ADOPT). Diabetes Care. 2008;31:845–51.

    Article  PubMed  CAS  Google Scholar 

  55. Spanheimer R. Observation of an increased incidence of fractures in female patients who received long-term treatment with ACTOS (pioglitazone HOI) tablets for type 2 diabetes mellitus. In: 2007.

  56. Colhoun HM, Livingstone SJ, Looker HC, et al. Hospitalised hip fracture risk with rosiglitazone and pioglitazone use compared with other glucose-lowering drugs. Diabetologia. 2012;55:2929–37.

    Article  PubMed  CAS  Google Scholar 

  57. Habib ZA, Havstad SL, Wells K, et al. Thiazolidinedione use and the longitudinal risk of fractures in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2010;95:592–600.

    Article  PubMed  CAS  Google Scholar 

  58. Bilik D, McEwen LN, Brown MB, et al. Thiazolidinediones and fractures: evidence from translating research into action for diabetes. J Clin Endocrinol Metab. 2010;95:4560–5.

    Article  PubMed  CAS  Google Scholar 

  59. Bazelier MT, Gallagher AM, van Staa TP, et al. Use of thiazolidinediones and risk of osteoporotic fracture: disease or drugs? Pharmacoepidemiol Drug Saf. 2012;21:507–14.

    Article  PubMed  CAS  Google Scholar 

  60. Hsiao FY, Mullins CD. The association between thiazolidinediones and hospitalisation for fracture in type 2 diabetic patients: a Taiwanese population-based nested case-control study. Diabetologia. 2010;53:489–96.

    Article  PubMed  CAS  Google Scholar 

  61. Bazelier MT, Vestergaard P, Gallagher AM, et al. Risk of fracture with thiazolidinediones: disease or drugs? Calcif Tissue Int. 2012;90:450–7.

    Article  PubMed  CAS  Google Scholar 

  62. Aubert R, Herrera V, Chen W, et al. Rosiglitazone and pioglitazone increase fracture risk in women and men with type 2 diabetes. Diabetes Obes Metab. 2010;12:716–21.

    Article  PubMed  CAS  Google Scholar 

  63. Mieczkowska A, Basle MF, Chappard D, Mabilleau G. Thiazolidinediones induce osteocyte apoptosis by a G protein-coupled receptor 40-dependent mechanism. J Biol Chem. 2012;287:23517–26.

    Article  PubMed  CAS  Google Scholar 

  64. Seth A, Sy V, Pareek A, et al. Thiazolidinediones (TZDs) affect osteoblast viability and biomarkers independently of the TZD effects on aromatase. Horm Metab Res. 2013;45:1–8.

    PubMed  CAS  Google Scholar 

  65. Lazarenko O, Rzonca S, Hogue W, et al. Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology. 2007;148:2669–80.

    Article  PubMed  CAS  Google Scholar 

  66. Ali A, Weinstein R, Stewart S, et al. Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology. 2005;146:1226–35.

    Article  PubMed  CAS  Google Scholar 

  67. Liu L, Aronson J, Huang S, et al. Rosiglitazone inhibits bone regeneration and causes significant accumulation of fat at sites of new bone formation. Calcif Tissue Int. 2012;91:139–48.

    Article  PubMed  CAS  Google Scholar 

  68. • Beck Jr GR, Khazai NB, Bouloux GF, et al. The effects of thiazolidinediones on human bone marrow stromal cell differentiation in vitro and in thiazolidinedione-treated patients with type 2 diabetes. Trans Res. 2013;161:145–55. This study provides a basic and clinical translational explanation on how TZDs may cause bone loss during treament of patients with T2DM.

    Article  CAS  Google Scholar 

  69. Zinman B, Haffner SM, Herman WH, et al. Effect of rosiglitazone, metformin, and glyburide on bone biomarkers in patients with type 2 diabetes. J Clin Endocrinol Metab. 2010;95:134–42.

    Article  PubMed  CAS  Google Scholar 

  70. Oei L, Zillikens MC, Dehghan A et al. High bone mineral density and fracture risk in type 2 diabetes as skeletal complications of inadequate glucose control: The Rotterdam Study. Diabetes Care. 2013 (epub ahead of print).

