Skip to main content

Effects of Diabetes and Insulin Resistance on Endothelial Functions

  • Chapter
  • First Online:
Diabetes and Cardiovascular Disease

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 656 Accesses

Abstract

Cardiovascular (CV) complications are the primary cause of mortality and morbidity in patients with Type 1 (T1D) and Type 2 diabetes (T2D), which affect a variety of tissues and organs including the retina, myocardium, nerves, skin, and kidney. Insulin resistance and hyperglycemia are responsible for many abnormalities of vascular endothelial function in diabetes. These effects may be mediated via alterations in signal transduction pathways induced by advanced glycation end-products (AGE), reactive oxidative stress, and others. These, in turn, lead to selective impairment or enhancement of insulin signaling and affect both pro- and anti-atherogenic actions of insulin. Hyperinsulinemia, when present concomitantly with insulin resistance, may enhance insulin’s pro-atherogenic actions. Agents that can target the abnormalities of hyperglycemia-induced vascular dysfunction and improve insulin resistance in the endothelium can ultimately prevent the microvascular and CV complications of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krolewski AS, Warram JH, Rand LI, Kahn CR. Epidemiologic approach to the etiology of type I diabetes mellitus and its complications. N Engl J Med. 1987;317(22):1390–8.

    Article  CAS  PubMed  Google Scholar 

  2. Kannel WB, McGee DL. Diabetes and cardiovascular disease. The Framingham study. JAMA. 1979;241(19):2035–8.

    Article  CAS  PubMed  Google Scholar 

  3. Rawshani A, Rawshani A, Franzen S, Eliasson B, Svensson AM, Miftaraj M, et al. Mortality and cardiovascular disease in type 1 and type 2 diabetes. N Engl J Med. 2017;376(15):1407–18.

    Article  PubMed  Google Scholar 

  4. Turner RC. The U.K. prospective diabetes study. A review. Diabetes Care. 1998;21(Suppl 3):C35–8.

    Article  PubMed  Google Scholar 

  5. Tsujimoto T, Kajio H, Sugiyama T. Favourable changes in mortality in people with diabetes: US NHANES 1999-2010. Diabetes Obes Metab. 2018;20(1):85–93.

    Article  PubMed  Google Scholar 

  6. Gregg EW, Li Y, Wang J, Burrows NR, Ali MK, Rolka D, et al. Changes in diabetes-related complications in the United States, 1990-2010. N Engl J Med. 2014;370(16):1514–23.

    Article  CAS  PubMed  Google Scholar 

  7. Gordin D, King GL. Response to comment on Gordin et al. Differential Association of microvascular attributions with cardiovascular disease in patients with long duration of type 1 diabetes. Diabetes Care. 2018;41:815–22. Diabetes Care. 2018;41(7): e128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hanson RL, Imperatore G, Bennett PH, Knowler WC. Components of the “metabolic syndrome” and incidence of type 2 diabetes. Diabetes. 2002;51(10):3120–7.

    Article  CAS  PubMed  Google Scholar 

  9. Abbasi F, Brown BW Jr, Lamendola C, McLaughlin T, Reaven GM. Relationship between obesity, insulin resistance, and coronary heart disease risk. J Am Coll Cardiol. 2002;40(5):937–43.

    Article  CAS  PubMed  Google Scholar 

  10. Booth GL, Kapral MK, Fung K, Tu JV. Relation between age and cardiovascular disease in men and women with diabetes compared with non-diabetic people: a population-based retrospective cohort study. Lancet. 2006;368(9529):29–36.

    Article  PubMed  Google Scholar 

  11. Emerging Risk Factors C, Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375(9733):2215–22.

    Article  Google Scholar 

  12. Regensteiner JG, Golden S, Huebschmann AG, Barrett-Connor E, Chang AY, Chyun D, et al. Sex differences in the cardiovascular consequences of diabetes mellitus: a scientific statement from the American Heart Association. Circulation. 2015;132(25):2424–47.

    Article  PubMed  Google Scholar 

  13. Knuiman MW, Welborn TA, McCann VJ, Stanton KG, Constable IJ. Prevalence of diabetic complications in relation to risk factors. Diabetes. 1986;35(12):1332–9.

    Article  CAS  PubMed  Google Scholar 

  14. Steinberg D, Gotto AM Jr. Preventing coronary artery disease by lowering cholesterol levels: fifty years from bench to bedside. JAMA. 1999;282(21):2043–50.

    Article  CAS  PubMed  Google Scholar 

  15. Sosenko JM, Breslow JL, Miettinen OS, Gabbay KH. Hyperglycemia and plasma lipid levels: a prospective study of young insulin-dependent diabetic patients. N Engl J Med. 1980;302(12):650–4.

    Article  CAS  PubMed  Google Scholar 

  16. Fuller JH, Shipley MJ, Rose G, Jarrett RJ, Keen H. Coronary-heart-disease risk and impaired glucose tolerance. The Whitehall study. Lancet. 1980;1(8183):1373–6.

    Article  CAS  PubMed  Google Scholar 

  17. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.

    Article  Google Scholar 

  18. Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353(25):2643–53.

    Article  PubMed  Google Scholar 

  19. Diabetes C, Complications Trial Research G, Nathan DM, Genuth S, Lachin J, Cleary P, et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329(14):977–86.

    Article  Google Scholar 

  20. de Ferranti SD, de Boer IH, Fonseca V, Fox CS, Golden SH, Lavie CJ, et al. Type 1 diabetes mellitus and cardiovascular disease: a scientific statement from the American Heart Association and American Diabetes Association. Circulation. 2014;130(13):1110–30.

    Article  PubMed  Google Scholar 

  21. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352(9131):837–53.

    Article  Google Scholar 

  22. Action to Control Cardiovascular Risk in Diabetes Study G, Gerstein HC, Miller ME, Byington RP, Goff DC Jr, Bigger JT, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med. 2008;358(24):2545–59.

    Article  Google Scholar 

  23. Investigators OT, Gerstein HC, Bosch J, Dagenais GR, Diaz R, Jung H, et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med. 2012;367(4):319–28.

    Article  Google Scholar 

  24. Group AC, Patel A, MacMahon S, Chalmers J, Neal B, Billot L, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358(24):2560–72.

    Article  Google Scholar 

  25. Laakso M. Cardiovascular disease in type 2 diabetes from population to man to mechanisms: the Kelly West Award Lecture 2008. Diabetes Care. 2010;33(2):442–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Baltali M, Korkmaz ME, Kiziltan HT, Muderris IH, Ozin B, Anarat R. Association between postprandial hyperinsulinemia and coronary artery disease among non-diabetic women: a case control study. Int J Cardiol. 2003;88(2–3):215–21.

    Article  PubMed  Google Scholar 

  27. Despres JP, Lamarche B, Mauriege P, Cantin B, Dagenais GR, Moorjani S, et al. Hyperinsulinemia as an independent risk factor for ischemic heart disease. N Engl J Med. 1996;334(15):952–7.

    Article  CAS  PubMed  Google Scholar 

  28. Marso SP, Buse JB. Safety of degludec versus glargine in type 2 diabetes. N Engl J Med. 2017;377(20):1995–6.

    PubMed  Google Scholar 

  29. Livingstone SJ, Looker HC, Hothersall EJ, Wild SH, Lindsay RS, Chalmers J, et al. Risk of cardiovascular disease and total mortality in adults with type 1 diabetes: Scottish registry linkage study. PLoS Med. 2012;9(10):e1001321.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zethelius B, Byberg L, Hales CN, Lithell H, Berne C. Proinsulin is an independent predictor of coronary heart disease: report from a 27-year follow-up study. Circulation. 2002;105(18):2153–8.

