Skip to main content

Advertisement

Log in

Human Vascular Endothelial Cells: A Model System for Studying Vascular Inflammation in Diabetes and Atherosclerosis

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

The vascular endothelium is the inner lining of blood vessels serving as autocrine and paracrine organ that regulates vascular wall function. Endothelial dysfunction is recognized as initial step in the atherosclerotic process and is well advanced in diabetes, even before the manifestation of end-organ damage. Strategies capable of assessing changes in vascular endothelium at the preclinical stage hold potential to refine cardiovascular risk. In vitro cell culture is useful in understanding the interaction of endothelial cells with various mediators; however, it is often criticized due to the uncertain relevance of results to humans. Although circulating endothelial cells, endothelial microparticles, and progenitor cells opened the way for ex vivo studies, a recently described method for obtaining primary endothelial cells through endovascular biopsy allows direct characterization of endothelial phenotype in humans. In this article, we appraise the use of endothelial cell-based methodologies to study vascular inflammation in diabetes and atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Setacci C, de Donato G, Setacci F, et al. Diabetic patients: epidemiology and global impact. J Cardiovasc Surg. 2009;50:263–73.

    CAS  Google Scholar 

  2. Gu K, Cowie CC, Harris MI. Mortality in adults with and without diabetes in a national cohort of the U.S. population, 1971–1993. Diab Care. 1998;21:1138–45.

    Article  CAS  Google Scholar 

  3. Schalkwijk CG, Stehouwer CDA. Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin Sci. 2005;109:143–59.

    Article  PubMed  CAS  Google Scholar 

  4. Packard RRS, Libby P. Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin Chem. 2008;54:124–38.

    Google Scholar 

  5. Son SM. Role of vascular reactive oxygen species in development of vascular abnormalities in diabetes. Diabetes Res Clin Pract. 2007;(Suppl 1):S65–70.

  6. Maugeri N, Rovere-Querini P, Baldini M, et al. Translational mini-review series on immunology of vascular disease: mechanisim of vascular inflammation and remodeling in systemic vasculitis. Clin Exp Immunol. 2009;156:395–404.

    Article  PubMed  CAS  Google Scholar 

  7. Chavakis T, Bierhaus A, Nawroth PP. RAGE (receptor for advanced glycation end products): a central player in the inflammatory response. Microbes Infect. 2004; 1219–25.

  8. Takaishi H, Taniguchi T, Takahashi A, et al. High glucose accelerates MCP-1 production via p38 MAPK in vascular endothelial cells. Biochem Biophys Res Commun. 2003;305:122–30.

    Article  PubMed  CAS  Google Scholar 

  9. Hasan RN, Phukan S, Harada S. Differential regulation of early growth response Gene-1 expression by insulin and glucose in vascular endothelial cells. Arterioscler Thromb Vasc Biol. 2003;23:988–95.

    Article  PubMed  CAS  Google Scholar 

  10. Jaffe E, Nachman R, Becker C, et al. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973;52:2745–56.

    Article  PubMed  CAS  Google Scholar 

  11. Lorenzi M, Cagliero E, Toledo S. Glucose toxicity for human endothelial cells in culture. Delayed replication, disturbed cell cycle, and accelerated death. Diabetes. 1985;34:621–7.

    Article  PubMed  CAS  Google Scholar 

  12. La Selva M, Beltramo E, Pagnozzi F, et al. Thiamine corrects delayed replication and decreases production of lactate and advanced glycation end-products in bovine retinal and human umbilical vein endothelial cells cultured under high glucose conditions. Diabetologia. 1996;39:1263–8.

    Article  PubMed  Google Scholar 

  13. Rymaszewski Z, Szymanski PT, Abplanalp WA, et al. Human retinal vascular cells differ from umbilical cells in synthetic functions and their response to glucose. Proc Soc Exp Biol Med. 1992;199:183–91.

    PubMed  CAS  Google Scholar 

  14. Goya K, Otsuki M, Xu X, et al. Effects of the prostaglandin I2 analogue, beraprost sodium, on vascular cell adhesion molecule-1 expression in human vascular endothelial cells and circulating vascular cell adhesion molecule-1 level in patients with type 2. Diab Mellitus Metab. 2003;52:192–8.

    CAS  Google Scholar 

  15. Altannavch TS, Roubalová K, Kučera P, et al. Effect of high glucose concentrations on expression of ELAM-1, VCAM-1 and ICAM-1 in HUVEC with and without cytokine activation. Physiol Res. 2004;53:77–82.

    PubMed  CAS  Google Scholar 

  16. Azcutia V, Abu-Taha M, Romacho T, et al. Inflammation determines the pro-adhesive properties of high extracellular D-glucose in human endothelial cells in vitro and rat microvessels in vivo. PLoA One. 2010;5:e1009.

