Skip to main content

Advertisement

Log in

Recent developments in the assessment of efficacy in clinical trials of diabetic neuropathy

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

A large number of measures may be employed in clinical practice and for epidemiologic studies to quantify and risk stratify diabetic patients with neuropathy. However, not all measures are suitable for assessing the benefits of therapeutic intervention. Therefore, for the purpose of this review we focus on measures that may be employed to define the efficacy of interventions in clinical trials of human diabetic neuropathy. Two major types of end points are used: 1) those that assess symptoms for defining efficacy in painful diabetic neuropathy, and 2) those that assess neurologic deficits that assess the effects of treatments that may prevent further degeneration or promote repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Malik RA: Current and future strategies for the management of diabetic neuropathy. Treat Endocrinol 2003, 2:389–400.

    Article  PubMed  CAS  Google Scholar 

  2. Young MJ, Boulton AJM, McLeod AF, et al.: A multicentre study of the prevalence of diabetic peripheral neuropathy in the UK hospital clinic population. Diabetologia 1993, 36:150–156.

    Article  PubMed  CAS  Google Scholar 

  3. Cabezas-Cerrato J: The prevalence of diabetic neuropathy in Spain: a study in primary care and hospital clinic groups. Diabetologia 1998, 41:1263–1269.

    Article  PubMed  CAS  Google Scholar 

  4. Scott J, Huskisson EC: Graphic representation of pain. Pain 1976, 2:175–186.

    Article  PubMed  CAS  Google Scholar 

  5. Meijer JW, Smit AJ, Sondersen EV, et al.: Symptom scoring systems to diagnose distal polyneuropathy in diabetes: the Diabetic Neuropathy Symptom Score. Diabet Med 2002, 19:962–965.

    Article  PubMed  CAS  Google Scholar 

  6. Zelman DC, Gore M, Dukes E, et al.: Validation of a modified version of the brief pain inventory for painful diabetic peripheral neuropathy. J Pain Symptom Manage 2005, 29:401–410.

    Article  PubMed  Google Scholar 

  7. Gilron I, Bailey JM, Tu D, et al.: Morphine, gabapentin, or their combination for neuropathic pain. N Engl J Med 2005, 352:1324–1334.

    Article  PubMed  CAS  Google Scholar 

  8. Frampton JE, Scott LJ: Pregabalin: in the treatment of painful diabetic peripheral neuropathy. Drugs 2004, 64:2813–2820.

    Article  PubMed  CAS  Google Scholar 

  9. Rowbotham MC, Goli V, Kunz NR, Lei D: Venlafaxine extended release in the treatment of painful diabetic neuropathy: a double-blind, placebo-controlled study. Pain 2004, 110:697–706.

    Article  PubMed  CAS  Google Scholar 

  10. Vileikyte L, Peyrot M, Bundy C, et al.: The development and validation of a neuropathy- and foot ulcer-specific quality of life instrument. Diabetes Care 2003, 26:2549–2555.

    Article  PubMed  Google Scholar 

  11. Atli A, Dogra S: Zonisamide in the treatment of painful diabetic neuropathy: a randomized, double-blind, placebo-controlled pilot study. Pain Med 2005, 6:225–234.

    Article  PubMed  Google Scholar 

  12. Goldstein DJ, Lu Y, Detke MJ, et al.: Duloxetine vs. placebo in patients with painful diabetic neuropathy. Pain 2005, 116:109–118.

    Article  PubMed  CAS  Google Scholar 

  13. Richter RW, Portenoy R, Sharma U, et al.: Relief of painful diabetic peripheral neuropathy with pregabalin: a randomized, placebo-controlled trial. J Pain 2005, 6:253–260. Represents optimal study design for a trial in painful diabetic neuropathy.

    Article  PubMed  CAS  Google Scholar 

  14. Ziegler D, Nowak H, Kempler P, et al.: Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a meta-analysis. Diabet Med 2004, 21:114–121.

    Article  PubMed  CAS  Google Scholar 

  15. Boulton AJ, Malik RA, Arezzo JC, Sosenko JM: Diabetic somatic neuropathies. Diabetes Care 2004, 27:1458–1486. Provides the latest American Diabetes Association consensus on diabetic somatic neuropathy.

    Article  PubMed  Google Scholar 

  16. Dyck PJ, Dyck PJB, Velosa JA, et al.: Patterns of quantitative sensation testing of hypoesthesia and hyperalgesia are predictive of diabetic polyneuropathy. A study of three cohorts. Diabetes Care 2000, 23:510–517.

    Article  PubMed  CAS  Google Scholar 

  17. Sosenko JM, Kato M, Soto R, Bild DE: Comparison of quantitative sensory-threshold measures for their association with foot ulceration in diabetic patients. Diabetes Care 1990, 13:1057–1061.