  71. Plissonnier ML, Fauconnet S, Bittard H, Lascombe I. The antidiabetic drug ciglitazone induces high grade bladder cancer cells apoptosis through the up-regulation of TRAIL. PloS One. 2011;e28354.

  72. Li MY, Kong AW, Yuan H, et al. Pioglitazone prevents smoking carcinogen-induced lung tumor development in mice. Curr Cancer Drug Targets. 2012;12:597–606.

    Article  PubMed  CAS  Google Scholar 

  73. Lee MW, Kim DS, Kim HR, et al. Cell death is induced by ciglitazone, a peroxisome proliferator-activated receptor gamma (PPARgamma) agonist, independently of PPARgamma in human glioma cells. Biochem Biophys Res Commun. 2012;417:552–7.

    Article  PubMed  CAS  Google Scholar 

  74. Yang X, So WY, Ma RC, et al. Use of thiazolidinedione and cancer risk in Type 2 diabetes: the Hong Kong diabetes registry. Diabetes Res Clin Pract. 2012;97:e13–17.

    Article  PubMed  CAS  Google Scholar 

  75. Colmers IN, Bowker SL, Johnson JA. Thiazolidinedione use and cancer incidence in type 2 diabetes: a systematic review and meta-analysis. Diabetes Metab. 2012;38:475–84.

    Article  PubMed  CAS  Google Scholar 

  76. Pishvaian MJ, Marshall JL, Wagner AJ, et al. A phase 1 study of efatutazone, an oral peroxisome proliferator-activated receptor gamma agonist, administered to patients with advanced malignancies. Cancer. 2012;118:5403–13.

    Article  PubMed  CAS  Google Scholar 

  77. Lai SW, Chen PC, Liao KF, et al. Risk of hepatocellular carcinoma in diabetic patients and risk reduction associated with anti-diabetic therapy: a population-based cohort study. Am J Gastroenterol. 2012;107:46–52.

    Article  PubMed  CAS  Google Scholar 

  78. Walter B, Schrettenbrunner I, Vogelhuber M, et al. Pioglitazone, etoricoxib, interferon-alpha, and metronomic capecitabine for metastatic renal cell carcinoma: final results of a prospective phase II trial. Med Oncol. 2012;29:799–805.

    Article  PubMed  CAS  Google Scholar 

  79. Chang CH, Lin JW, Wu LC, et al. Association of thiazolidinediones with liver cancer and colorectal cancer in type 2 diabetes mellitus. Hepatology. 2012;55:1462–72.

    Article  PubMed  CAS  Google Scholar 

  80. He XX, Tu SM, Lee MH, Yeung SC. Thiazolidinediones and metformin associated with improved survival of diabetic prostate cancer patients. Ann Oncol. 2011;22:2640–5.

    Article  PubMed  Google Scholar 

  81. He X, Esteva FJ, Ensor J, et al. Metformin and thiazolidinediones are associated with improved breast cancer-specific survival of diabetic women with HER2+ breast cancer. Ann Oncol. 2012;23:1771–80.

    Article  PubMed  CAS  Google Scholar 

  82. Neumann A, Weill A, Ricordeau P, et al. Pioglitazone and risk of bladder cancer among diabetic patients in France: a population-based cohort study. Diabetologia. 2012;55:1953–62.

    Article  PubMed  CAS  Google Scholar 

  83. Lewis JD, Ferrara A, Peng T, et al. Risk of bladder cancer among diabetic patients treated with pioglitazone: interim report of a longitudinal cohort study. Diabetes Care. 2011;34:916–22.

    Article  PubMed  CAS  Google Scholar 

  84. Mamtani R, Haynes K, Bilker WB, et al. Association between longer therapy with thiazolidinediones and risk of bladder cancer: a cohort study. J Nat Cancer Inst. 2012;104:1411–21.

    Article  PubMed  CAS  Google Scholar 

  85. Tseng CH. Diabetes and risk of bladder cancer: a study using the National Health Insurance database in Taiwan. Diabetologia. 2011;54:2009–15.

