Skip to main content

Advertisement

Log in

Nonobese diabetic mice and the genetics of diabetes susceptibility

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

The nonobese diabetic mouse spontaneously develops an autoimmune, T-cell-mediated type 1 diabetes (T1D). Common and rare alleles both within a diabetogenic major histocompatibility complex (MHC) and multiple non-MHC genes combine to impair normal communication between the innate and acquired immune system, leading to loss of immune tolerance. An understanding of how variable collections of genes interact with each other and with environmental cues offers important insights as to the complexities of T1D inheritance in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Zavattari P, Lampis R, Motzo C, et al.: Conditional linkage disequilibrium analysis of a complex disease superlocus, IDDM1 in the HLA region, reveals the presence of independent modifying gene effects influencing the type 1 diabetes risk encoded by the major HLA-DQB1, -DRB1 disease loci. Hum Mol Genet 2001, 10:881–889.

    Article  PubMed  CAS  Google Scholar 

  2. Rich SS, Concannon P : Challenges and strategies for investigating the genetic complexity of common human diseases. Diabetes 2002, 51(suppl 3):S288-S294. An excellent overview of the search for human T1D susceptibility loci.

    Article  PubMed  CAS  Google Scholar 

  3. Concannon P, Gogolin-Ewens KJ, Hinds DA, et al.: A secondgeneration screen of the human genome for susceptibility to insulin-dependent diabetes mellitus. Nat Genet 1998, 19:292–296.

    Article  PubMed  CAS  Google Scholar 

  4. Ueda H, Howson JM, Esposito L, et al.: Association of the Tcell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 2003, 423:506–511. An elegant use of autoimmune disease-associated single nucleotide polymorphism typing showing that regulatory sequences associated with reduced CTLA4 expression may be the human IDDM12 susceptibility gene. The paper demonstrates comparable defects produced by the NOD orthologue at the Idd5.1 locus.

    Article  PubMed  CAS  Google Scholar 

  5. Ridgway WM: The non obese diabetic (NOD) mouse: a unique model for understanding the interaction between genetics and T cell responses. Rev Endocr Metab Disord 2003, 4:263–269.

    Article  PubMed  CAS  Google Scholar 

  6. Choisy-Rossi CM, Holl TM, Pierce MA, et al.: Enhanced pathogenicity of diabetogenic T cells escaping a non-MHC gene-controlled near death experience. J Immunol 2004, 173:3791–3800.

    PubMed  CAS  Google Scholar 

  7. Serreze DV, Leiter EH: Genes and pathways underlying autoimmune diabetes in NOD mice. In Molecular Pathology of Insulin-Dependent Diabetes Mellitus, vol 4. Edited by von HerrathM. New York: Karger; 2001:31–67. This book chapter integrates the immunogenetics with the immune deficiencies that lead to insulitis and diabetes development in the NOD mouse model.

    Chapter  Google Scholar 

  8. Serreze DV, Holl TM, Marron MP, et al.: MHC class II molecules play a role in the selection of autoreactive class Irestricted CD8 T cells that are essential contributors to type 1 diabetes development in nonobese diabetic mice. J Immunol 2004, 172:871–879.

    PubMed  CAS  Google Scholar 

  9. Hamilton-Williams EE, Serreze DV, Charlton B, et al.:Transgenic rescue implicates beta2-microglobulin as a diabetes susceptibility gene in NOD mice. Proc Natl Acad Sci U S A 2001, 98:11533–11538. A nice illustration of the concept of common alleles for common diseases. A single amino acid difference in the β2 microglobulin gene has a major epistatic influence on the relatively common MHC class I alleles expressed by NOD mice.

    Article  PubMed  CAS  Google Scholar 

  10. Ikegami H, Makino S: The NOD mouse and its related strains. In Animal Models of Diabetes A Primer. Edited by Sima AAF, Shafrir E. Amsterdam: Harwood Academic Publishers; 2001:43–61. A book chapter reviewing the NOD model by its creator, Dr. Susumu Makino. The book itself has an excellent chapter on the BioBreeding rat model of T1D, as well as reviews on a spectrum of rodent models of type 2 diabetes.

    Google Scholar 

  11. Mathews CE, Graser RT, Bagley RJ, et al.: Genetic analysis of resistance to type 1 diabetes in ALR/Lt mice, a NOD-related strain with defenses against autoimmune-mediated diabetogenic stress. Immunogenetics 2003, 55:491–496.