    Google Scholar 

  17. Wautier JL, Wautier MP, Schmidt AM, et al. Advanced glycation end products (AGEs) on the surface of diabetic erythrocytes bind to the vessel wall via a specific receptor inducing oxidant stress in the vasculature: a link between surface-associated AGEs and diabetic complications. Proc Natl Acad Sci USA. 1994;91:7742–6.

    Article  PubMed  CAS  Google Scholar 

  18. Schmidt AM, Hori O, Chen JX, et al. Advanced glycation end products interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest. 1995;96:1395–403.

    Article  PubMed  CAS  Google Scholar 

  19. Piconi L, Quagliaro L, Assaloni R, et al. Constant and intermittent high glucose enhances endothelial cell apoptosis through mitochondrial superoxide overproduction. Diab Metab Res Rev. 2006;22:198–203.

    Article  CAS  Google Scholar 

  20. Sheu ML, Ho FM, Yang RS, et al. High glucose induces human endothelial cell apoptosis through a phosphoinositide 3-kinase-regulated cyclooxygenase-2 pathway. Arterioscler Thromb Vasc Biol. 2005;25:539–45.

    Article  PubMed  CAS  Google Scholar 

  21. Chao CL, Hou YC, Chao PD, et al. The antioxidant effects of quercetin metabolites on the prevention of high glucose-induced apoptosis of human umbilical vein endothelial cells. Br J Nutr. 2009;101:1165–70.

    Article  PubMed  CAS  Google Scholar 

  22. Dai Z, Liao DF, Jiang DJ, et al. 3, 4, 5, 6-Tetrahydroxyxanthone prevents vascular endothelial cell apoptosis induced by high glucose. Naunyn Schmiedebergs Arch Pharmacol. 2004;370:314–9.

    Article  PubMed  CAS  Google Scholar 

  23. Hladovec J. Circulating endothelial cells as a sign of vessel wall lesions. Physiol Bohemoslov. 1978;27:140–4.

    PubMed  CAS  Google Scholar 

  24. Strijbos MH, Verhoef C, Gratama JW, et al. On the origin of (CD105+) circulating endothelial cells. Thromb Haemost. 2009;102:347–51.

    PubMed  CAS  Google Scholar 

  25. Mariucci S, Rovati B, Chatzileontiadou S, et al. A six-colour flow cytometric method for simultaneous detection of cell phenotype and apoptosis of circulating endothelial cells. Scand J Clin Lab Invest. 2009;69:433–8.

    Article  PubMed  CAS  Google Scholar 

  26. Boos CJ, Lip GY, Blann AD. Circulating endothelial cells in cardiovascular disease. J Am Coll Cardiol. 2006;48:1538–47.

    Article  PubMed  CAS  Google Scholar 

  27. Egawhary DN, Swoboda BE, Chen J, et al. Damage to the vascular endothelium of diabetic patients can be assessed by analysing blood samples for the number of circulating endothelial cells with mitochondrial DNA deletions. Biochem Soc Trans. 1995;23:402S.

    PubMed  CAS  Google Scholar 

  28. McClung JA, Naseer N, Saleem M, et al. Circulating endothelial cells are elevated in patients with type 2 diabetes mellitus independently of HbA(1)c. Diabetologia. 2005;48:345–50.

    Article  PubMed  CAS  Google Scholar 

  29. Asicioglu E, Gogas Yavuz D, Koc M, et al. Circulating endothelial cells are elevated in patients with type 1 diabetes mellitus. Eur J Endocrinol. 2010;162:711–7.

    Article  PubMed  CAS  Google Scholar 

  30. Woywodt A, Blann AD, Kirsch T, et al. Isolation and enumeration of circulating endothelial cells by immunomagnetic isolation: proposal of a definition and a consensus protocol. J Thromb Haemost. 2006;4:671–7.

    Article  PubMed  CAS  Google Scholar 

  31. •• Mancuso P, Antoniotti P, Quarna J, et al. Validation of a standardized method for enumerating circulating endothelial cells and progenitors: flow cytometry and molecular and ultrastructural analyses. Clin Cancer Res. 2009;15:267–73. This is an excellent study about the validation of flow cytometry methods for the circulating ECs and progenitors.

    Article  PubMed  CAS  Google Scholar 

  32. Delorme B, Basire A, Gentile C, et al. Presence of endothelial progenitor cells, distinct from mature endothelial cells, within human CD146+ blood cells. Thromb Haemost. 2005;94:1270–9.

    PubMed  CAS  Google Scholar 

  33. Puddu P, Puddu GM, Cravero E, et al. The involvement of circulating microparticles in inflammation, coagulation and cardiovascular diseases. Can J Cardiol. 2010;26:140–5.