    Article  PubMed  Google Scholar 

  86. Tseng CH. Pioglitazone and bladder cancer: a population-based study of Taiwanese. Diabetes Care. 2012;35:278–80.

    Article  PubMed  CAS  Google Scholar 

  87. Fujimoto K, Hamamoto Y, Honjo S et al. Possible link of pioglitazone with bladder cancer in Japanese patients with type 2 diabetes. Diabetes Res Clin Pract. 2012 (epub ahead of print).

  88. Song SO, Kim KJ, Lee BW, Kang ES, Cha BS, Lee HC. The risk of bladder cancer in korean diabetic subjects treated with pioglitazone. Diabetes Metab. 2012;36:371–8.

    Article  Google Scholar 

  89. Tseng CH. Pioglitazone and bladder cancer in human studies: is it diabetes itself, diabetes drugs, flawed analyses or different ethnicities? J Form Med Assoc. 2012;111:123–31.

    Article  CAS  Google Scholar 

  90. Solomon CG, Hu FB, Dunaif A, et al. Menstrual cycle irregularity and risk for future cardiovascular disease. J Clin Endocrinol Metab. 2002;87:2013–7.

    Article  PubMed  CAS  Google Scholar 

  91. Nestler J. Metformin for the treatment of the polycystic ovary syndrome. New Engl J Med. 2008;358:47–54.

    Article  PubMed  CAS  Google Scholar 

  92. Legro RS, Barnhart HX, Schlaff WD, et al. Clomiphene, metformin, or both for infertility in the polycystic ovary syndrome. New Engl J Med. 2007;356:551–66.

    Article  PubMed  CAS  Google Scholar 

  93. Li XJ, Yu YX, Liu CQ, et al. Metformin vs thiazolidinediones for treatment of clinical, hormonal and metabolic characteristics of polycystic ovary syndrome: a meta-analysis. Clin Endocrinol. 2011;74:332–9.

    Article  CAS  Google Scholar 

  94. Du Q, Wang YJ, Yang S, et al. A systematic review and meta-analysis of randomized controlled trials comparing pioglitazone versus metformin in the treatment of polycystic ovary syndrome. Curr Med Res Opin. 2012;28:723–30.

    Article  PubMed  CAS  Google Scholar 

  95. Aroda VR, Ciaraldi TP, Burke P, et al. Metabolic and hormonal changes induced by pioglitazone in polycystic ovary syndrome: a randomized, placebo-controlled clinical trial. J Clin Endocrinol Metab. 2009;94:469–76.

    Article  PubMed  CAS  Google Scholar 

  96. Naka KK, Kalantaridou SN, Kravariti M, et al. Effect of the insulin sensitizers metformin and pioglitazone on endothelial function in young women with polycystic ovary syndrome: a prospective randomized study. Fertil Steril. 2011;95:203–9.

    Article  PubMed  CAS  Google Scholar 

  97. Ibanez L, Lopez-Bermejo A, Diaz M, et al. Low-dose pioglitazone, flutamide, metformin plus an estro-progestagen for non-obese young women with polycystic ovary syndrome: increasing efficacy and persistent safety over 30 months. Gynecol Endocrinol. 2010;26:869–73.

    Article  PubMed  CAS  Google Scholar 

  98. Vinaixa M, Rodriguez MA, Samino S et al. Metabolomics reveals reduction of metabolic oxidation in women with polycystic ovary syndrome after pioglitazone-flutamide-metformin polytherapy. PloS one. 2011;e29052.

  99. Practice Committee of the American Society for Reproductive Medicine. Use of insulin-sensitizing agents in the treatment of polycystic ovary syndrome. Fertil Steril. 2008;90:S69–73.

    Google Scholar 

  100. Bulletins--Gynecology ACoP. ACOG Practice Bulletin No. 108. Polycystic ovary syndrome. Obstet Gynecol. 2009;114:936–49.

    Article  Google Scholar 

  101. Roy KK, Baruah J, Sharma A, et al. A prospective randomized trial comparing the clinical and endocrinological outcome with rosiglitazone versus laparoscopic ovarian drilling in patients with polycystic ovarian disease resistant to ovulation induction with clomiphene citrate. Arch Gynecol Obstet. 2010;281:939–44.

