Skip to main content

Advertisement

Log in

Corticosteroid Use for Diabetic Macular Edema: Old Fad or New Trend?

  • Microvascular Complications—Retinopathy (JK Sun, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Diabetic retinopathy is the leading cause of blindness in working age individuals in developed countries. Most cases of diabetes related vision loss result from breakdown of the blood-retinal barrier with resultant diabetic macular edema (DME). For over 30 years, laser photocoagulation has been the standard therapy for DME, but most eyes do not experience significant improvements in visual acuity. Intravitreal injections of drugs that inhibit the action of vascular endothelial growth factor (VEGF) lead to gains in vision, but can be expensive and need to be repeated frequently. In addition to VEGF-mediated breakdown of the blood-retinal barrier, recent evidence suggests that inflammation plays an important role in the development of DME. Recognizing this, physicians have injected steroids into the vitreous and developers have created sustained release implants. Intravitreal injections of triamcinolone acetonide lead to rapid resolution of macular edema and significant short-term improvements in visual acuity, but unfortunately, visual acuities diminish when treatment is continued through 2 years. However, intravitreal triamcinolone remains an attractive treatment option for eyes that are pseudophakic, scheduled to undergo cataract surgery, resistant to laser photocoagulation, or require urgent panretinal photocoagulation for proliferative retinopathy. In controlled trials, intraocular implants that slowly release dexamethasone and fluocinolone show promise in reducing macular edema and improving visual acuity. The high incidences of drug related cataracts and glaucoma, however, require that corticosteroids be used cautiously and that patients be selected carefully. The increasing number of patients with DME, the burgeoning cost of medical care and the continuing development of intravitreal steroids suggest that the use of these agents will likely increase in coming years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Klein R, Klein BE. Vision disorders. In Harris MWH,ed. Diabetes in America. Bethesda, MD: NIH-NIDDK Publication No. 95–1468,1995:293–338.

  2. Klein R, Klein BE, Moss SE. The Wisconsin Epidemiological Study of Diabetic Retinopathy: a review. Diabetes Metab Rev. 1989;5(7):559–70.

    Article  PubMed  CAS  Google Scholar 

  3. DCCT. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group. N Engl J Med. 1993;329(14):977–86.

    Article  Google Scholar 

  4. UKPDR (UK Prospective Diabetes Study Group). Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ. 1998;317(7160):703–13.

    Article  Google Scholar 

  5. Curtis TM, Gardiner TA, Stitt AW. Microvascular lesions of diabetic retinopathy: clues towards understanding pathogenesis? Eye. 2009;23:1496–508.

    Article  PubMed  CAS  Google Scholar 

  6. Caldwell RB, Bartoli M, Behzadian MA, et al. Vascular endothelial growth factor and diabetic retinopathy: pathyphysiological mechanisms and treatment perspectives. Diab/Metab Res Rev. 2003;19:442–55.

    Article  CAS  Google Scholar 

  7. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4–14.

    Article  PubMed  CAS  Google Scholar 

  8. Klein R, Klein BE, Moss SE. Visual impairment in diabetes. Ophthalmology. 1984;91:1–9.

    PubMed  CAS  Google Scholar 

  9. Yau J, Rogers S, Kawasaki R, et al. Global Prevalence and major risk factors of Diabetic Retinopathy. Diabetes Care. 2012;35:556–64.

    Article  PubMed  Google Scholar 

  10. Frank RN. Diabetic retinopathy. N Engl J Med. 2004;350:48–58.

    Article  PubMed  CAS  Google Scholar 

  11. Klein R, Knudtson MD, Lee KE, Gangnon R, Klein BE. The Wisconsin Epidemiologic Study of Diabetic Retinopathy XXIII: the twenty-five-year incidence of macular edema in persons with type 1 diabetes. Ophthalmology. 2009;116:497–503.

    Article  PubMed  Google Scholar 

  12. Shea AM, Curtis, Hammill BG, et al. Resource use and costs associated with diabetic macular edema in elderly persons. Arch Ophthalmol. 2008;126(12):1748–54.

    Article  PubMed  Google Scholar 

  13. Early Treatment Diabetic Retinopathy Study Research Group. Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 1. Arch Ophthalmol. 1985;103:1796–806.

