Skip to main content
Log in

Endothelium, inflammation, and diabetes

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

The endothelium has several diverse functions in maintaining vascular integrity in terms of structure and function. Two key vasodilators, nitric oxide (NO) and prostacyclin, maintain the vascular pathway, inhibit platelet aggregation, and are antithrombotic. More recently, they have been shown to be anti-inflammatory, and thus are potentially antiatherogenic. It has recently been noted that insulin stimulates NO release by the endothelium. Insulin is a vasodilator, has antiplatelet activity, and is anti-inflammatory. Similar anti-inflammatory effects of thiazolidinediones (TZDs), troglitazone and rosiglitazone, suggest that they too may have potential antiatherogenic effects.

These effects of insulin and TZDs are important because the two major states of insulin resistance, obesity and type 2 diabetes, are associated with a marked increase in atherosclerosis, coronary heart disease, and stroke. These recent observations have extremely momentous implications for the understanding of the pathogenesis of atherosclerosis in insulin-resistant states and for a rational approach to their comprehensive treatment, including the prevention of atherosclerosis and its complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Mombouli JV, Vanhoutte PM: Endothelial dysfunction: from physiology to therapy. J Mol Cell Cardiol 1999, 31:61–74.

    Article  PubMed  CAS  Google Scholar 

  2. Sachais BS: Platelet-endothelial interactions in atherosclerosis. Curr Atheroscler Rep 2001, 3:412–416.

    PubMed  CAS  Google Scholar 

  3. Berk BC, Abe JI, Min W, et al.: Endothelial atheroprotective and anti-inflammatory mechanisms. Ann N Y Acad Sci 2001, 947:93–109; discussion 109–111.

    Article  PubMed  CAS  Google Scholar 

  4. Baron AD: Vascular reactivity. Am J Cardiol 1999, 84:25J-27J.

    Article  PubMed  CAS  Google Scholar 

  5. Taylor AA: Pathophysiology of hypertension and endothelial dysfunction in patients with diabetes mellitus. Endocrinol Metab Clin North Am 2001, 30:983–997.

    Article  PubMed  CAS  Google Scholar 

  6. Ross R: Atherosclerosis—an inflammatory disease. N Engl J Med 1999, 340:115–126.

    Article  PubMed  CAS  Google Scholar 

  7. Faruqi RM, DiCorleto PE: Mechanisms of monocyte recruitment and accumulation. Br Heart J 1993, 69(suppl 1):S19-S29.

    PubMed  CAS  Google Scholar 

  8. Segrest JP, Anantharamaiah GM: Pathogenesis of atherosclerosis. Curr Opin Cardiol 1994, 9:404–410.

    Article  PubMed  CAS  Google Scholar 

  9. DiCorleto PE: Cellular mechanisms of atherogenesis. Am J Hypertens 1993, 6(11 Pt 2):314S-318S.

    PubMed  CAS  Google Scholar 

  10. Yla-Herttuala S: Biochemistry of the arterial wall in developing atherosclerosis. Ann N Y Acad Sci 1991, 623:40–59.

    Article  PubMed  CAS  Google Scholar 

  11. Plenz G, Robenek H: Monocytes/macrophages in atherosclerosis. Eur Cytokine Netw 1998, 9:701–703.

    PubMed  CAS  Google Scholar 

  12. Stary HC, Chandler AB, Dinsmore RE, et al.: A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1995, 92:1355–1374.

    PubMed  CAS  Google Scholar 

  13. Itabe H, Takano T: Oxidized low density lipoprotein: the occurrence and metabolism in circulation and in foam cells. J Atheroscler Thromb 2000, 7:123–131.

    PubMed  CAS  Google Scholar 

  14. Kruth HS: Macrophage foam cells and atherosclerosis. Front Biosci 2001, 6:D429-D55.

    Article  PubMed  CAS  Google Scholar 

  15. deWinther MP, van Dijk KW, Havekes LM, Hofker MH: Macrophage scavenger receptor class A: a multifunctional receptor in atherosclerosis. Arterioscler Thromb Vasc Biol 2000, 20:290–297.