    Article  CAS  PubMed  Google Scholar 

  31. Alssema M, Dekker JM, Nijpels G, Stehouwer CD, Bouter LM, Heine RJ, et al. Proinsulin concentration is an independent predictor of all-cause and cardiovascular mortality: an 11-year follow-up of the Hoorn Study. Diabetes Care. 2005;28(4):860–5.

    Article  CAS  PubMed  Google Scholar 

  32. Haffner SM, Mykkanen L, Stern MP, Valdez RA, Heisserman JA, Bowsher RR. Relationship of proinsulin and insulin to cardiovascular risk factors in nondiabetic subjects. Diabetes. 1993;42(9):1297–302.

    Article  CAS  PubMed  Google Scholar 

  33. Patel N, Taveira TH, Choudhary G, Whitlatch H, Wu WC. Fasting serum C-peptide levels predict cardiovascular and overall death in nondiabetic adults. J Am Heart Assoc. 2012;1(6):e003152.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988;37(12):1595–607.

    Article  CAS  PubMed  Google Scholar 

  35. Petrie JR, Ueda S, Webb DJ, Elliott HL, Connell JM. Endothelial nitric oxide production and insulin sensitivity. A physiological link with implications for pathogenesis of cardiovascular disease. Circulation. 1996;93(7):1331–3.

    Article  CAS  PubMed  Google Scholar 

  36. Natali A, Taddei S, Quinones Galvan A, Camastra S, Baldi S, Frascerra S, et al. Insulin sensitivity, vascular reactivity, and clamp-induced vasodilatation in essential hypertension. Circulation. 1997;96(3):849–55.

    Article  CAS  PubMed  Google Scholar 

  37. Stehouwer CD, Schaper NC. The pathogenesis of vascular complications of diabetes mellitus: one voice or many? Eur J Clin Investig. 1996;26(7):535–43.

    Article  CAS  Google Scholar 

  38. Kanter JE, Shao B, Kramer F, Barnhart S, Shimizu-Albergine M, Vaisar T, et al. Increased apolipoprotein C3 drives cardiovascular risk in type 1 diabetes. J Clin Invest. 2019;129(10):4165–79.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Frank RN. Diabetic retinopathy. N Engl J Med. 2004;350(1):48–58.

    Article  CAS  PubMed  Google Scholar 

  40. Colwell JA, Lopes-Virella M, Halushka PV. Pathogenesis of atherosclerosis in diabetes mellitus. Diabetes Care. 1981;4(1):121–33.

    Article  CAS  PubMed  Google Scholar 

  41. Beckman JA, Creager MA, Libby P. Diabetes and atherosclerosis: epidemiology, pathophysiology, and management. JAMA. 2002;287(19):2570–81.

    Article  CAS  PubMed  Google Scholar 

  42. Rask-Madsen C, Li Q, Freund B, Feather D, Abramov R, Wu IH, et al. Loss of insulin signaling in vascular endothelial cells accelerates atherosclerosis in apolipoprotein E null mice. Cell Metab. 2010;11(5):379–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rask-Madsen C, Buonomo E, Li Q, Park K, Clermont AC, Yerokun O, et al. Hyperinsulinemia does not change atherosclerosis development in apolipoprotein E null mice. Arterioscler Thromb Vasc Biol. 2012;32(5):1124–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Park K, Li Q, Evcimen ND, Rask-Madsen C, Maeda Y, Maddaloni E, et al. Exogenous insulin infusion can decrease atherosclerosis in diabetic rodents by improving lipids, inflammation, and endothelial function. Arterioscler Thromb Vasc Biol. 2018;38(1):92–101.

    Article  CAS  PubMed  Google Scholar 

  45. Park K, Mima A, Li Q, Rask-Madsen C, He P, Mizutani K, et al. Insulin decreases atherosclerosis by inducing endothelin receptor B expression. JCI Insight. 2016;1(6):e86574.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Banskota NK, Taub R, Zellner K, King GL. Insulin, insulin-like growth factor I and platelet-derived growth factor interact additively in the induction of the protooncogene c-myc and cellular proliferation in cultured bovine aortic smooth muscle cells. Mol Endocrinol. 1989;3(8):1183–90.

    Article  CAS  PubMed  Google Scholar 

  47. King GL, Buzney SM, Kahn CR, Hetu N, Buchwald S, Macdonald SG, et al. Differential responsiveness to insulin of endothelial and support cells from micro- and macrovessels. J Clin Invest. 1983;71(4):974–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. King GL, Park K, Li Q. Selective insulin resistance and the development of cardiovascular diseases in diabetes: the 2015 Edwin Bierman Award Lecture. Diabetes. 2016;65(6):1462–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. King GL, Johnson SM. Receptor-mediated transport of insulin across endothelial cells. Science. 1985;227(4694):1583–6.

    Article  CAS  PubMed  Google Scholar 

  50. Hachiya HL, Halban PA, King GL. Intracellular pathways of insulin transport across vascular endothelial cells. Am J Phys. 1988;255(4 Pt 1):C459–64.

    Article  CAS  Google Scholar 

  51. Rask-Madsen C, Kahn CR. Tissue-specific insulin signaling, metabolic syndrome, and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2012;32(9):2052–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jialal I, King GL, Buchwald S, Kahn CR, Crettaz M. Processing of insulin by bovine endothelial cells in culture. Internalization without degradation. Diabetes. 1984;33(8):794–800.

    Article  CAS  PubMed  Google Scholar 

  53. Hachiya HL, Takayama S, White MF, King GL. Regulation of insulin receptor internalization in vascular endothelial cells by insulin and phorbol ester. J Biol Chem. 1987;262(13):6417–24.

    Article  CAS  PubMed  Google Scholar 

  54. Barrett EJ, Liu Z. The endothelial cell: an “early responder” in the development of insulin resistance. Rev Endocr Metab Disord. 2013;14(1):21–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang H, Wang AX, Barrett EJ. Caveolin-1 is required for vascular endothelial insulin uptake. Am J Physiol Endocrinol Metab. 2011;300(1):E134–44.

    Article  CAS  PubMed  Google Scholar 

  56. Wang H, Wang AX, Aylor K, Barrett EJ. Caveolin-1 phosphorylation regulates vascular endothelial insulin uptake and is impaired by insulin resistance in rats. Diabetologia. 2015;58(6):1344–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gray SM, Barrett EJ. Insulin transport into the brain. Am J Physiol Cell Physiol. 2018;315(2):C125–C36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Baron AD. Insulin and the vasculature--old actors, new roles. J Investig Med. 1996;44(8):406–12.

    CAS  PubMed  Google Scholar 

  59. Scherrer U, Randin D, Vollenweider P, Vollenweider L, Nicod P. Nitric oxide release accounts for insulin’s vascular effects in humans. J Clin Invest. 1994;94(6):2511–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Steinberg HO, Chaker H, Leaming R, Johnson A, Brechtel G, Baron AD. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J Clin Invest. 1996;97(11):2601–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kuboki K, Jiang ZY, Takahara N, Ha SW, Igarashi M, Yamauchi T, et al. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin. Circulation. 2000;101(6):676–81.

    Article  CAS  PubMed  Google Scholar 

  62. Vicent D, Ilany J, Kondo T, Naruse K, Fisher SJ, Kisanuki YY, et al. The role of endothelial insulin signaling in the regulation of vascular tone and insulin resistance. J Clin Invest. 2003;111(9):1373–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kondo T, Vicent D, Suzuma K, Yanagisawa M, King GL, Holzenberger M, et al. Knockout of insulin and IGF-1 receptors on vascular endothelial cells protects against retinal neovascularization. J Clin Invest. 2003;111(12):1835–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shankar RR, Wu Y, Shen HQ, Zhu JS, Baron AD. Mice with gene disruption of both endothelial and neuronal nitric oxide synthase exhibit insulin resistance. Diabetes. 2000;49(5):684–7.