    Article  PubMed  CAS  Google Scholar 

  12. Pomerleau DP, Bagley RJ, Holl TM, et al.: MHC-linked diabetes susceptibility in NOD/Lt mice: subcongenic analysis localizes a component of "Idd16" at the H2-D end of the diabetogenic H2g7 complex. Diabetes 2005, in press.

  13. Boulard O, Damotte D, Deruytter N, et al.: An interval tightly linked to but distinct from the H2 complex controls both overt diabetes (Idd16) and chronic experimental autoimmune thyroiditis (Ceat1) in nonobese diabetic mice. Diabetes 2002, 51:2141–2147.

    Article  PubMed  CAS  Google Scholar 

  14. Hattori M, Yamato E, Itoh N, et al.: Homologous recombination of the MHC class I K region defines new MHC-linked diabetogenic susceptibility gene(s) in nonobese diabetic mice. J Immunol 1999, 163:1721–1724.

    PubMed  CAS  Google Scholar 

  15. Ghosh S, Palmer SM, Rodrigues NR, et al.: Polygenic control of autoimmune diabetes in nonobese diabetic mice. Nat Genet 1993, 4:404–409.

    Article  PubMed  CAS  Google Scholar 

  16. McAleer MA, Reifsnyder P, Palmer SM, et al.: Crosses of NOD mice with the related NON strain: a polygenic model for type I diabetes. Diabetes 1995, 44:1186–1195.

    Article  PubMed  CAS  Google Scholar 

  17. Hill NJ, Lyons PA, Armitage N, et al.: The NOD Idd5 locus controls insulitis and diabetes and overlaps the orthologous CTLA4/IDDM12 and NRAMP1 loci in humans. Diabetes 2000, 49:1744–1747.

    Article  PubMed  CAS  Google Scholar 

  18. Wicker LS, Chamberlain G, Hunter K, et al.: Fine mapping, gene content, comparative sequencing, and expression analyses support Ctla4 and Nramp1 as candidates for Idd5.1 and Idd5.2 in the nonobese diabetic mouse. J Immunol 2004, 173:164–173.

    PubMed  CAS  Google Scholar 

  19. Serreze DV, Bridgett MB, Chapman HD, et al.: Subcongenic analysis of the Idd13 locus in NOD/Lt mice: evidence for several susceptibility genes including a possible diabetogenic role for ß2-microglobulin. J Immunol 1998, 160:1472–1478.

    PubMed  CAS  Google Scholar 

  20. Fox CJ, Paterson AD, Mortin-Toth SM, et al.: Two genetic loci regulate T cell-dependent islet inflammation and drive autoimmune diabetes pathogenesis. Am J Hum Genet 2000, 67:67–81.

    Article  PubMed  CAS  Google Scholar 

  21. Lord CJ, Bohlander SK, Hopes EA, et al.: Mapping the diabetes polygene Idd3 on mouse chromosome 3 by use of novel congenic strains. Mamm Genome 1995, 6:563–570.

    Article  PubMed  CAS  Google Scholar 

  22. Lyons PA, Armitage N, Lord CJ, et al.: Mapping by genetic interaction: high-resolution congenic mapping of the type 1 diabetes loci Idd10 and Idd18 in the NOD mouse. Diabetes 2001, 50:2633–2637.

    Article  PubMed  CAS  Google Scholar 

  23. Lyons PA, Hancock WW, Denny P, et al.: The NOD Idd9 genetic interval influences the pathogenicity of insulitis and contains molecular variants of Cd30, Tnfr2, and Cd137. Immunity 2000, 13:107–115.

    Article  PubMed  CAS  Google Scholar 

  24. Siegmund T, Armitage N, Wicker LS, et al.: Analysis of the mouse CD30 gene, a candidate for the NOD mouse type 1 diabetes locus Idd9.2. Diabetes 2000, 49:1612–1616.

    Article  PubMed  CAS  Google Scholar 

  25. Brodnicki TC, McClive P, Couper S, et al.: Localization of Idd11 using NOD congenic mouse strains: elimination of Slc9a1 as a candidate gene. Immunogenetics 2000, 51:37–41.

    Article  PubMed  CAS  Google Scholar 

  26. Rogner UC, Boitard C, Morin J, et al.: Three loci on mouse chromosome 6 influence onset and final incidence of type i diabetes in nod.c3h congenic strains. Genomics 2001, 74:163–171.