    PubMed  Google Scholar 

  16. de Villiers WJ, Smart EJ: Macrophage scavenger receptors and foam cell formation. J Leukoc Biol 1999, 66:740–746.

    PubMed  Google Scholar 

  17. Petersen LC, Freskgard P, Ezban M: Tissue factor-dependent factor VIIa signaling. Trends Cardiovasc Med 2000, 10:47–52.

    Article  PubMed  CAS  Google Scholar 

  18. Rauch U, Nemerson Y: Circulating tissue factor and thrombosis. Curr Opin Hematol 2000, 7:273–277.

    Article  PubMed  CAS  Google Scholar 

  19. Barnes PJ, Karin M: Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997, 336:1066–1071.

    Article  PubMed  CAS  Google Scholar 

  20. De Martin R, Hoeth M, Hofer-Warbinek R, Schmid JA: The transcription factor NF-kappa B and the regulation of vascular cell function. Arterioscler Thromb Vasc Biol 2000, 20:E83-E88.

    PubMed  Google Scholar 

  21. Neurath MF, Becker C, Barbulescu K: Role of NF-kappaB in immune and inflammatory responses in the gut. Gut 1998, 43:856–860.

    Article  PubMed  CAS  Google Scholar 

  22. Baeuerle PA, Baltimore D: NF-kappa B: ten years after. Cell 1996, 87:13–20.

    Article  PubMed  CAS  Google Scholar 

  23. Woessner JFJr: Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J 1991, 5:2145–2154.

    PubMed  CAS  Google Scholar 

  24. Yan SF, Zou YS, Gao Y, et al.: Tissue factor transcription driven by Egr-1 is a critical mechanism of murine pulmonary fibrin deposition in hypoxia. Proc Natl Acad Sci U S A 1998, 95:8298–8303.

    Article  PubMed  CAS  Google Scholar 

  25. Yan SF, Pinsky DJ, Mackman N, Stern DM: Egr-1: is it always immediate and early? J Clin Invest 2000, 105:553–554.

    Article  PubMed  CAS  Google Scholar 

  26. Liu C, Yao J, Mercola D, Adamson E: The transcription factor EGR-1 directly transactivates the fibronectin gene and enhances attachment of human glioblastoma cell line U251. J Biol Chem 2000, 275:20315–20323.

    Article  PubMed  CAS  Google Scholar 

  27. Galis ZS, Sukhova GK, Lark MW, Libby P: Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 1994, 94:2493–2503.

    PubMed  CAS  Google Scholar 

  28. Falk E, Shah PK, Fuster V: Coronary plaque disruption. Circulation 1995, 92:657–671.

    PubMed  CAS  Google Scholar 

  29. Southgate KM, Fisher M, Banning AP, et al.: Upregulation of basement membrane-degrading metalloproteinase secretion after balloon injury of pig carotid arteries. Circ Res 1996, 79:1177–1187.

    PubMed  CAS  Google Scholar 

  30. Aljada A, Ghanim H, Saadeh R, Dandona P: Insulin inhibits NFkappaB and MCP-1 expression in human aortic endothelial cells. J Clin Endocrinol Metab 2001, 86:450–453.

    Article  PubMed  CAS  Google Scholar 

  31. Dandona P, Aljada A, Mohanty P, et al.: Insulin inhibits intranuclear nuclear factor kappaB and stimulates IkappaB in mononuclear cells in obese subjects: evidence for an antiinflammatory effect? J Clin Endocrinol Metab 2001, 86:3257–3265.

    Article  PubMed  CAS  Google Scholar 

  32. Ghanim H, Mohanty P, Aljada A, et al.: Insulin reduces the pro-inflammatory transcription factor, activation protein-1 (AP-1), in mononuclear cells (MNC) and plasma matrix metalloproteinase-9 (MMP-9) concentration. Diabetes 2001, 50(suppl 2):A408.