    Article  Google Scholar 

  14. McDonald HR, Schatz H. Grid photocoagulation for diffuse macular edema. Retina. 1985;5:65–72.

    Article  PubMed  CAS  Google Scholar 

  15. Uhlmann K, Kovacs, Boettcher Y, et al. Genetics of diabetic retinopathy. Exp Clin Endocrinol Diab. 2006;114:275–94.

    Article  CAS  Google Scholar 

  16. Hanis CL, Hallman D. Genetics of diabetic retinopathy. Curr Diab Rep. 2006;6:155–61.

    Article  PubMed  CAS  Google Scholar 

  17. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.

    Article  PubMed  CAS  Google Scholar 

  18. Nguyen QD, Shah SM, Van Anden E, et al. Supplemental oxygen improves diabetic macular edema: a pilot study. Invest Ophthalmol Vis Sci. 2004;45:617–24.

    Article  PubMed  Google Scholar 

  19. Ozaki H, Hayashi H, Vinores SA, et al. Intravitreal sustained release of VEGF causes retinal neovascularization in rabbits and breakdown of the blood-retinal barrier in rabbits and primates. Exp Eye Res. 1997;64:505–17.

    Article  PubMed  CAS  Google Scholar 

  20. Aiello LP. Angiogenic pathways in diabetic retinopathy. N Engl J Med. 2005;353:839–41.

    Article  PubMed  CAS  Google Scholar 

  21. Gardner TW, Antonetti DA. A prize catch for diabetic retinopathy. Nat Med. 2007;13:131–2.

    Article  PubMed  CAS  Google Scholar 

  22. Antionetti DA, Barber AJ, Bronson SK, et al. Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. 2006;55:2401–11.

  23. Xu H, Chen M, Forrester JV. Para-inflammation in the aging retina. Prog Retin Eye Res. 2009;28:348–68.

    Article  PubMed  CAS  Google Scholar 

  24. Zheng L, Du Y, Miller C, et al. Critical role of inducible nitric oxide synthase in degeneration of retinal capillaries. Diabetologia. 2007;50(9):1987–96.

    Article  PubMed  CAS  Google Scholar 

  25. Kern TS. Contributions of inflammatory processes to the development of the early stages of diabetic retinopathy. Exp Diabetes Res. 2007;2007:95103.

    Article  PubMed  CAS  Google Scholar 

  26. Funatsu H, Yamashita H, Noma H, et al. Increased levels of vascular endothelial growth factor and interleukin-6 in the aqueous humor of diabetics with macular edema. Am J Ophthalmol. 2002;133:70–7.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang J, Gerhardinger C, Lorenzi M. Early complement activation and decreased levels of glycosylphosphatidylinositol-anchored complement inhibitors in human and experimental diabetic retinopathy. Diabetes. 2002;51(12):3499–504.

    Article  PubMed  CAS  Google Scholar 

  28. Joussen A, Poulaki V, Le M, et al. A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J. 2004;18(12):1450–2.

    PubMed  CAS  Google Scholar 

  29. Chibber R, Ben-Mahmud AB, Chibber S, et al. Leukocytes in diabetic retinopathy. Curr Diab Rev. 2007;3:3–14. Review.

    Article  CAS  Google Scholar 

  30. Miyamoto K, Khosrof S, Bursell, et al. Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. Proc Natl Acad Sci USA. 1999;96:10836–41.

    Article  PubMed  CAS  Google Scholar 

  31. Linderkamp O, Ruef P, Zilow EP, et al. Impaired deformability of erythrocytes and neutrophils in children with newly diagnosed insulin-dependent diabetes mellitus. Diabetologia. 1999;42:865–9.

    Article  PubMed  CAS  Google Scholar 

  32. Joussen AM, Murata T, Tsujikawa A, et al. Leukocyte-mediated endothelial cell injury and death in the diabetic retina. Am J Pathol. 2001;158(1):147–52.

    Article  PubMed  CAS  Google Scholar 

  33. Miller-Lotan R, Miller B, Nakhoul F, et al. Retinal capillary basement membrane thickness in diabetic mice genetically modified at the haptoglobin locus. Diabetes Metab Res Rev. 2007;23:152–6.

    Article  PubMed  Google Scholar 

  34. Tsuchihashi S, Ke B, Kaldas F, et al. Vascular endothelial growth factor antagonist modulates leukocyte trafficking and protects mouse livers against ischemia/reperfusion injury. Am J Pathol. 2006;168:695–705.