    Article  CAS  PubMed  Google Scholar 

  65. Cook S, Hugli O, Egli M, Menard B, Thalmann S, Sartori C, et al. Partial gene deletion of endothelial nitric oxide synthase predisposes to exaggerated high-fat diet-induced insulin resistance and arterial hypertension. Diabetes. 2004;53(8):2067–72.

    Article  CAS  PubMed  Google Scholar 

  66. Bornfeldt KE, Raines EW, Nakano T, Graves LM, Krebs EG, Ross R. Insulin-like growth factor-I and platelet-derived growth factor-BB induce directed migration of human arterial smooth muscle cells via signaling pathways that are distinct from those of proliferation. J Clin Invest. 1994;93(3):1266–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li Q, Fu J, Xia Y, Qi W, Ishikado A, Park K, et al. Homozygous receptors for insulin and not IGF-1 accelerate intimal hyperplasia in insulin resistance and diabetes. Nat Commun. 2019;10(1):4427.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yazdani S, Jaldin-Fincati JR, Pereira RVS, Klip A. Endothelial cell barriers: transport of molecules between blood and tissues. Traffic. 2019;20(6):390–403.

    Article  CAS  PubMed  Google Scholar 

  69. Vincent MA, Clerk LH, Lindner JR, Klibanov AL, Clark MG, Rattigan S, et al. Microvascular recruitment is an early insulin effect that regulates skeletal muscle glucose uptake in vivo. Diabetes. 2004;53(6):1418–23.

    Article  CAS  PubMed  Google Scholar 

  70. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473(7347):298–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Eelen G, de Zeeuw P, Treps L, Harjes U, Wong BW, Carmeliet P. Endothelial Cell Metabolism. Physiol Rev. 2018;98(1):3–58.

    Article  CAS  PubMed  Google Scholar 

  72. Baron AD. Vascular reactivity. Am J Cardiol. 1999;84(1A):25J–7J.

    Article  CAS  PubMed  Google Scholar 

  73. Balletshofer BM, Rittig K, Enderle MD, Volk A, Maerker E, Jacob S, et al. Endothelial dysfunction is detectable in young normotensive first-degree relatives of subjects with type 2 diabetes in association with insulin resistance. Circulation. 2000;101(15):1780–4.

    Article  CAS  PubMed  Google Scholar 

  74. Rask-Madsen C, Ihlemann N, Krarup T, Christiansen E, Kober L, Nervil Kistorp C, et al. Insulin therapy improves insulin-stimulated endothelial function in patients with type 2 diabetes and ischemic heart disease. Diabetes. 2001;50(11):2611–8.

    Article  CAS  PubMed  Google Scholar 

  75. Rask-Madsen C, Dominguez H, Ihlemann N, Hermann T, Kober L, Torp-Pedersen C. Tumor necrosis factor-alpha inhibits insulin’s stimulating effect on glucose uptake and endothelium-dependent vasodilation in humans. Circulation. 2003;108(15):1815–21.

    Article  CAS  PubMed  Google Scholar 

  76. Cooper SA, Whaley-Connell A, Habibi J, Wei Y, Lastra G, Manrique C, et al. Renin-angiotensin-aldosterone system and oxidative stress in cardiovascular insulin resistance. Am J Physiol Heart Circ Physiol. 2007;293(4):H2009–23.

    Article  CAS  PubMed  Google Scholar 

  77. Folkman J. Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov. 2007;6(4):273–86.

    Article  CAS  PubMed  Google Scholar 

  78. Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer. 2002;2(10):727–39.

    Article  CAS  PubMed  Google Scholar 

  79. Jiang ZY, Lin YW, Clemont A, Feener EP, Hein KD, Igarashi M, et al. Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats. J Clin Invest. 1999;104(4):447–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Naruse K, Rask-Madsen C, Takahara N, Ha SW, Suzuma K, Way KJ, et al. Activation of vascular protein kinase C-beta inhibits Akt-dependent endothelial nitric oxide synthase function in obesity-associated insulin resistance. Diabetes. 2006;55(3):691–8.

    Article  CAS  PubMed  Google Scholar 

  81. Montagnani M, Chen H, Barr VA, Quon MJ. Insulin-stimulated activation of eNOS is independent of Ca2+ but requires phosphorylation by Akt at Ser(1179). J Biol Chem. 2001;276(32):30392–8.

    Article  CAS  PubMed  Google Scholar 

  82. Muniyappa R, Montagnani M, Koh KK, Quon MJ. Cardiovascular actions of insulin. Endocr Rev. 2007;28(5):463–91.

    Article  CAS  PubMed  Google Scholar 

  83. Jiang ZY, He Z, King BL, Kuroki T, Opland DM, Suzuma K, et al. Characterization of multiple signaling pathways of insulin in the regulation of vascular endothelial growth factor expression in vascular cells and angiogenesis. J Biol Chem. 2003;278(34):31964–71.

    Article  CAS  PubMed  Google Scholar 

  84. Geraldes P, Yagi K, Ohshiro Y, He Z, Maeno Y, Yamamoto-Hiraoka J, et al. Selective regulation of heme oxygenase-1 expression and function by insulin through IRS1/phosphoinositide 3-kinase/Akt-2 pathway. J Biol Chem. 2008;283(49):34327–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cardillo C, Nambi SS, Kilcoyne CM, Choucair WK, Katz A, Quon MJ, et al. Insulin stimulates both endothelin and nitric oxide activity in the human forearm. Circulation. 1999;100(8):820–5.

    Article  CAS  PubMed  Google Scholar 

  86. Grenett HE, Benza RL, Fless GM, Li XN, Davis GC, Booyse FM. Genotype-specific transcriptional regulation of PAI-1 gene by insulin, hypertriglyceridemic VLDL, and Lp(a) in transfected, cultured human endothelial cells. Arterioscler Thromb Vasc Biol. 1998;18(11):1803–9.

    Article  CAS  PubMed  Google Scholar 

  87. Rask-Madsen C, King GL. Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab. 2013;17(1):20–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hermann C, Assmus B, Urbich C, Zeiher AM, Dimmeler S. Insulin-mediated stimulation of protein kinase Akt: a potent survival signaling cascade for endothelial cells. Arterioscler Thromb Vasc Biol. 2000;20(2):402–9.

    Article  CAS  PubMed  Google Scholar 

  89. Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res. 2010;106(8):1319–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fernandez-Hernando C, Ackah E, Yu J, Suarez Y, Murata T, Iwakiri Y, et al. Loss of Akt1 leads to severe atherosclerosis and occlusive coronary artery disease. Cell Metab. 2007;6(6):446–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kuhlencordt PJ, Gyurko R, Han F, Scherrer-Crosbie M, Aretz TH, Hajjar R, et al. Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice. Circulation. 2001;104(4):448–54.

    Article  CAS  Google Scholar 

  92. Tsuchiya K, Tanaka J, Shuiqing Y, Welch CL, DePinho RA, Tabas I, et al. FoxOs integrate pleiotropic actions of insulin in vascular endothelium to protect mice from atherosclerosis. Cell Metab. 2012;15(3):372–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Katagiri S, Park K, Maeda Y, Rao TN, Khamaisi M, Li Q, et al. Overexpressing IRS1 in endothelial cells enhances angioblast differentiation and wound healing in diabetes and insulin resistance. Diabetes. 2016;65(9):2760–71.

    Article  CAS  PubMed Central  Google Scholar 

  94. Kaiser N, Sasson S, Feener EP, Boukobza-Vardi N, Higashi S, Moller DE, et al. Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells. Diabetes. 1993;42(1):80–9.

    Article  CAS  Google Scholar 

  95. Greene DA, Lattimer SA, Sima AA. Sorbitol, phosphoinositides, and sodium-potassium-ATPase in the pathogenesis of diabetic complications. N Engl J Med. 1987;316(10):599–606.