    Article  PubMed  CAS  Google Scholar 

  102. •• Cusi K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterology. 2012;142:711–25. Comprehensive review on the role of obesity and dysfunctional adipose tissue in the development of nonalcoholic steatohepatitis (NASH), associated comorbidities such as insulin resistance, T2DM, and CVD and an overview of current treatments.

    Article  PubMed  CAS  Google Scholar 

  103. •• Torres DM, Williams CD, Harrison SA. Features, diagnosis, and treatment of nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2012;10:837–58. Excellent review on the pathogenesis, clinical profile and diagnostic and treatment approaches for nonalcoholic fatty liver disease (NAFLD).

    Article  PubMed  Google Scholar 

  104. • Lomonaco R, Ortiz-Lopez C, Orsak B, et al. Effect of adipose tissue insulin resistance on metabolic parameters and liver histology in obese patients with nonalcoholic fatty liver disease. Hepatology. 2012;55:1389–97. In this study, the authors highlight the relative importance of dysfunctional fat, over BMI per se, in the development of metabolic and histological abnormalities in patients with NAFLD.

    Article  PubMed  CAS  Google Scholar 

  105. • Sanyal AJ, Chalasani N, Kowdley KV, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. New Engl J Med. 2010;362:1675–85. The largest RCT in patients with NASH that highlights the clinical efficacy of vitamin E or pioglitazone in patients without diabetes with this condition.

    Article  PubMed  CAS  Google Scholar 

  106. • Ratziu V, Caldwell S, Neuschwander-Tetri BA. Therapeutic trials in nonalcoholic steatohepatitis: insulin sensitizers and related methodological issues. Hepatology. 2010;52:2206–15. A comprehensive review of clinical trials in patients with NASH.

    Article  PubMed  CAS  Google Scholar 

  107. Aithal GP, Thomas JA, Kaye PV, et al. Randomized, placebo-controlled trial of pioglitazone in nondiabetic subjects with nonalcoholic steatohepatitis. Gastroenterology. 2008;135:1176–84.

    Article  PubMed  CAS  Google Scholar 

  108. Ratziu V, Giral P, Jacqueminet S, et al. Rosiglitazone for nonalcoholic steatohepatitis: one-year results of the randomized placebo-controlled Fatty Liver Improvement with Rosiglitazone Therapy (FLIRT) Trial. Gastroenterology. 2008;135:100–10.

    Article  PubMed  CAS  Google Scholar 

  109. Ratziu V, Charlotte F, Bernhardt C, et al. Long-term efficacy of rosiglitazone in nonalcoholic steatohepatitis: results of the fatty liver improvement by rosiglitazone therapy (FLIRT 2) extension trial. Hepatology. 2010;51:445–53.

    Article  PubMed  CAS  Google Scholar 

  110. Henriksen K, Byrjalsen I, Qvist P, et al. Efficacy and safety of the PPARγ partial agonist balaglitazone compared with pioglitazone and placebo: a phase III, randomized, parallel-group study in patients with type 2 diabetes on stable insulin therapy. Diabetes Metab Res Rev. 2011;27:392–401.

    Article  PubMed  CAS  Google Scholar 

  111. Herz M, Gaspari F, Perico N, et al. Effects of high dose aleglitazar on renal function in patients with type 2 diabetes. Int J Cardiol. 2011;151:136–42.

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

Hanford Yau serves as a certified insulin pump trainer for Medtronics, Inc.

Kathya Rivera declares that she has no conflict of interest.

Romina Lomonaco declares that she has no conflict of interest.

Kenneth Cusi has received study medication only for a controlled trial from Takeda Pharmaceuticals U.S.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Cusi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yau, H., Rivera, K., Lomonaco, R. et al. The Future of Thiazolidinedione Therapy in the Management of Type 2 Diabetes Mellitus. Curr Diab Rep 13, 329–341 (2013). https://doi.org/10.1007/s11892-013-0378-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-013-0378-8

Keywords

Navigation