    Article  PubMed  CAS  Google Scholar 

  27. McDuffie M: Derivation of diabetes-resistant congenic lines from the nonobese diabetic mouse. Clin Immunol 2000, 96:119–130.

    Article  PubMed  CAS  Google Scholar 

  28. Kanagawa O, Xu G, Tevaarwerk A, et al.: Protection of nonobese diabetic mice from diabetes by gene(s) closely linked to IFN-gamma receptor loci. J Immunol 2000, 164:3919–3923. This study shows the problem of crossing genetically disrupted alleles into NOD. The author found that a gene linked to the disrupted gene, rather than the targeted mutation itself, contributed diabetes resistance in an NOD congenic stock.

    PubMed  CAS  Google Scholar 

  29. Grattan M, Mi QS, Meagher C, et al.: Congenic mapping of the diabetogenic locus Idd4 to a 5.2-cM region of chromosome 11 in NOD mice: identification of two potential candidate subloci. Diabetes 2002, 51:215–223.

    Article  PubMed  CAS  Google Scholar 

  30. Bridgett MM, Cetkovic-Cvrlje M, Narayanswami S, et al.:Differential protection in two transgenic lines of NOD/Lt mice hyperexpressing the autoantigen GAD65 in pancreatic beta cells. Diabetes 1998, 47:1848–1856.

    Article  PubMed  CAS  Google Scholar 

  31. Hall RJ, Hollis-Moffatt JE, Merriman ME, et al.: An autoimmune diabetes locus (Idd21) on mouse chromosome 18. Mamm Genome 2003, 14:335–339.

    Article  PubMed  CAS  Google Scholar 

  32. Leiter EH: Mice with targeted gene disruptions or gene insertions for diabetes research: problems, pitfalls, and potential solutions. Diabetologia 2002, 45:296–308. A review containing cautions and caveats when studying transgenes or genetically targeted mutations in mouse models of both T1D and type 2 diabetes.

    Article  PubMed  CAS  Google Scholar 

  33. Wang B, Andre I, Gonzalez A, et al.: Interferon-gamma impacts at multiple points during the progression of autoimmune diabetes. Proc Natl Acad Sci U S A 1997, 94:13844–13849.

    Article  PubMed  CAS  Google Scholar 

  34. Serreze DV, Post CM, Chapman HD, et al.: Interferon-gamma receptor signaling is dispensable in the development of autoimmune type 1 diabetes in NOD mice. Diabetes 2000, 49:2007–2011.

    Article  PubMed  CAS  Google Scholar 

  35. Hultgren B, Huang XJ, Dybdal N, et al.: Genetic absence of gamma-interferon delays but does not prevent diabetes in NOD mice. Diabetes 1996, 45:812–817.

    Article  PubMed  CAS  Google Scholar 

  36. Kagi D, Odermatt B, Ohashi PS, et al.: Development of insulitis without diabetes in transgenic mice lacking perforin-dependent cytotoxicity. J Exp Med 1996, 183:2143–2152.

    Article  PubMed  CAS  Google Scholar 

  37. Hattori M, Yamato E, Matsumoto E, et al.: Occurrence of pretype I diabetes (pre-IDDM) and type II diabetes (NIDDM) in BC1 [(NOD x Mus spretus)F1 x NOD] mice. In Lessons from Animal Diabetes, vol 6. Edited by Shafrir E. Boston: Birkhaüser;1996:83–95.

    Google Scholar 

  38. Gonzalez A, Katz JD, Benoist C, et al.: Genetic control of diabetes progression. Immunity 1997, 7:873–883.

    Article  PubMed  CAS  Google Scholar 

  39. Leiter EH: NOD mice and related strains: origin, husbandry,and biology. In NOD Mice and Related Strains: Research Applications in Diabetes, AIDS, Cancer, and Other Diseases. Edited byLeiter EH, Atkinson MA. Medical Intelligence Unit. Austin: R.G.Landes Co.; 1998:1–35.

    Google Scholar 

  40. Leiter EH: The role of environmental factors in modulating insulin dependent diabetes. In Current Topics in Immunology and Microbiology. The Role of Microorganisms in Non-infectious Disease. Edited by de VriesR, et al. Berlin: Springer Verlag;1990:39–55.

    Google Scholar 

  41. Leiter E: The NOD mouse: a model for insulin dependent diabetes mellitus. In Current Protocols in Immunology, vol 3.Edited by Coligan JE, et al. New York: John Wiley & Sons;1997:15.19.11–15.19.23.