    Article  CAS  Google Scholar 

  96. Brownlee M. Advanced protein glycosylation in diabetes and aging. Annu Rev Med. 1995;46:223–34.

    Article  CAS  PubMed  Google Scholar 

  97. King GL, Shiba T, Oliver J, Inoguchi T, Bursell SE. Cellular and molecular abnormalities in the vascular endothelium of diabetes mellitus. Annu Rev Med. 1994;45:179–88.

    Article  CAS  PubMed  Google Scholar 

  98. Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991;40(4):405–12.

    Article  CAS  PubMed  Google Scholar 

  99. Berg TJ, Bangstad HJ, Torjesen PA, Osterby R, Bucala R, Hanssen KF. Advanced glycation end products in serum predict changes in the kidney morphology of patients with insulin-dependent diabetes mellitus. Metabolism. 1997;46(6):661–5.

    Article  CAS  PubMed  Google Scholar 

  100. Park L, Raman KG, Lee KJ, Lu Y, Ferran LJ Jr, Chow WS, et al. Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation endproducts. Nat Med. 1998;4(9):1025–31.

    Article  CAS  PubMed  Google Scholar 

  101. Qi W, Keenan HA, Li Q, Ishikado A, Kannt A, Sadowski T, et al. Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction. Nat Med. 2017;23(6):753–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gordin D, Shah H, Shinjo T, St-Louis R, Qi W, Park K, et al. Characterization of glycolytic enzymes and pyruvate kinase M2 in type 1 and 2 diabetic nephropathy. Diabetes Care. 2019;42(7):1263–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wautier JL, Zoukourian C, Chappey O, Wautier MP, Guillausseau PJ, Cao R, et al. Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy. Soluble receptor for advanced glycation end products blocks hyperpermeability in diabetic rats. J Clin Invest. 1996;97(1):238–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hammes HP, Martin S, Federlin K, Geisen K, Brownlee M. Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy. Proc Natl Acad Sci U S A. 1991;88(24):11555–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nakamura S, Makita Z, Ishikawa S, Yasumura K, Fujii W, Yanagisawa K, et al. Progression of nephropathy in spontaneous diabetic rats is prevented by OPB-9195, a novel inhibitor of advanced glycation. Diabetes. 1997;46(5):895–9.

    Article  CAS  PubMed  Google Scholar 

  106. Wolffenbuttel BH, Boulanger CM, Crijns FR, Huijberts MS, Poitevin P, Swennen GN, et al. Breakers of advanced glycation end products restore large artery properties in experimental diabetes. Proc Natl Acad Sci U S A. 1998;95(8):4630–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Schmidt AM, Stern D. Atherosclerosis and diabetes: the RAGE connection. Curr Atheroscler Rep. 2000;2(5):430–6.

    Article  CAS  PubMed  Google Scholar 

  108. Brett J, Schmidt AM, Yan SD, Zou YS, Weidman E, Pinsky D, et al. Survey of the distribution of a newly characterized receptor for advanced glycation end products in tissues. Am J Pathol. 1993;143(6):1699–712.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Cai W, He JC, Zhu L, Peppa M, Lu C, Uribarri J, et al. High levels of dietary advanced glycation end products transform low-density lipoprotein into a potent redox-sensitive mitogen-activated protein kinase stimulant in diabetic patients. Circulation. 2004;110(3):285–91.

    Article  CAS  PubMed  Google Scholar 

  110. Wautier MP, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier JL. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab. 2001;280(5):E685–94.

    Article  CAS  PubMed  Google Scholar 

  111. Yan SD, Schmidt AM, Anderson GM, Zhang J, Brett J, Zou YS, et al. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J Biol Chem. 1994;269(13):9889–97.

    Article  CAS  PubMed  Google Scholar 

  112. Hofmann MA, Drury S, Fu C, Qu W, Taguchi A, Lu Y, et al. RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell. 1999;97(7):889–901.

    Article  CAS  PubMed  Google Scholar 

  113. Ott C, Jacobs K, Haucke E, Navarrete Santos A, Grune T, Simm A. Role of advanced glycation end products in cellular signaling. Redox Biol. 2014;2:411–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Freedman BI, Wuerth JP, Cartwright K, Bain RP, Dippe S, Hershon K, et al. Design and baseline characteristics for the aminoguanidine Clinical Trial in Overt Type 2 Diabetic Nephropathy (ACTION II). Control Clin Trials. 1999;20(5):493–510.

    Article  CAS  PubMed  Google Scholar 

  115. Gabbay KH. Hyperglycemia, polyol metabolism, and complications of diabetes mellitus. Annu Rev Med. 1975;26:521–36.

    Article  CAS  PubMed  Google Scholar 

  116. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20.

    Article  CAS  PubMed  Google Scholar 

  117. Tesfamariam B. Free radicals in diabetic endothelial cell dysfunction. Free Radic Biol Med. 1994;16(3):383–91.

    Article  CAS  PubMed  Google Scholar 

  118. Vedantham S, Noh H, Ananthakrishnan R, Son N, Hallam K, Hu Y, et al. Human aldose reductase expression accelerates atherosclerosis in diabetic apolipoprotein E-/- mice. Arterioscler Thromb Vasc Biol. 2011;31(8):1805–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sorbinil Retinopathy Trial Research Group. A randomized trial of sorbinil, an aldose reductase inhibitor, in diabetic retinopathy. Arch Ophthalmol. 1990;108(9):1234–44.

    Article  Google Scholar 

  120. Greene DA, Arezzo JC, Brown MB. Effect of aldose reductase inhibition on nerve conduction and morphometry in diabetic neuropathy. Zenarestat Study Group. Neurology. 1999;53(3):580–91.

    Article  CAS  PubMed  Google Scholar 

  121. Giugliano D, Ceriello A, Paolisso G. Oxidative stress and diabetic vascular complications. Diabetes Care. 1996;19(3):257–67.

    Article  CAS  PubMed  Google Scholar 

  122. Kuroki T, Isshiki K, King GL. Oxidative stress: the lead or supporting actor in the pathogenesis of diabetic complications. J Am Soc Nephrol. 2003;14(8 Suppl 3):S216–20.

    Article  CAS  PubMed  Google Scholar 

  123. Schaffer SW, Jong CJ, Mozaffari M. Role of oxidative stress in diabetes-mediated vascular dysfunction: unifying hypothesis of diabetes revisited. Vasc Pharmacol. 2012;57(5–6):139–49.

    Article  CAS  Google Scholar 

  124. Shah MS, Brownlee M. Molecular and cellular mechanisms of cardiovascular disorders in diabetes. Circ Res. 2016;118(11):1808–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Forstermann U, Xia N, Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res. 2017;120(4):713–35.

    Article  PubMed  Google Scholar 

  127. Augustin AJ, Dick HB, Koch F, Schmidt-Erfurth U. Correlation of blood-glucose control with oxidative metabolites in plasma and vitreous body of diabetic patients. Eur J Ophthalmol. 2002;12(2):94–101.

    Article  CAS  PubMed  Google Scholar 

  128. Keaney JF Jr, Larson MG, Vasan RS, Wilson PW, Lipinska I, Corey D, et al. Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. Arterioscler Thromb Vasc Biol. 2003;23(3):434–9.

    Article  CAS  PubMed  Google Scholar 

  129. Dandona P, Thusu K, Cook S, Snyder B, Makowski J, Armstrong D, et al. Oxidative damage to DNA in diabetes mellitus. Lancet. 1996;347(8999):444–5.

    Article  CAS  PubMed  Google Scholar 

  130. Garcia Soriano F, Virag L, Jagtap P, Szabo E, Mabley JG, Liaudet L, et al. Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nat Med. 2001;7(1):108–13.