    Article  PubMed  CAS  Google Scholar 

  35. Klein BE, Knudtson MD. Tsai My, et al. The relation of markers of inflammation and endothelial dysfunction to the prevalence and progression of diabetic retinopathy: Wisconsin epidemiologic study of diabetic retinopathy. Arch Ophthalmol. 2009;127:1175–82.

    Article  PubMed  CAS  Google Scholar 

  36. Nguyen TT, Alibrahim E, Islam FM, et al. Inflammatory, hemostatic, and other novel biomarkers for diabetic retinopathy: the multi-ethnic study of atherosclerosis. Diabetes Care. 2009;32:1704–9.

    Article  PubMed  CAS  Google Scholar 

  37. Van Dijk HW, Verbraak FD, Kok PH, et al. Decreased retinal ganglion cell layer thickness in patients with type 1 diabetes. Invest Ophthalmol Vis Sci. 2010;51(7):3660–5.

    Article  PubMed  Google Scholar 

  38. Verma A, Rani PK, Raman R, et al. Is neuronal dysfunction an early sign of diabetic retinopathy? Microperimetry and spectral domain optical coherence tomography (SD-OCT) study in individuals with diabetes, but no diabetic retinopathy. Eye. 2009;23(9):1824–30.

    Article  PubMed  CAS  Google Scholar 

  39. Joussen AM, Murata T, Tsujikawa A, et al. Leukocyte-mediated endothelial cell injury and death in the diabetic retina. Am J Pathol. 2001;158(1):147–52.

    Article  PubMed  CAS  Google Scholar 

  40. Bursell SE, Clermont AC, Kinsley BT, et al. Retinal blood flow changes in patients with insulin-dependent diabetes mellitus and no diabetic retinopathy. Invest Ophthalmol Vis Sci. 1996;37(5):886–97.

    PubMed  CAS  Google Scholar 

  41. Curtis TM, Gardiner TA, Stitt AW. Microvascular lesions of diabetic retinopathy: clues towards understanding pathogenesis? Eye. 2009;23(7):1496–508.

    Article  PubMed  CAS  Google Scholar 

  42. Ejaz S, Chekarova I, Ejaz A, et al. Importance of pericytes and mechanisms of pericyte loss during diabetes retinopathy. Diabetes Obes Metab. 2008;10(1):53–63.

    PubMed  CAS  Google Scholar 

  43. Caldwell RB, Bartoli M, Behzadian MA, et al. Vascular endothelial growth factor and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Diabetes Metab Res Rev. 2003;19(6):442–55.

    Article  PubMed  CAS  Google Scholar 

  44. Alder VA, Su EN, Yu DY, et al. Diabetic retinopathy: early functional changes. Clin Exp Pharmacol Physiol. 1997;24(9–10):785–8.

    Article  PubMed  CAS  Google Scholar 

  45. Linsenmeier RA, Braun RD, McRipley MA, et al. Retinal hypoxia in long-term diabetic cats. Invest Ophthalmol Vis Sci. 1998;39(9):1647–57.

    PubMed  CAS  Google Scholar 

  46. Hancock HA, Kraft TW. Oscillatory potential analysis and ERGs of normal and diabetic rats. Invest Ophthalmol Vis Sci. 2004;45(3):1002–8.

    Article  PubMed  Google Scholar 

  47. Ewing FM, Deary IJ, Strachan MW, et al. Seeing beyond retinopathy in diabetes: electrophysiological and psychophysical abnormalities and alterations in vision. Endocr Rev. 1998;19(4):462–76.

    Article  PubMed  CAS  Google Scholar 

  48. Jackson GR, Owsley C. Visual dysfunction, neurodegenerative diseases, and aging. Neurol Clin. 2003;21(3):709–28.

    Article  PubMed  Google Scholar 

  49. Park SH, Park JW, Park SJ, et al. Apoptotic death of photoreceptors in the streptozotocin-induced diabetic rat retina. Diabetologia. 2003;46(9):1260–8.

    Article  PubMed  Google Scholar 

  50. Nishimura C, Kuriyama K. Alterations in the retinal dopaminergic neuronal system in rats with streptozotocin-induced diabetes. J Neurochem. 1985;45(2):448–55.

    Article  PubMed  CAS  Google Scholar 

  51. Zheng XX, Ng YK, Ling EA. Neuronal and microglial response in the retina of streptozotocin-induced diabetic rats. Vis Neurosci. 2000;17(3):463–71.