    Article  PubMed  CAS  Google Scholar 

  18. Shy ME, Frohman EM, So YT, et al.: Quantitative sensory testing. Neurology 2003, 602:898–906.

    Google Scholar 

  19. Apfel SC, Schwartz S, Adornato BT, et al.: Efficacy and safety of recombinant human nerve growth factor in patients with diabetic polyneuropathy: a randomized controlled trial. JAMA 2000, 284:2215–2221.

    Article  PubMed  CAS  Google Scholar 

  20. Ekberg K, Brismar T, Johansson BL, et al.: Amelioration of sensory nerve dysfunction by C-Peptide in patients with type 1 diabetes. Diabetes 2003, 52:536–541.

    Article  PubMed  CAS  Google Scholar 

  21. Dillingham TR, Pezzin LE: Under-recognition of polyneuropathy in persons with diabetes by non-physician electrodiagnostic services providers. Am J Phys Med Rehabil 2005, 84:399–406.

    Article  PubMed  Google Scholar 

  22. Hohman TC, Cotter MA, Cameron NE: ATP-sensitive K (+) channel effects on nerve function, Na (+), K (+) ATPase, and glutathione in diabetic rats. EurJ Pharmacol 2000, 397:335–341.

    Article  CAS  Google Scholar 

  23. Diabetic polyneuropathy in controlled clinical trials: Consensus Report of the Peripheral Nerve Society [no authors listed]. Ann Neurol 1995, 38:478–482.

  24. Valk GD, Grootenhuis PA, van Eijk JT, et al.: Methods for assessing diabetic polyneuropathy: validity and reproducibility of the measurement of sensory symptom severity and nerve function tests. Diabetes Res Clin Pract 2000, 47:87–95.

    Article  PubMed  CAS  Google Scholar 

  25. Herrmann DN, Ferguson ML, Logigian EL: Conduction slowing in diabetic distal polyneuropathy. Muscle Nerve 2002, 26:232–237.

    Article  PubMed  Google Scholar 

  26. Malik RA, Tesfaye S, Newrick PG, et al.: Sural nerve pathology in diabetic patients with minimal but progressive neuro pathy. Diabetologia 2005, 48:578–585.

    Article  PubMed  CAS  Google Scholar 

  27. The effect of intensive diabetes therapy on the development and progression of neuropathy. The Diabetes Control and Complications Trial Research Group [no authors listed]. Ann Intern Med 1995, 122:561–568.

  28. Amthor KF, Dahl-Jorgensen K, Berg TJ, et al.: The effect of 8 years of strict glycaemia control on peripheral nerve function in IDDM patients: the Oslo Study. Diabetologia 1994, 37:579–784.

    PubMed  CAS  Google Scholar 

  29. Partanen J, Niskanen L, Lehtinen J, et al.: Natural history of peripheral neuropathy in patients with non-insulin dependent diabetes. N Engl J Med 1995, 333:39–84.

    Article  Google Scholar 

  30. Misawa S, Kuwabara S, Kanai K, et al.: Axonal potassium conductance and glycemic control in human diabetic nerves. Clin Neurophysiol 2005, 116:1181–1187.

    Article  PubMed  CAS  Google Scholar 

  31. Veves A, Malik RA, Lye RH, et al.: The relationship between sural nerve morphometric findings and measures of peripheral nerve function in mild diabetic neuropathy. DiabetMed 1991, 8:917–921.

    CAS  Google Scholar 

  32. Russell JW, Karnes JL, Dyck PJ: Sural nerve myelinated fibre density differences associated with meaningful changes in clinical and electrophysiologic measurements. J Neurol Sci 1996, 135:114–117.

    Article  PubMed  CAS  Google Scholar 

  33. Kohara N, Kimura J, Kaji R, et al.: F-wave latency serves as the most reproducible measure in nerve conduction studies of diabetic polyneuropathy: multicentre analysis in healthy subjects and patients with diabetic polyneuropathy. Diabetologia 2000, 43:915–921.

    Article  PubMed  CAS  Google Scholar 

  34. Caccia MR, Salvaggi A, Dezuanni E: An electrophysiological method to assess the distribution of the sensory propagation velocity of the digital nerve in normal and diabetic subjects. Electroencephalogr Clin Neurophysiol 1993, 89:88–94.

    Article  PubMed  CAS  Google Scholar 

  35. Bertora P, Valla P, Dezuanni E: Prevalence of subclinical neuropathy in diabetic patients: assessment by study of conduction velocity distribution within motor and sensory nerve fibres. J Neurol 1998, 245:81–86.

    Article  PubMed  CAS  Google Scholar 

  36. Dyck PJ, Davies JL, Litchy WJ, O’Brien PC: Longitudinal assessment of diabetic polyneuropathy using a composite score in the Rochester Diabetic Neuropathy Study cohort. Neurology 1997, 49:229–239.

    PubMed  CAS  Google Scholar 

  37. Apfel SC, Schwartz S, Adornato BT, et al.: Efficacy and safety of recombinant human nerve growth factor in patients with diabetic polyneuropathy: a randomized controlled trial. JAMA 2000, 284:2215–2221.