    Article  CAS  Google Scholar 

  131. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404(6779):787–90.

    Article  CAS  PubMed  Google Scholar 

  132. Basta G, Schmidt AM, De Caterina R. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res. 2004;63(4):582–92.

    Article  CAS  PubMed  Google Scholar 

  133. Wang Y, Wang GZ, Rabinovitch PS, Tabas I. Macrophage mitochondrial oxidative stress promotes atherosclerosis and nuclear factor-kappaB-mediated inflammation in macrophages. Circ Res. 2014;114(3):421–33.

    Article  CAS  PubMed  Google Scholar 

  134. Hamby RI, Zoneraich S, Sherman L. Diabetic cardiomyopathy. JAMA. 1974;229(13):1749–54.

    Article  CAS  PubMed  Google Scholar 

  135. Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M, et al. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res. 2001;88(2):E14–22.

    Article  CAS  PubMed  Google Scholar 

  136. Mollnau H, Wendt M, Szocs K, Lassegue B, Schulz E, Oelze M, et al. Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ Res. 2002;90(4):E58–65.

    Article  PubMed  Google Scholar 

  137. Guzik TJ, Mussa S, Gastaldi D, Sadowski J, Ratnatunga C, Pillai R, et al. Mechanisms of increased vascular superoxide production in human diabetes mellitus: role of NAD(P)H oxidase and endothelial nitric oxide synthase. Circulation. 2002;105(14):1656–62.

    Article  CAS  PubMed  Google Scholar 

  138. Rosen P, Du X, Tschope D. Role of oxygen derived radicals for vascular dysfunction in the diabetic heart: prevention by alpha-tocopherol? Mol Cell Biochem. 1998;188(1–2):103–11.

    Article  CAS  PubMed  Google Scholar 

  139. Vasquez-Trincado C, Garcia-Carvajal I, Pennanen C, Parra V, Hill JA, Rothermel BA, et al. Mitochondrial dynamics, mitophagy and cardiovascular disease. J Physiol. 2016;594(3):509–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kunisaki M, Bursell SE, Umeda F, Nawata H, King GL. Normalization of diacylglycerol-protein kinase C activation by vitamin E in aorta of diabetic rats and cultured rat smooth muscle cells exposed to elevated glucose levels. Diabetes. 1994;43(11):1372–7.

    Article  CAS  PubMed  Google Scholar 

  141. Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury: Part II: animal and human studies. Circulation. 2003;108(17):2034–40.

    Article  PubMed  Google Scholar 

  142. Heart Outcomes Prevention Evaluation Study I, Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P. Vitamin E supplementation and cardiovascular events in high-risk patients. N Engl J Med. 2000;342(3):154–60.

    Article  Google Scholar 

  143. Lonn E, Yusuf S, Hoogwerf B, Pogue J, Yi Q, Zinman B, et al. Effects of vitamin E on cardiovascular and microvascular outcomes in high-risk patients with diabetes: results of the HOPE study and MICRO-HOPE substudy. Diabetes Care. 2002;25(11):1919–27.

    Article  CAS  PubMed  Google Scholar 

  144. Bursell SE, Clermont AC, Aiello LP, Aiello LM, Schlossman DK, Feener EP, et al. High-dose vitamin E supplementation normalizes retinal blood flow and creatinine clearance in patients with type 1 diabetes. Diabetes Care. 1999;22(8):1245–51.

    Article  CAS  PubMed  Google Scholar 

  145. Shiba T, Inoguchi T, Sportsman JR, Heath WF, Bursell S, King GL. Correlation of diacylglycerol level and protein kinase C activity in rat retina to retinal circulation. Am J Phys. 1993;265(5 Pt 1):E783–93.

    CAS  Google Scholar 

  146. Inoguchi T, Battan R, Handler E, Sportsman JR, Heath W, King GL. Preferential elevation of protein kinase C isoform beta II and diacylglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation. Proc Natl Acad Sci U S A. 1992;89(22):11059–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Craven PA, DeRubertis FR. Protein kinase C is activated in glomeruli from streptozotocin diabetic rats. Possible mediation by glucose. J Clin Invest. 1989;83(5):1667–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Derubertis FR, Craven PA. Activation of protein kinase C in glomerular cells in diabetes. Mechanisms and potential links to the pathogenesis of diabetic glomerulopathy. Diabetes. 1994;43(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  149. Craven PA, Davidson CM, DeRubertis FR. Increase in diacylglycerol mass in isolated glomeruli by glucose from de novo synthesis of glycerolipids. Diabetes. 1990;39(6):667–74.

    Article  CAS  PubMed  Google Scholar 

  150. Ishii H, Jirousek MR, Koya D, Takagi C, Xia P, Clermont A, et al. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science. 1996;272(5262):728–31.

    Article  CAS  PubMed  Google Scholar 

  151. Mizutani K, Park K, Mima A, Katagiri S, King GL. Obesity-associated Gingival Vascular Inflammation and Insulin Resistance. J Dent Res. 2014;93(6):596–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Khamaisi M, Katagiri S, Keenan H, Park K, Maeda Y, Li Q, et al. PKCdelta inhibition normalizes the wound-healing capacity of diabetic human fibroblasts. J Clin Invest. 2016;126(3):837–53.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Considine RV, Nyce MR, Allen LE, Morales LM, Triester S, Serrano J, et al. Protein kinase C is increased in the liver of humans and rats with non-insulin-dependent diabetes mellitus: an alteration not due to hyperglycemia. J Clin Invest. 1995;95(6):2938–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ayo SH, Radnik R, Garoni JA, Troyer DA, Kreisberg JI. High glucose increases diacylglycerol mass and activates protein kinase C in mesangial cell cultures. Am J Phys. 1991;261(4 Pt 2):F571–7.

    CAS  Google Scholar 

  155. Studer RK, Craven PA, DeRubertis FR. Role for protein kinase C in the mediation of increased fibronectin accumulation by mesangial cells grown in high-glucose medium. Diabetes. 1993;42(1):118–26.

    Article  CAS  PubMed  Google Scholar 

  156. Devaraj S, Venugopal SK, Singh U, Jialal I. Hyperglycemia induces monocytic release of interleukin-6 via induction of protein kinase c-{alpha} and -{beta}. Diabetes. 2005;54(1):85–91.

    Article  CAS  PubMed  Google Scholar 

  157. Yasunari K, Kohno M, Kano H, Yokokawa K, Horio T, Yoshikawa J. Possible involvement of phospholipase D and protein kinase C in vascular growth induced by elevated glucose concentration. Hypertension. 1996;28(2):159–68.

    Article  CAS  PubMed  Google Scholar 

  158. Taher MM, Garcia JG, Natarajan V. Hydroperoxide-induced diacylglycerol formation and protein kinase C activation in vascular endothelial cells. Arch Biochem Biophys. 1993;303(2):260–6.

    Article  CAS  PubMed  Google Scholar 

  159. Kunisaki M, Bursell SE, Clermont AC, Ishii H, Ballas LM, Jirousek MR, et al. Vitamin E prevents diabetes-induced abnormal retinal blood flow via the diacylglycerol-protein kinase C pathway. Am J Phys. 1995;269(2 Pt 1):E239–46.

    CAS  Google Scholar 

  160. Mellor H, Parker PJ. The extended protein kinase C superfamily. Biochem J. 1998;332(Pt 2):281–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Way KJ, Chou E, King GL. Identification of PKC-isoform-specific biological actions using pharmacological approaches. Trends Pharmacol Sci. 2000;21(5):181–7.

    Article  CAS  PubMed  Google Scholar 

  162. Inoguchi T, Xia P, Kunisaki M, Higashi S, Feener EP, King GL. Insulin’s effect on protein kinase C and diacylglycerol induced by diabetes and glucose in vascular tissues. Am J Phys. 1994;267(3 Pt 1):E369–79.