    Article  Google Scholar 

  52. Dean FM, Arden GB, Dornhorst A. Partial reversal of protan and tritan colour defects with inhaled oxygen in insulin dependent early diabetic subjects. Br J Ophthalmol. 1997;81(1):27–30.

    Article  PubMed  CAS  Google Scholar 

  53. Harris A, Arend O, Danis RP, et al. Hyperoxia improves contrast sensitivity in early diabetic retinopathy. Br J Ophthalmol. 1996;80(3):209–13.

    Article  PubMed  CAS  Google Scholar 

  54. Feke GT, Buzney SM, Ogasawara H, et al. Retinal circulatory abnormalities in type 1 diabetes. Invest Ophthalmol Vis Sci. 1994;35(7):2968–75.

    PubMed  CAS  Google Scholar 

  55. Curtis TM, Gardiner TA, Stitt AW. Microvascular lesions of diabetic retinopathy: clues towards understanding pathogenesis? Eye. 2009;23:1496–508.

    Article  PubMed  CAS  Google Scholar 

  56. Thoumine O, Nerem RM, Girard PR. Changes in organization and composition of the extracellular matrix underlying cultured endothelial cells exposed to laminar steady shear stress. Lab Invest. 1995;73(4):565–76.

    PubMed  CAS  Google Scholar 

  57. Stacek Jr JE, Patterson CE, Garcia JG. Protein kinase C phosphorylates caldesmon77 and vimentin and enhances albumin permeability across cultured bovine pulmonary artery endothelial cell monolayers. J Cell Physiol. 1992;153:62–75.

    Article  Google Scholar 

  58. Joussen AM. Therapeutic approaches to (diabetic) macular edema. In Joussen AM, Gardner TW, Kirchhof B, Ryan SJ, eds. Retinal Vascular Disease. Heidelberg, Germany: Springer-Verlag, 2007:353–376.

  59. Antonetti DA, Barber AJ, Hollinger LA, et al. Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem. 1999;274:23463–7.

    Article  PubMed  CAS  Google Scholar 

  60. Fatt I, Shantinath K. Flow conductivity of retina and its role in retinal adhesion. Exp Eye Res. 1971;12:218–26.

    Article  PubMed  CAS  Google Scholar 

  61. Nagelhus EA, Veruki ML, Torp R, et al. Aquaporin-4 water channel protein in the rat retina and optic nerve: polarized expression in Muller cells and fibrous astrocytes. J Neurosci. 1998;18:2506–19.

    PubMed  CAS  Google Scholar 

  62. Doukas J, Hechtinan HB, Shepro D. Endothelial-secreted arachidonic metabolites modulate polymorphonuclear leukocyte chemotaxis and diapedesis in vitro. Blood. 1988;71:771–9.

    PubMed  CAS  Google Scholar 

  63. Sears JE, Hoppe G. Triamcinolone acetonide destabilizes VEGF mRNA in Muller Cells under continuous cobalt stimulation. Invest Ophthalmol Vis Sci. 2005;46:4336–41.

    Article  PubMed  Google Scholar 

  64. Gardner TW, Antonetti DA, Barber AJ, et al. Penn State Retina Research Group. Diabetic retinopathy: more than meets the eye. Surv Ophthalmol. 2002;47(suppl):S253–262.

    Article  PubMed  Google Scholar 

  65. Gomez-Ulla F, Marticorena J, Alfaro V, et al. Intravitreal triamcinolone in the treatment for diabetic macular edema. Curr Diabetes Rev. 2006;1:99–112.

    Article  Google Scholar 

  66. Wilson CA, Berkowitz BA, Sato Y, et al. Treatment with intravitreal steroid reduces bloodretinal barrier breakdown due to retinal photocoagulation. Arch Ophthalmol. 1992;110:1155–9.

    Article  PubMed  CAS  Google Scholar 

  67. Funatsu H, Yamashita H, Ikeda T, et al. Vitreous levels of interleukin-6 and vascular endothelial growth factor are related to diabetic macular edema. Ophthalmology. 2003;110:1690–6.

    Article  PubMed  Google Scholar 

  68. Funatsu H, Yamashita H, Sakata K, et al. Vitreous levels of vascular endothelial growth factor and intercellular adhesion molecule 1 are related to diabetic macular edema. Ophthalmology. 2005;112:806–16.