    Google Scholar 

  33. Aljada A, Ghanim H, Mohanty P, et al.: Insulin inhibits the pro-inflammatory transcription factor early growth response-1 (Egr-1) expression in mononuclear cells (MNC) and reduces plasma tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1) concentrations. J Clin Endocrinol Metab 2002, 87:1419–1422. Provides further evidence that insulin has an anti-inflammatory effect, including the inhibition of tissue factor and PAI-1 expression. These effects suggest a potential beneficial effect of insulin in thrombin formation and fibrinolysis in atherothrombosis.

    Article  PubMed  CAS  Google Scholar 

  34. Mohanty P, Hamouda W, Garg R, et al.: Glucose challenge stimulates reactive oxygen species (ROS) generation by leucocytes. J Clin Endocrinol Metab 2000, 85:2970–2973.

    Article  PubMed  CAS  Google Scholar 

  35. Aljada A, Ghanim H, Mohanty P, et al.: Glucose intake stimulates intranuclear NFkB and p47phox in mononuclear cells. ENDO 2000, the 82nd Annual Meeting of the Endocrine Society, Toronto, Canada, 2000.

  36. Aljada A, Ghanim H, Mohanty P, et al.: Glucose intake induces an increase in AP-1 and Egr-1 in mononuclear cells and plasma matrix metalloproteinases and tissue factor concentrations. Diabetes 2002, 51(suppl):A399.

    Google Scholar 

  37. Dandona P, Mohanty P, Ghanim H, et al.: The suppressive effect of dietary restriction and weight loss in the obese on the generation of reactive oxygen species by leukocytes, lipid peroxidation, and protein carbonylation. J Clin Endocrinol Metab 2001, 86:355–362. Demonstrated an increase in ROS-induced damage in lipids, proteins, and amino acids in the obese compared with normal subjects. Also showed a decrease in ROS generation by leukocytes and oxidative damage to lipids, proteins, and amino acids after dietary restriction and weight loss in the obese over a short period.

    Article  PubMed  CAS  Google Scholar 

  38. Dandona P, Thusu K, Cook S, et al.: Oxidative damage to DNA in diabetes mellitus. Lancet 1996, 347:444–445.

    Article  PubMed  CAS  Google Scholar 

  39. Mohanty P, Khurana U, Chaudhuri A, et al.: Non-suppressibility of reactive oxygen species (ROS) generation by mononuclear cells (MNC) in obesity. Diabetes 1996, 45(suppl 1):171A.

    Google Scholar 

  40. Dominguez C, Ruiz E, Gussinye M, Carrascosa A: Oxidative stress at onset and in early stages of type 1 diabetes in children and adolescents. Diabetes Care 1998, 21:1736–1742.

    Article  PubMed  CAS  Google Scholar 

  41. Tesfamariam B: Free radicals in diabetic endothelial cell dysfunction. Free Radic Biol Med 1994, 16:383–391.

    Article  PubMed  CAS  Google Scholar 

  42. Lipinski B: Pathophysiology of oxidative stress in diabetes mellitus. J Diabetes Complications 2001, 15:203–210.

    Article  PubMed  CAS  Google Scholar 

  43. Baynes JW: Role of oxidative stress in development of complications in diabetes. Diabetes 1991, 40:405–412.

    Article  PubMed  CAS  Google Scholar 

  44. Malmberg K, Ryden L, Hamsten A, et al.: Mortality prediction in diabetic patients with myocardial infarction: experiences from the DIGAMI study. Cardiovasc Res 1997, 34:248–253.

    Article  PubMed  CAS  Google Scholar 

  45. Diaz R, Paolasso EA, Piegas LS, et al.: Metabolic modulation of acute myocardial infarction. The ECLA (Estudios Cardiologicos Latinoamerica) Collaborative Group. Circulation 1998, 98:2227–2234.