    CAS  Google Scholar 

  163. Park JY, Takahara N, Gabriele A, Chou E, Naruse K, Suzuma K, et al. Induction of endothelin-1 expression by glucose: an effect of protein kinase C activation. Diabetes. 2000;49(7):1239–48.

    Article  CAS  PubMed  Google Scholar 

  164. Maeno Y, Li Q, Park K, Rask-Madsen C, Gao B, Matsumoto M, et al. Inhibition of insulin signaling in endothelial cells by protein kinase C-induced phosphorylation of p85 subunit of phosphatidylinositol 3-kinase (PI3K). J Biol Chem. 2012;287(7):4518–30.

    Article  CAS  PubMed  Google Scholar 

  165. Park K, Li Q, Rask-Madsen C, Mima A, Mizutani K, Winnay J, et al. Serine phosphorylation sites on IRS2 activated by angiotensin II and protein kinase C to induce selective insulin resistance in endothelial cells. Mol Cell Biol. 2013;33(16):3227–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Chou E, Suzuma I, Way KJ, Opland D, Clermont AC, Naruse K, et al. Decreased cardiac expression of vascular endothelial growth factor and its receptors in insulin-resistant and diabetic States: a possible explanation for impaired collateral formation in cardiac tissue. Circulation. 2002;105(3):373–9.

    Article  CAS  PubMed  Google Scholar 

  167. He Z, Opland DM, Way KJ, Ueki K, Bodyak N, Kang PM, et al. Regulation of vascular endothelial growth factor expression and vascularization in the myocardium by insulin receptor and PI3K/Akt pathways in insulin resistance and ischemia. Arterioscler Thromb Vasc Biol. 2006;26(4):787–93.

    Article  CAS  PubMed  Google Scholar 

  168. Li Q, Park K, Li C, Rask-Madsen C, Mima A, Qi W, et al. Induction of vascular insulin resistance and endothelin-1 expression and acceleration of atherosclerosis by the overexpression of protein kinase C-beta isoform in the endothelium. Circ Res. 2013;113(4):418–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hennige AM, Stefan N, Kapp K, Lehmann R, Weigert C, Beck A, et al. Leptin down-regulates insulin action through phosphorylation of serine-318 in insulin receptor substrate 1. FASEB J. 2006;20(8):1206–8.

    Article  CAS  PubMed  Google Scholar 

  170. Harja E, Chang JS, Lu Y, Leitges M, Zou YS, Schmidt AM, et al. Mice deficient in PKCbeta and apolipoprotein E display decreased atherosclerosis. FASEB J. 2009;23(4):1081–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Koya D, Jirousek MR, Lin YW, Ishii H, Kuboki K, King GL. Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor-beta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. J Clin Invest. 1997;100(1):115–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Beckman JA, Goldfine AB, Gordon MB, Garrett LA, Creager MA. Inhibition of protein kinase Cbeta prevents impaired endothelium-dependent vasodilation caused by hyperglycemia in humans. Circ Res. 2002;90(1):107–11.

    Article  CAS  PubMed  Google Scholar 

  173. Qi W, Li Q, Liew CW, Rask-Madsen C, Lockhart SM, Rasmussen LM, et al. SHP-1 activation inhibits vascular smooth muscle cell proliferation and intimal hyperplasia in a rodent model of insulin resistance and diabetes. Diabetologia. 2017;60(3):585–96.

    Article  CAS  PubMed  Google Scholar 

  174. Das Evcimen N, King GL. The role of protein kinase C activation and the vascular complications of diabetes. Pharmacol Res. 2007;55(6):498–510.

    Article  CAS  PubMed  Google Scholar 

  175. Li Q, Park K, Xia Y, Matsumoto M, Qi W, Fu J, et al. Regulation of macrophage apoptosis and atherosclerosis by lipid-induced PKCdelta isoform activation. Circ Res. 2017;121(10):1153–67.

    Article  CAS  PubMed Central  Google Scholar 

  176. Aiello LP. The potential role of PKC beta in diabetic retinopathy and macular edema. Surv Ophthalmol. 2002;47(Suppl 2):S263–9.

    Article  Google Scholar 

  177. Tuttle KR, Bakris GL, Toto RD, McGill JB, Hu K, Anderson PW. The effect of ruboxistaurin on nephropathy in type 2 diabetes. Diabetes Care. 2005;28(11):2686–90.

    Article  CAS  PubMed  Google Scholar 

  178. Cameron NE, Cotter MA. Metabolic and vascular factors in the pathogenesis of diabetic neuropathy. Diabetes. 1997;46(Suppl 2):S31–7.

    Article  CAS  Google Scholar 

  179. Uehara K, Yamagishi S, Otsuki S, Chin S, Yagihashi S. Effects of polyol pathway hyperactivity on protein kinase C activity, nociceptive peptide expression, and neuronal structure in dorsal root ganglia in diabetic mice. Diabetes. 2004;53(12):3239–47.

    Article  CAS  Google Scholar 

  180. Ledet T, Neubauer B, Christensen NJ, Lundbaek K. Diabetic cardiopathy. Diabetologia. 1979;16(4):207–9.

    Article  CAS  PubMed  Google Scholar 

  181. Neubauer B. A quantitative study of peripheral arterial calcification and glucose tolerance in elderly diabetics and non-diabetics. Diabetologia. 1971;7(6):409–13.

    Article  CAS  PubMed  Google Scholar 

  182. Hamet P, Sugimoto H, Umeda F, Lecavalier L, Franks DJ, Orth DN, et al. Abnormalities of platelet-derived growth factors in insulin-dependent diabetes. Metabolism. 1985;34(12 Suppl 1):25–31.

    Article  CAS  PubMed  Google Scholar 

  183. Reaven GM, Chen YD, Jeppesen J, Maheux P, Krauss RM. Insulin resistance and hyperinsulinemia in individuals with small, dense low density lipoprotein particles. J Clin Invest. 1993;92(1):141–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Howard BV. Insulin resistance and lipid metabolism. Am J Cardiol. 1999;84(1A):28J–32J.

    Article  CAS  PubMed  Google Scholar 

  185. Prisco D, Rogasi PG, Paniccia R, Abbate R, Gensini GF, Pinto S, et al. Altered membrane fatty acid composition and increased thromboxane A2 generation in platelets from patients with diabetes. Prostaglandins Leukot Essent Fat Acids. 1989;35(1):15–23.

    Article  CAS  Google Scholar 

  186. Matsuda Y, Hirata K, Inoue N, Suematsu M, Kawashima S, Akita H, et al. High density lipoprotein reverses inhibitory effect of oxidized low density lipoprotein on endothelium-dependent arterial relaxation. Circ Res. 1993;72(5):1103–9.

    Article  CAS  PubMed  Google Scholar 

  187. Lacoste L, Lam JY, Hung J, Letchacovski G, Solymoss CB, Waters D. Hyperlipidemia and coronary disease. Correction of the increased thrombogenic potential with cholesterol reduction. Circulation. 1995;92(11):3172–7.

    Article  CAS  PubMed  Google Scholar 

  188. Hackman A, Abe Y, Insull W Jr, Pownall H, Smith L, Dunn K, et al. Levels of soluble cell adhesion molecules in patients with dyslipidemia. Circulation. 1996;93(7):1334–8.

    Article  CAS  Google Scholar 

  189. Sampietro T, Tuoni M, Ferdeghini M, Ciardi A, Marraccini P, Prontera C, et al. Plasma cholesterol regulates soluble cell adhesion molecule expression in familial hypercholesterolemia. Circulation. 1997;96(5):1381–5.