    PubMed  Google Scholar 

  34. Horstman LL, Jy W, Jimenez JJ, et al. Endothelial microparticles as markers of endothelial dysfunction. Front Biosci. 2004;9:1118–35.

    Article  PubMed  CAS  Google Scholar 

  35. Jimenez JJ, Jy W, Mauro LM, et al. Endothelial microparticles (EMP) as vascular disease markers. Adv Clin Chem. 2005;39:131–57.

    Article  PubMed  Google Scholar 

  36. Leroyer AS, Tedgui A, Boulanger CM. Microparticles and type 2 diabetes. Diab Metab. 2008;34 Suppl 1:S27–32.

    Article  CAS  Google Scholar 

  37. Nomura S, Ozaki Y, Ikeda Y. Function and role of microparticles in various clinical settings. Thromb Res. 2008;123:8–23.

    Article  PubMed  CAS  Google Scholar 

  38. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.

    Article  PubMed  CAS  Google Scholar 

  39. Chen MC, Sheu JJ, Wang PW, et al. HW complications impaired endothelial progenitor cell function in Type 2 diabetic patients with or without critical leg ischaemia: implication for impaired neovascularization in diabetes. Diabet Med. 2009;26:134–41.

    Article  PubMed  Google Scholar 

  40. Kusuyama T, Omura T, Nishiya D, et al. Effects of treatment for diabetes mellitus on circulating vascular progenitor cells. J Pharmacol Sci. 2006;102:96–102.

    Article  PubMed  CAS  Google Scholar 

  41. •• Ruiter MS, van Golde JM, Schaper NC, et al. Diabetes impairs arteriogenesis in the peripheral circulation: review of molecular mechanisims. Clinical Sci. 2010;119:225–38. This is an excellent review about the circulating ECs and progenitors in diabetes.

    Article  PubMed  CAS  Google Scholar 

  42. Feng L, Stern DM, Pile-Spellman J. Human endothelium: endovascular biopsy and mol¬ecular analysis. Radiology. 1999;212:655–64.

    PubMed  CAS  Google Scholar 

  43. Feng L, Matsumoto C, Schwartz A, et al. Chronic vascular inflammation in patients with type 2 diabetes: endothelial biopsy and RT-PCR analysis. Diab Care. 2005;28:379–84.

    Article  CAS  Google Scholar 

  44. Colombo PC, Ashton AW, Celaj S, et al. Biopsy coupled to quantitative immunofluorescence: a new method to study the human vascular endothelium. J Appl Physiol. 2002;92:1331–8.

    PubMed  Google Scholar 

  45. Onat D, Jelic S, Schmidt AM, et al. Vascular endothelial sampling and analysis of gene transcripts: a new quantitative approach to monitor vascular inflammation. J Appl Physiol. 2007;103:1873–8.

    Article  PubMed  CAS  Google Scholar 

  46. Colombo PC, Onat D, Kebschull M, et al. Expression profiling of the vascular endothelium in patients with heart failure using a novel methodology: human endothelial sampling coupled with microarray analysis. J Am Coll Cardiol. 2009;1031–119:A439.

    Google Scholar 

  47. Goldenberg D, Olferiey M, Onat D, et al. Expression profiling of the vascular endothelium in patients with SLE using a novel methodology: human endothelial sampling coupled with microarray analysis. Arthritis Rheum. 2009;60:117.

    Google Scholar 

  48. Jelic S, Padeletti M, Kawut SM, et al. Inflammation, oxidative stress and repair capacity of the vascular endothelium in obstructive sleep apnea. Circulation. 2008;117:2270–8.

    Article  PubMed  CAS  Google Scholar 

  49. Donato AJ, Eskurza I, Silver AE, et al. Direct evidence of endothelial oxidative stress with aging in humans: relation to impaired endothelium-dependent dilation and upregulation of nuclear factor-kappaB. Circ Res. 2007;100:1659–66.

    Article  PubMed  CAS  Google Scholar 

  50. Balconi G, Pietra A, Busacca M, et al. The success of primary human endothelial cell culture from umbilical cords is influenced by maternal and fetal factors and interval from delivery. In Vitro. 1983;19:807–10.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

Conflicts of interest: D. Onat: received a grant from the American Heart Association (Postdoctoral Fellowship Award #0425894T); D. Brillon: none; P.C. Colombo: received a grant (NIH-K23 Award # HL-72758); A.M. Schmidt: none.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duygu Onat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onat, D., Brillon, D., Colombo, P.C. et al. Human Vascular Endothelial Cells: A Model System for Studying Vascular Inflammation in Diabetes and Atherosclerosis. Curr Diab Rep 11, 193–202 (2011). https://doi.org/10.1007/s11892-011-0182-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-011-0182-2

Keywords

Navigation