    PubMed  CAS  Google Scholar 

  46. Aljada A, Saadeh R, Assian E, et al.: Insulin inhibits the expression of intercellular adhesion molecule-1 by human aortic endothelial cells through stimulation of nitric oxide. J Clin Endocrinol Metab 2000, 85:2572–2575.

    Article  PubMed  CAS  Google Scholar 

  47. Katoh M, Egashira K, Mitsui T, et al.: Angiotensin-converting enzyme inhibitor prevents plasminogen activator inhibitor-1 expression in a rat model with cardiovascular remodeling induced by chronic inhibition of nitric oxide synthesis. J Mol Cell Cardiol 2000, 32:73–83.

    Article  PubMed  CAS  Google Scholar 

  48. Van den Berghe G, Wouters P, Weekers F, et al.: Intensive insulin therapy in critically ill patients. N Engl J Med 2001, 345:1359–1367.

    Article  PubMed  Google Scholar 

  49. Garg R, Kumbkarni Y, Aljada A, et al.: Troglitazone reduces reactive oxygen species generation by leukocytes and lipid peroxidation and improves flow-mediated vasodilatation in obese subjects. Hypertension 2000, 36:430–435.

    PubMed  CAS  Google Scholar 

  50. Ghanim H, Garg R, Aljada A, et al.: Suppression of nuclear factor-kappaB and stimulation of inhibitor kappaB by troglitazone: evidence for an anti-inflammatory effect and a potential anti-atherosclerotic effect in the obese. J Clin Endocrinol Metab 2001, 86:1306–1312.

    Article  PubMed  CAS  Google Scholar 

  51. Aljada A, Garg R, Ghanim H, et al.: Nuclear factor-kappaB suppressive and inhibitor-kappaB stimulatory effects of troglitazone in obese patients with type 2 diabetes: evidence of an anti-inflammatory action? J Clin Endocrinol Metab 2001, 86:3250–3256.

    Article  PubMed  CAS  Google Scholar 

  52. Aljada A, Garg R, Ghanim H, et al.: Troglitazone reduces intranuclear activator protein (AP-1) in mononuclear cells (MNC) and plasma matrix metalloproteinase-9 (MMP-9) concentration. Diabetes 2001, 50(suppl 2):A532.

    Google Scholar 

  53. Mohanty P, Aljada A, Ghanim H, et al.: Rosiglitazone improves vascular reactivity, inhibits reactive oxygen species (ROS) generation, reduces p47phox subunit expression in mononuclear cells (MNC) and reduces C reactive protein (CRP) and monocyte chemotactic protein-1 (MCP-1): evidence of a potent anti-inflammatory effect. Diabetes 2001, 50(suppl 2):A68.

    Google Scholar 

  54. Ghanim H, Aljada A, Mohanty P, et al.: Troglitazone suppresses pro-inflammatory transcription factors, early growth response-1 (Egr-1) and activator protein-1 (AP-1) in mononuclear cells: further evidence of the anti-inflammatory effects of troglitazone. Diabetes 2002, 51(suppl 2):A97.

    Google Scholar 

  55. Minamikawa J, Tanaka S, Yamauchi M, et al.: Potent inhibitory effect of troglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 1998, 83:1818–1820.

    Article  PubMed  CAS  Google Scholar 

  56. Koshiyama H, Shimono D, Kuwamura N, et al.: Inhibitory effect of pioglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 2001, 86:3452–3456.

    Article  PubMed  CAS  Google Scholar 

  57. Dandona P, Mohanty P, Hamouda W, et al.: Inhibitory effect of a two day fast on reactive oxygen species (ROS) generation by leukocytes and plasma ortho-tyrosine and meta-tyrosine concentrations. J Clin Endocrinol Metab 2001, 86:2899–2902.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dandona, P. Endothelium, inflammation, and diabetes. Curr Diab Rep 2, 311–315 (2002). https://doi.org/10.1007/s11892-002-0019-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-002-0019-0

Keywords

Navigation