    Article  CAS  PubMed  Google Scholar 

  190. Nofer JR, Tepel M, Kehrel B, Wierwille S, Walter M, Seedorf U, et al. Low-density lipoproteins inhibit the Na+/H+ antiport in human platelets. A novel mechanism enhancing platelet activity in hypercholesterolemia. Circulation. 1997;95(6):1370–7.

    Article  CAS  PubMed  Google Scholar 

  191. Vogel RA. Cholesterol lowering and endothelial function. Am J Med. 1999;107(5):479–87.

    Article  CAS  Google Scholar 

  192. Kugiyama K, Kerns SA, Morrisett JD, Roberts R, Henry PD. Impairment of endothelium-dependent arterial relaxation by lysolecithin in modified low-density lipoproteins. Nature. 1990;344(6262):160–2.

    Article  CAS  Google Scholar 

  193. Creager MA, Gallagher SJ, Girerd XJ, Coleman SM, Dzau VJ, Cooke JP. L-arginine improves endothelium-dependent vasodilation in hypercholesterolemic humans. J Clin Invest. 1992;90(4):1248–53.

    Article  CAS  PubMed Central  Google Scholar 

  194. Chen LY, Mehta P, Mehta JL. Oxidized LDL decreases L-arginine uptake and nitric oxide synthase protein expression in human platelets: relevance of the effect of oxidized LDL on platelet function. Circulation. 1996;93(9):1740–6.

    Article  CAS  Google Scholar 

  195. Chin JH, Azhar S, Hoffman BB. Inactivation of endothelial derived relaxing factor by oxidized lipoproteins. J Clin Invest. 1992;89(1):10–8.

    Article  CAS  PubMed Central  Google Scholar 

  196. Quyyumi AA, Dakak N, Diodati JG, Gilligan DM, Panza JA, Cannon RO III. Effect of L-arginine on human coronary endothelium-dependent and physiologic vasodilation. J Am Coll Cardiol. 1997;30(5):1220–7.

    Article  CAS  PubMed  Google Scholar 

  197. Small KW, Stefansson E, Hatchell DL. Retinal blood flow in normal and diabetic dogs. Invest Ophthalmol Vis Sci. 1987;28(4):672–5.

    CAS  PubMed  Google Scholar 

  198. Feke GT, Buzney SM, Ogasawara H, Fujio N, Goger DG, Spack NP, et al. Retinal circulatory abnormalities in type 1 diabetes. Invest Ophthalmol Vis Sci. 1994;35(7):2968–75.

    CAS  PubMed  Google Scholar 

  199. Bursell SE, Clermont AC, Kinsley BT, Simonson DC, Aiello LM, Wolpert HA. Retinal blood flow changes in patients with insulin-dependent diabetes mellitus and no diabetic retinopathy. Invest Ophthalmol Vis Sci. 1996;37(5):886–97.

    CAS  PubMed  Google Scholar 

  200. Clermont AC, Brittis M, Shiba T, McGovern T, King GL, Bursell SE. Normalization of retinal blood flow in diabetic rats with primary intervention using insulin pumps. Invest Ophthalmol Vis Sci. 1994;35(3):981–90.

    CAS  PubMed  Google Scholar 

  201. Miyamoto K, Ogura Y, Nishiwaki H, Matsuda N, Honda Y, Kato S, et al. Evaluation of retinal microcirculatory alterations in the Goto-Kakizaki rat. A spontaneous model of non-insulin-dependent diabetes. Invest Ophthalmol Vis Sci. 1996;37(5):898–905.

    CAS  PubMed  Google Scholar 

  202. Hata Y, Clermont A, Yamauchi T, Pierce EA, Suzuma I, Kagokawa H, et al. Retinal expression, regulation, and functional bioactivity of prostacyclin-stimulating factor. J Clin Invest. 2000;106(4):541–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Takagi C, Bursell SE, Lin YW, Takagi H, Duh E, Jiang Z, et al. Regulation of retinal hemodynamics in diabetic rats by increased expression and action of endothelin-1. Invest Ophthalmol Vis Sci. 1996;37(12):2504–18.

    CAS  PubMed  Google Scholar 

  204. Yokota T, Ma RC, Park JY, Isshiki K, Sotiropoulos KB, Rauniyar RK, et al. Role of protein kinase C on the expression of platelet-derived growth factor and endothelin-1 in the retina of diabetic rats and cultured retinal capillary pericytes. Diabetes. 2003;52(3):838–45.

    Article  CAS  PubMed  Google Scholar 

  205. Aiello LP, Pierce EA, Foley ED, Takagi H, Chen H, Riddle L, et al. Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci U S A. 1995;92(23):10457–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Tolentino MJ, Miller JW, Gragoudas ES, Jakobiec FA, Flynn E, Chatzistefanou K, et al. Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate. Ophthalmology. 1996;103(11):1820–8.

    Article  CAS  PubMed  Google Scholar 

  207. Kondo T, Hafezi-Moghadam A, Thomas K, Wagner DD, Kahn CR. Mice lacking insulin or insulin-like growth factor 1 receptors in vascular endothelial cells maintain normal blood-brain barrier. Biochem Biophys Res Commun. 2004;317(2):315–20.

    Article  CAS  PubMed  Google Scholar 

  208. Cameron NE, Cotter MA, Jack AM, Basso MD, Hohman TC. Protein kinase C effects on nerve function, perfusion, Na(+), K(+)-ATPase activity and glutathione content in diabetic rats. Diabetologia. 1999;42(9):1120–30.

    Article  CAS  PubMed  Google Scholar 

  209. Vinik AI, Bril V, Kempler P, Litchy WJ, Tesfaye S, Price KL, et al. Treatment of symptomatic diabetic peripheral neuropathy with the protein kinase C beta-inhibitor ruboxistaurin mesylate during a 1-year, randomized, placebo-controlled, double-blind clinical trial. Clin Ther. 2005;27(8):1164–80.

    Article  CAS  PubMed  Google Scholar 

  210. Ditzel J, Schwartz M. Abnormally increased glomerular filtration rate in short-term insulin-treated diabetic subjects. Diabetes. 1967;16(4):264–7.

    Article  CAS  PubMed  Google Scholar 

  211. Christiansen JS, Gammelgaard J, Frandsen M, Parving HH. Increased kidney size, glomerular filtration rate and renal plasma flow in short-term insulin-dependent diabetics. Diabetologia. 1981;20(4):451–6.

    Article  CAS  PubMed  Google Scholar 

  212. Hostetter TH, Troy JL, Brenner BM. Glomerular hemodynamics in experimental diabetes mellitus. Kidney Int. 1981;19(3):410–5.

    Article  CAS  PubMed  Google Scholar 

  213. Viberti GC. Early functional and morphological changes in diabetic nephropathy. Clin Nephrol. 1979;12(2):47–53.

    CAS  PubMed  Google Scholar 

  214. Schambelan M, Blake S, Sraer J, Bens M, Nivez MP, Wahbe F. Increased prostaglandin production by glomeruli isolated from rats with streptozotocin-induced diabetes mellitus. J Clin Invest. 1985;75(2):404–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Craven PA, Caines MA, DeRubertis FR. Sequential alterations in glomerular prostaglandin and thromboxane synthesis in diabetic rats: relationship to the hyperfiltration of early diabetes. Metabolism. 1987;36(1):95–103.

    Article  CAS  PubMed  Google Scholar 

  216. Xu H, Fu JL, Miao YF, Wang CJ, Han QF, Li S, et al. Prostaglandin E2 receptor EP3 regulates both adipogenesis and lipolysis in mouse white adipose tissue. J Mol Cell Biol. 2016;8(6):518–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Tousoulis D, Kampoli AM, Tentolouris C, Papageorgiou N, Stefanadis C. The role of nitric oxide on endothelial function. Curr Vasc Pharmacol. 2012;10(1):4–18.