    Article  PubMed  Google Scholar 

  69. Diabetic Retinopathy Clinical Research Network. A phase II randomized clinical trial of intravitreal bevacizumab for diabetic macular edema. Ophthalmology. 2007;114:1860–7.

    Article  Google Scholar 

  70. Sonoda Y, Arimura N, Shimura M, et al. Early changes of central macular thickness after intravitreous triamcinolone or bevacizumab in diabetic macular edema or retinal vein occlusion. Retina. 2011;31:290–7.

    Article  PubMed  CAS  Google Scholar 

  71. Uckermann O, Kutzera F, Wolf A, et al. The glucocorticoid triamcinolone acetonide inhibits osmotic swelling of retinal glial cells via stimulation of endogenous adenosine signaling. J Pharmacol Exp Ther. 2005;315:1036–45.

    Article  PubMed  CAS  Google Scholar 

  72. Wurm A, Iandiev I, Hallborn M, et al. Purinergic receptor activation inhibits osmotic glial cell swelling in the diabetic rat retina. Exp Eye Res. 2008;87:385–93.

    Article  PubMed  CAS  Google Scholar 

  73. Paques M, Krivosic V, Girmens JF, et al. Decreased venous tortuosity associated with resolution of macular edema after intravitreal injection of triamcinolone. Retina. 2005;25:1099–101.

    Article  PubMed  Google Scholar 

  74. Powell E, Field R. Diabetic retinopathy in rheumatoid arthritis. Lancet. 1964;2:17–8.

    Article  PubMed  CAS  Google Scholar 

  75. Heiss J, Papavassiliou E, Merrill M, et al. Mechanism of dexamethasone suppression of brain tumor-associated vascular permeability in rats. Involvement of the glucocorticoid receptor and vascular permeability factor. J Clin Invest. 1996;98:1400–8.

    Article  PubMed  CAS  Google Scholar 

  76. Kuo C-H, Gillies MC. Role of steroids in the treatment of diabetic macular edema. Int Ophthalmol Clin. 2009;2:121–34.

    Article  Google Scholar 

  77. Graham RO, Peyman GA. Intravitreal injection of dexamethasone. Treatment of experimentally induced endophthalmitis. Arch Ophthalmol. 1974;92:149–54.

    Article  PubMed  CAS  Google Scholar 

  78. Tano Y, Sugita G, Abrams G, et al. Inhibition of intraocular proliferations with intravitreal corticosteroids. Am J Ophthalmol. 1980;89:131–6.

    PubMed  CAS  Google Scholar 

  79. McCuen B, Bessler M, Tano Y, et al. The lack of toxicity of intravitreally administered triamcinolone acetonide. Am J Ophthalmol. 1981;91:785–8.

    PubMed  CAS  Google Scholar 

  80. Hida T, Chandler D, Arena J, et al. Experimental and clinical observations of the intraocular toxicity of commercial corticosteroid preparations. Am J Ophthalmol. 1986;101:190–5.

    PubMed  CAS  Google Scholar 

  81. Wilson C, Berkowitz B, Sato Y, et al. Treatment with intravitreal steroid reduces blood-retinal barrier breakdown due to retinal photocoagulation. Am J Ophthalmol. 1992;110:1155–9.

    Article  CAS  Google Scholar 

  82. Edelman J, Lutz D, Castro M. Corticosteroids inhibit VEGF-induced vascular leakage in a rabbit model of blood-retinal and blood-aqueous barrier breakdown. Exp Eye Res. 2005;80:249–58.

    Article  PubMed  CAS  Google Scholar 

  83. Jermack CM, Dellacroce JT, Heffez J, et al. Triamcinolone acetonide in ocular therapeutics. Surv Ophthalmol. 2007;52:503–22.

    Article  Google Scholar 

  84. Penfold P, Gyory J, Hunyor A, et al. Exudative macular degeneration and intravitreal triamcinolone. A pilot study. Aust N Z J Ophthalmol. 1995;23:292–8.

    Article  Google Scholar 

  85. Jonas J, Sofker A. Intraocular injection of crystalline cortisone as adjunctive treatment of diabetic macular edema. Am J Ophthalmol. 2001;132:425–7.

    Article  PubMed  CAS  Google Scholar 

  86. Bonini-Filho MA, Jorge R, Barbosa JC, et al. Intravitreal injection versus sub-tenon’s infusion of triamcinolone acetonide for refractory diabetic macular edema: a randomized clinical trial. Invest Ophthalmol Vis Sci. 2005;46:3845–9.