    Google Scholar 

  42. Encinas JA, Wicker LS, Peterson LB, et al.: QTL influencing autoimmune diabetes and encephalomyelitis map to a 0.15-cM region containing Il2. Nat Genet 1999, 21:158–160.

    Article  PubMed  CAS  Google Scholar 

  43. Boulard O, Fluteau G, Eloy L, et al.: Genetic analysis of autoimmune sialadenitis in nonobese diabetic mice: a major susceptibility region on chromosome 1. J Immunol 2002, 168:4192–4201.

    PubMed  CAS  Google Scholar 

  44. Vyse TJ, Todd JA: Genetic analysis of autoimmune disease. Cell 1996, 85:311–318.

    Article  PubMed  CAS  Google Scholar 

  45. Yu S, Medling B, Yagita H, et al.: Characteristics of inflammatory cells in spontaneous autoimmune thyroiditis of NOD.H-2h4 mice. J Autoimmun 2001, 16:37–46.

    Article  PubMed  CAS  Google Scholar 

  46. Greve B, Vijayakrishnan L, Kubal A, et al.: The diabetes susceptibility locus Idd5.1 on mouse chromosome 1 regulates ICOS expression and modulates murine experimental autoimmune encephalomyelitis. J Immunol 2004, 173:157–163.

    PubMed  CAS  Google Scholar 

  47. Koarada S, Wu Y, Fertig N, et al.: Genetic control of autoimmunity: protection from diabetes, but spontaneous autoimmune biliary disease in a nonobese diabetic congenic strain. J Immunol 2004, 173:2315–2323. This study supports the old adage that it isn't nice to mess with Mother Nature. The investigators introduced into NOD mice diabetes resistance alleles on Chr 3 from the B6 strain and Chr 4 from the B10 strain. The upshot was an NOD double congenic stock that failed to develop diabetes, but instead developed autoimmune liver disease that never developed in standard NOD mice.

    PubMed  CAS  Google Scholar 

  48. Prochazka M, Leiter EH, Serreze DV, et al.: Three recessive loci required for insulin-dependent diabetes in NOD mice. Science 1987, 237:286–289.

    Article  PubMed  CAS  Google Scholar 

  49. Mathews CE, Leiter EH, Spirina O, et al.: mt-Nd2 allele of the ALR/Lt mouse confers resistance against both chemically induced and autoimmune diabetes. Diabetologia 2005, in press.

  50. Uchigata Y, Okada T, Gong JS, et al.: A mitochondrial genotype associated with the development of autoimmune-related type 1 diabetes. Diabetes Care 2002, 25:2106.

    Article  PubMed  Google Scholar 

  51. De Gouyon B, Melanitou E, Richard MF, et al.: Genetic analysis of diabetes and insulitis in an interspecific cross of the nonobese diabetic mouse with Mus spretus. Proc Natl Acad Sci U S A 1993, 90:1877–1881.

    Article  PubMed  Google Scholar 

  52. Pandarpurkar M, Wilson-Fritch L, Corvera S, et al.: Ian4 is required for mitochondrial integrity and T cell survival. Proc Natl Acad Sci U S A 2003, 100:10382–10387.

    Article  PubMed  CAS  Google Scholar 

  53. Yokoi N, Komeda K, Wang HY, et al.: Cblb is a major susceptibility gene for rat type 1 diabetes mellitus. Nat Genet 2002, 31:391–394. The diabetogenic contribution of a loss-of-function mutation in a new rat T1D model is supported by transgenic insertion of a wild-type allele.

    PubMed  CAS  Google Scholar 

  54. Payne F, Smyth DJ, Pask R, et al.: Haplotype tag single nucleotide polymorphism analysis of the human orthologues of the rat type 1 diabetes genes Ian4 (Lyp/Iddm1) and Cblb. Diabetes 2004, 53:505–509.

    Article  PubMed  CAS  Google Scholar 

  55. Tian C, Bagley J, Cretin N, et al.: Prevention of type 1 diabetes by gene therapy. J Clin Invest 2004, 114:969–978. An excellent illustration of how knowledge of Idd susceptibility genes in the mouse can be developed into a diabetes prevention therapy that may be translated to human medicine in the future.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leiter, E.H. Nonobese diabetic mice and the genetics of diabetes susceptibility. Curr Diab Rep 5, 141–148 (2005). https://doi.org/10.1007/s11892-005-0042-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-005-0042-z

Keywords

Navigation