    Article  PubMed  CAS  Google Scholar 

  38. Magerl W, Treede RD: Heat-evoked vasodilatation in human hairy skin: axon reflexes due to low-level activity of nociceptive afferents. J Physiol 1996, 15:837–848.

    Google Scholar 

  39. Hamdy O, Abou-Elenin K, LoGerfo FW, et al.: Contribution of nerve-axon reflex-related vasodilation to the total skin vasodilation in diabetic patients with and without neuropathy. Diabetes Care 2001, 24:344–349.

    Article  PubMed  CAS  Google Scholar 

  40. Krishnan ST, Rayman G: The LDIflare: a novel test of C-fiber function demonstrates early neuropathy in type 2 diabetes. Diabetes Care 2004, 27:2930–2935. Provides data on a novel noninvasive means of quantifying C-fiber dysfunction.

    Article  PubMed  Google Scholar 

  41. Thomas PK: Nerve biopsy. Diabet Med 1997, 16:351–352.

    Google Scholar 

  42. Dahlin LB, Erikson KF, Sundkvist G: Persistent postoperative complaints after whole nerve sural nerve biopsies in diabetic and non-diabetic subjects. Diabet Med 1997, 14:353–356.

    Article  PubMed  CAS  Google Scholar 

  43. Greene DA, Arezzo JC, Brown MB: Effect of aldose reductase inhibition on nerve conduction and morphometry in diabetic neuropathy. Zenarestat Study Group. Neurology 1999, 53:580–591.

    PubMed  CAS  Google Scholar 

  44. Sima AA, Calvani M, Mehra M, Amato A: Acetyl-L-carnitine improves pain, nerve regeneration, and vibratory perception in patients with chronic diabetic neuropathy: an analysis of two randomized placebo-controlled trials. Diabetes Care 2005, 28:89–94.

    Article  PubMed  CAS  Google Scholar 

  45. McCarthy BG, Hsieh ST, Stocks A, et al.: Cutaneous innervation in sensory neuropathies: evaluation by skin biopsy. Neurology 1995, 45:1848–1855.

    PubMed  CAS  Google Scholar 

  46. Holland NR, Crawford TO, Hauer P, et al.: Small-fiber sensory neuropathies: clinical course and neuropathology of idiopathic cases. Ann Neurol 1998, 44:47–59.

    Article  PubMed  CAS  Google Scholar 

  47. Polydefkis M, Griffin W, McArthur J: New insights into diabetic polyneuropathy. JAMA 2003, 290:1371–1376. Reviews a new minimally invasive means of assessing nerve regeneration and thus therapeutic efficacy for drugs used in diabetic neuropathy.

    Article  PubMed  CAS  Google Scholar 

  48. Koskinen M, Hietaharju A, Kylaniemi M, et al.: A quantitative method for the assessment of intraepidermal nerve fibres in small-fibre neuropathy. J Neurol 2005, 252:789–794.

    Article  PubMed  Google Scholar 

  49. Yaneda H, Tereda M, Maeda K, et al.: Diabetic neuropathy and nerve regeneration. Prog Neurobiol 2003, 69:229–285.

    Article  Google Scholar 

  50. Eaton SE, Harris ND, Rajbhandari SM, et al.: Spinal-cord involvement in diabetic peripheral neuropathy. Lancet 2001, 358:35–36.

    Article  PubMed  CAS  Google Scholar 

  51. Oliviera-Soto L, Efron N: Morphology of corneal nerves using confocal microscopy. Cornea 2001, 21:246–248.

    Google Scholar 

  52. Malik RA, Kallinikos P, Abbott CA, et al.: Corneal confocal microscopy: a non-invasive surrogate of nerve fibre damage and repair in diabetic patients. Diabetologia 2003, 46:683–688. Provides data on a novel noninvasive means of quantifying C-fiber structure that may be used as an end point for future trials of diabetic neuropathy.

    PubMed  CAS  Google Scholar 

  53. Kallinikos P, Berhanu M, O’Donnell C, et al.: Corneal nerve tortuosity in diabetic patients with neuropathy. Invest Ophthalmol Vis Sci 2004, 45:418–422.

    Article  PubMed  Google Scholar 

  54. Iqbal I, Kallinikos P, Boulton AJM, et al.: Corneal nerve morphology: a surrogate marker for human diabetic neuropathy improves with improved glycaemic control. Diabetes 2005, 54:871.

    Google Scholar 

  55. Hossain P, Sachdev A, Malik RA: Early detection of diabetic peripheral neuropathy with corneal confocal microscopy. Lancet 2005, 366:1340–1342.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mojaddidi, M., Quattrini, C., Tavakoli, M. et al. Recent developments in the assessment of efficacy in clinical trials of diabetic neuropathy. Curr Diab Rep 5, 417–422 (2005). https://doi.org/10.1007/s11892-005-0048-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-005-0048-6

Keywords

Navigation