    Article  PubMed  Google Scholar 

  87. Diabetic Retinopathy Clinical Research Network. Randomized trial of peribulbar triamcinolone acetonide with and without focal photocoagulation for mild diabetic macular edema: a pilot study. Ophthalmology. 2007;114:1190–6.

    Article  Google Scholar 

  88. Martidis A, Duker JS, Greenberg PB, et al. Intravitreal triamcinolone for refractory diabetic macular edema. Ophthalmology. 2002;109:920–7.

    Article  PubMed  Google Scholar 

  89. Massin P, Audren F, Haouchine B, et al. Intravitreal triamcinolone acetonide for diabetic diffuse macular edema: Preliminary results of a prospective controlled trial. Ophthalmology. 2004;111:218–24.

    Article  PubMed  Google Scholar 

  90. Jonas JB, Kreissig I, Sofker A, et al. Intravitreal injection of triamcinolone for diffuse macular edema. Arch Ophthalmol. 2003;121:57–61.

    Article  PubMed  CAS  Google Scholar 

  91. Gillies MC, Simpson JM, Gaston C, et al. Five-year results of a randomized trial with open-label extension of triamcinolone acetonide for refractory diabetic macula edema. Ophthalmology. 2009;116:2182–7.

    Article  PubMed  Google Scholar 

  92. Ockrim ZK, Sivaprasad S, Falk S, et al. Intravitreal triamcinolone versus laser photocoagulation for persistent diabetic macular oedema. Br J Ophthalmol. 2008;92:795–9.

    Article  PubMed  CAS  Google Scholar 

  93. Bressler NM, Edwards A, Beck RW, et al. Exploratory analysis of diabetic retinopathy progression through 3 years in a randomized clinical trial that compares intravitreal triamcinolone acetonide with focal/grid photocoagulation. Arch Ophthalmol. 2009;127(12):1566–71.

    Article  PubMed  CAS  Google Scholar 

  94. Yilmaz T, Weaver CD, Gallagher MJ, et al. Intravitreal triamcinolone acetonide injection for treatment of refractory diabetic macular edema. Ophthalmology. 2009;116:902–13.

    Article  PubMed  Google Scholar 

  95. Gottsfredsdottir MS, Stefansson E, Jonasson F, et al. Retinal vasoconstriction after laser treatment for diabetic macular edema. Am J Ophthalmol. 1993;115:64–7.

    Google Scholar 

  96. Figuiira J, Khan J, Nunes S, et al. Prospective randomized controlled trial comparing subthreshold micropulse diode laser photocoagulation and conventional green laser for clinically significant diabetic macular oedema. Br J Ophthalmol. 2009;93(10):1341–4.

    Article  Google Scholar 

  97. Gillies MC, McAllister IL, Zhu M, et al. Pretreatment with intravitreal triamcinolone before laser for diabetic macular edema: 6-month results of a randomized, placebo-controlled trial. Invest Ophthalmol Vis Sci. 2010;51(5):2322–8.

    Article  PubMed  Google Scholar 

  98. Steijns D, Duijvesz D, Breedijk MA, et al. Steroid injection in addition to macular laser grid photocoagulation in diabetic macular oedema: a systemic review. Acta Ophthalmol. 2010;88:389–93.

    Article  PubMed  Google Scholar 

  99. Lam DS, Chan CK, Mohamed S, et al. Intravitreal triamcinolone plus sequential grid laser versus triamcinolone or laser alone for treating diabetic macular edema: six-month outcomes. Ophthalmology. 2007;114:2162–7.

    Article  PubMed  Google Scholar 

  100. Kang SW, Sa HS, Cho HY, et al. Macular grid photocoagulation after intravitreal triamcinolone acetonide for diffuse diabetic macular edema. Arch Ophthalmol. 2006;124:653–8.

    Article  PubMed  CAS  Google Scholar 

  101. Larsson J, Zhu M, Sutter F, et al. Relation between reduction of foveal thickness and visual acuity in diabetic macular edema treated with intravitreal triamcinolone. Am J Ophthalmol. 2005;139:802–6.

    Article  PubMed  Google Scholar 

  102. Mohamed Q, Gillies MC, Wong TY. Management of diabetic retinopathy: a systemic review. JAMA. 2007;298:902–16.

    Article  PubMed  CAS  Google Scholar 

  103. Shimura M, Yasuda K, Nakazaya T, et al. Quantifying alterations of macular thickness before and after pan-retinal photocoagulation in patients with severe diabetic retinopathy and good vision. Ophthalmology. 2003;110:2386–94.

    Article  PubMed  Google Scholar 

  104. Mirshahi A, Shenazandi H, Lashay A, et al. Intravitreal triamcinolone as an adjunct to standard laser therapy in coexisting high-risk proliferative diabetic and clinically significant macular edema. Retina. 2010;30:254–9.

    Article  PubMed  Google Scholar 

  105. The Diabetic Retinopathy Clinical Research Network Writing Committee, Googe J, Brucker AJ, Bressler NM, et al. Randomized trial evaluating short-term effects of intravitreal ranibizumab or triamcinolone acetonide on macular edema after focal/grid laser for diabetic macular edema in eyes also receiving panretinal photocoagulation. Retina. 2011;31:1009–27.

    Article  PubMed  CAS  Google Scholar 

  106. Song JH, Lee JJ, Lee SJ. Comparison of the short-term effects of intravitreal triamcinolone acetonide and bevacizumab injection for diabetic macular edema. Kor J Ophthalmol. 2011;25(3):156–60.

    Article  CAS  Google Scholar 

  107. Sohelian M, Ramezani A, Obudi A, et al. Randomized trial of intravitreal bevacizumab alone or combined with triamcinolone versus macular photocoagulation in diabetic macular edema. Ophthalmology. 2009;116:1142–50.

    Article  Google Scholar 

  108. Forte R, Cennamo GL, Finelli M, et al. Intravitreal bevacizumab vs intravitreal triamcinolone combined with macular laser grid for diffuse diabetic macular oedema. Eye. 2010;24:1325–30.

    Article  PubMed  CAS  Google Scholar 

  109. Synek S, Vojnikovic B. Intravitreal bevacizumab with or without triamcinolone for refractory diabetic macular oedema. Coll Antropol. 2010;34 suppl 2:99–103.

    PubMed  Google Scholar 

  110. Kim SJ, Equi R, Bressler NM. Analysis of macular edema after cataract surgery in patients with diabetes using optical coherence tomography. Ophthalmology. 2007;114:881–9.

    Article  PubMed  Google Scholar 

  111. Romero-Aroca P, Fernandez-Ballart J, Almena-Garcia M, et al. Nonproliferative diabetic retinopathy and macular edema progression after phacoemulsification: prospective study. J Cataract Ref Surg. 2006;32:1438–44.

    Article  Google Scholar 

  112. Degenring RF, Vey S, Kamppeter B, et al. Effect of uncomplicated phacoemulsification on the central retina in diabetic and non-diabetic subjects. Graefes Arch Clin Exp Ophthalmol. 2007;245:18–23.

    Article  PubMed  Google Scholar 

  113. Jonas JB, Kreissig I, Budde WM, et al. Cataract surgery combined with intravitreal injection of triamcinolone acetonide. Eur J Ophthalmol. 2005;15:329–35.

    PubMed  CAS  Google Scholar 

  114. Lam DS, Chan CK, Mohamed S, et al. Phacoemulsification with intravitreal triamcinolone in patients with cataract and coexisting diabetic macular oedema: a 6-month prospective pilot study. Eye. 2005;19:885–90.

    Article  PubMed  CAS  Google Scholar 

  115. Habib MS, Cannon PS, Steel DH. The combination of intravitreal triamcinolone and phacoemulsification surgery in patients with diabetic foveal oedema and cataract. BMC Ophthalmol. 2005;5:15.

    Article  PubMed  CAS  Google Scholar 

  116. Akinci A, Muftuoglu O, Altinsoy A, et al. Phacoemulsification with intravitreal bevacizumab and triamcinolone acetonide injection in diabetic patients with clinically significant macular edema and cataract. Retina. 2011;31:755–8.

    PubMed  CAS  Google Scholar 

  117. Diabetic Retinopathy Clinical Research Network, Elman MJ, Bressler NM, Qin H, et al. Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology. 2011;118:609–14.

    Article  PubMed  Google Scholar 

  118. Thompson JT. Cataract formation and other complications of intravitreal triamcinolone for macular edema. Am J Ophthalmol. 2006;141:629–37.

    Article  PubMed  CAS  Google Scholar 

  119. Gillies MC, Kuzniarz M, Craig J, et al. Intravitreal triamcinolone-induced elevated intraocular pressure is associated with the development of posterior subcapsular cataract. Ophthalmology. 2005;112:139–43.

    Article  PubMed  Google Scholar 

  120. Smithen LM, Ober MD, Maranan L, et al. Intravitreal triamcinolone acetonide and intraocular pressure. Am J Ophthalmol. 2004;138:740–3.

    Article  PubMed  CAS  Google Scholar 

  121. Rhee DJ, Peck RD, Belmont J, et al. Intraocular pressure alterations following intravitreal triamcinolone acetonide. Br J Ophthalmol. 2006;90:999–1003.

    Article  PubMed  CAS  Google Scholar 

  122. Bae JS, Park SJ, Ham IR, et al. Dose dependent effects of intravitreal triamcinolone acetonide on diffuse diabetic macular edema. Kor J Ophthalmol. 2009;23:80–5.

    Article  CAS  Google Scholar 

  123. Bhavsar AR, Ip MS, Glassman AR. DRCRnet and the SCORE Study Groups. The risk of endophthalmitis following intravitreal triamcinolone acetonide injection in the DRCRnet and SCORE clinical trials. Am J Ophthalmol. 2007;144:454–6.

    Article  PubMed  CAS  Google Scholar 

  124. Moshfeghi DM, Kaiser PK, Bakri SJ, et al. Presumed sterile endophthalmitis following intravitreal triamcinolone acetonide injection. Ophthalmic Surg Lasers Imaging. 2005;36:24–9.

    PubMed  Google Scholar 

  125. Roth DB, Prenner JL, Krajnyk O. Incidence of noninfectious endophthalmitis after intravitreal injection of preservative-free triamcinolone acetonide. Retin Cases Brief Rep. 2008;2:247–9.

    Article  Google Scholar 

  126. Sohn HJ, Han DH, Kim TI, et al. Changes in aqueous concentrations of various cytokines after intravitreal triamcinolone versus bevacizumab for diabetic macular edema. Am J Ophthalmol. 2011;152:686–94.

    Article  PubMed  CAS  Google Scholar 

  127. Kwak HW, D’Amico DJ. Evaluation of the retinal toxicity and pharmacokinetics of dexamethasone after intravitreal injection. Arch Ophthalmol. 1992;110(2):259–66.

    Article  PubMed  CAS  Google Scholar 

  128. Kupperman BD, Welty D, Robinson MR, et al. Vitreous and systemic pharmacokinetic profiles of intravitreally-administered dexamethasone posterior segment drug delivery system. Presented at: the 26th Annual Meeting of the American Society of Retina Specialists; October 11–15,2008; Wailea,HI.

  129. Haller J, Kupperman BD, Blumenkranz MS, et al. Randomized controlled trial of an intravitreous dexamethasone drug delivery system in patients with diabetic macular edema. Arch Ophthalmol. 2010;128(3):289–96.

    Article  PubMed  CAS  Google Scholar 

  130. Boyer DS, Faba S, Gupta S, et al. Dexamethasone intravitreal implant for treatment of diabetic macular edema in vitrectomized patients. Retina. 2011;31:915–23.

    Article  PubMed  CAS  Google Scholar 

  131. Pearson PA, Comstock TL, Ip M, et al. Fluocinolone acetonide intravitreal implant for diabetic macular edema: a 3-year multicenter, randomized, controlled clinical trial. Ophthalmology. 2011;118:1580–7.

    Article  PubMed  Google Scholar 

  132. Campochiaro PA, Brown DM, Pearson A, et al. Long-term benefit of sustained-delivery fluocinolone acetonide vitreous inserts for diabetic macular edema. Ophthalmology. 2011;118:626–35.

    Article  PubMed  Google Scholar 

  133. Smiddy WE. Economic considerations of macular edema therapies. Ophthalmology. 2011;118:1827–33.

    Article  PubMed  Google Scholar 

Download references

Disclosure

Conflicts of interest: M.W. Stewart: has been a consultant for Regeneron, Allergan; and has received grant support from Regeneron, Bayer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael W. Stewart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, M.W. Corticosteroid Use for Diabetic Macular Edema: Old Fad or New Trend?. Curr Diab Rep 12, 364–375 (2012). https://doi.org/10.1007/s11892-012-0281-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-012-0281-8

Keywords

Navigation