    Article  CAS  PubMed  Google Scholar 

  218. Kamata K, Miyata N, Kasuya Y. Involvement of endothelial cells in relaxation and contraction responses of the aorta to isoproterenol in naive and streptozotocin-induced diabetic rats. J Pharmacol Exp Ther. 1989;249(3):890–4.

    CAS  PubMed  Google Scholar 

  219. Mayhan WG. Impairment of endothelium-dependent dilatation of cerebral arterioles during diabetes mellitus. Am J Phys. 1989;256(3 Pt 2):H621–5.

    CAS  Google Scholar 

  220. Tesfamariam B, Jakubowski JA, Cohen RA. Contraction of diabetic rabbit aorta caused by endothelium-derived PGH2-TxA2. Am J Phys. 1989;257(5 Pt 2):H1327–33.

    CAS  Google Scholar 

  221. McVeigh GE, Brennan GM, Johnston GD, McDermott BJ, McGrath LT, Henry WR, et al. Impaired endothelium-dependent and independent vasodilation in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1992;35(8):771–6.

    Article  CAS  PubMed  Google Scholar 

  222. Ohara Y, Sayegh HS, Yamin JJ, Harrison DG. Regulation of endothelial constitutive nitric oxide synthase by protein kinase C. Hypertension. 1995;25(3):415–20.

    Article  CAS  PubMed  Google Scholar 

  223. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345(12):861–9.

    Article  CAS  PubMed  Google Scholar 

  224. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345(12):851–60.

    Article  CAS  PubMed  Google Scholar 

  225. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med. 1993;329(20):1456–62.

    Article  CAS  PubMed  Google Scholar 

  226. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.

    Article  CAS  PubMed  Google Scholar 

  227. Wanner C, Heerspink HJL, Zinman B, Inzucchi SE, Koitka-Weber A, Mattheus M, et al. Empagliflozin and kidney function decline in patients with type 2 diabetes: a slope analysis from the EMPA-REG OUTCOME trial. J Am Soc Nephrol. 2018;29(11):2755–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Cherney DZI, Zinman B, Inzucchi SE, Koitka-Weber A, Mattheus M, von Eynatten M, et al. Effects of empagliflozin on the urinary albumin-to-creatinine ratio in patients with type 2 diabetes and established cardiovascular disease: an exploratory analysis from the EMPA-REG OUTCOME randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2017;5(8):610–21.

    Article  CAS  PubMed  Google Scholar 

  229. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–57.

    Article  CAS  PubMed  Google Scholar 

  230. Mahaffey KW, Neal B, Perkovic V, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin for primary and secondary prevention of cardiovascular events: results from the CANVAS program (Canagliflozin Cardiovascular Assessment Study). Circulation. 2018;137(4):323–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Neuen BL, Ohkuma T, Neal B, Matthews DR, de Zeeuw D, Mahaffey KW, et al. Cardiovascular and renal outcomes with canagliflozin according to baseline kidney function. Circulation. 2018;138(15):1537–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Neuen BL, Ohkuma T, Neal B, Matthews DR, de Zeeuw D, Mahaffey KW, et al. Effect of canagliflozin on renal and cardiovascular outcomes across different levels of albuminuria: data from the CANVAS program. J Am Soc Nephrol. 2019;30(11):2229–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–57.

    Article  CAS  PubMed  Google Scholar 

  234. Mosenzon O, Wiviott SD, Cahn A, Rozenberg A, Yanuv I, Goodrich EL, et al. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial. Lancet Diabetes Endocrinol. 2019;7(8):606–17.

    Article  CAS  PubMed  Google Scholar 

  235. Williamson JR, Chang K, Tilton RG, Prater C, Jeffrey JR, Weigel C, et al. Increased vascular permeability in spontaneously diabetic BB/W rats and in rats with mild versus severe streptozocin-induced diabetes. Prevention by aldose reductase inhibitors and castration. Diabetes. 1987;36(7):813–21.

    Article  CAS  PubMed  Google Scholar 

  236. Lynch JJ, Ferro TJ, Blumenstock FA, Brockenauer AM, Malik AB. Increased endothelial albumin permeability mediated by protein kinase C activation. J Clin Invest. 1990;85(6):1991–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Oliver JA. Adenylate cyclase and protein kinase C mediate opposite actions on endothelial junctions. J Cell Physiol. 1990;145(3):536–42.

    Article  CAS  PubMed  Google Scholar 

  238. Wolf BA, Williamson JR, Easom RA, Chang K, Sherman WR, Turk J. Diacylglycerol accumulation and microvascular abnormalities induced by elevated glucose levels. J Clin Invest. 1991;87(1):31–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Nagpala PG, Malik AB, Vuong PT, Lum H. Protein kinase C beta 1 overexpression augments phorbol ester-induced increase in endothelial permeability. J Cell Physiol. 1996;166(2):249–55.

    Article  CAS  PubMed  Google Scholar 

  240. Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med. 1994;331(22):1480–7.

    Article  CAS  PubMed  Google Scholar 

  241. Xia P, Aiello LP, Ishii H, Jiang ZY, Park DJ, Robinson GS, et al. Characterization of vascular endothelial growth factor’s effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. J Clin Invest. 1996;98(9):2018–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Suzuma K, Takahara N, Suzuma I, Isshiki K, Ueki K, Leitges M, et al. Characterization of protein kinase C beta isoform’s action on retinoblastoma protein phosphorylation, vascular endothelial growth factor-induced endothelial cell proliferation, and retinal neovascularization. Proc Natl Acad Sci U S A. 2002;99(2):721–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Simo R, Hernandez C. Intravitreous anti-VEGF for diabetic retinopathy: hopes and fears for a new therapeutic strategy. Diabetologia. 2008;51(9):1574–80.

    Article  CAS  PubMed  Google Scholar 

  244. Chen S, Ziyadeh FN. Vascular endothelial growth factor and diabetic nephropathy. Curr Diab Rep. 2008;8(6):470–6.

    Article  PubMed  Google Scholar 

  245. Sultan MB, Zhou D, Loftus J, Dombi T, Ice KS, Macugen Study G. A phase 2/3, multicenter, randomized, double-masked, 2-year trial of pegaptanib sodium for the treatment of diabetic macular edema. Ophthalmology. 2011;118(6):1107–18.

    Article  PubMed  Google Scholar 

  246. Vasilets LA, Schwarz W. Structure-function relationships of cation binding in the Na+/K(+)-ATPase. Biochim Biophys Acta. 1993;1154(2):201–22.

    Article  CAS  PubMed  Google Scholar 

  247. Winegrad AI. Banting lecture 1986. Does a common mechanism induce the diverse complications of diabetes? Diabetes. 1987;36(3):396–406.

    Article  CAS  PubMed  Google Scholar 

  248. MacGregor LC, Matschinsky FM. Altered retinal metabolism in diabetes. II. Measurement of sodium-potassium ATPase and total sodium and potassium in individual retinal layers. J Biol Chem. 1986;261(9):4052–8.

    Article  CAS  PubMed  Google Scholar 

  249. Xia P, Kramer RM, King GL. Identification of the mechanism for the inhibition of Na+,K(+)-adenosine triphosphatase by hyperglycemia involving activation of protein kinase C and cytosolic phospholipase A2. J Clin Invest. 1995;96(2):733–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Scheinman JI, Fish AJ, Matas AJ, Michael AF. The immunohistopathology of glomerular antigens. II. The glomerular basement membrane, actomyosin, and fibroblast surface antigens in normal, diseased, and transplanted human kidneys. Am J Pathol. 1978;90(1):71–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Bruneval P, Foidart JM, Nochy D, Camilleri JP, Bariety J. Glomerular matrix proteins in nodular glomerulosclerosis in association with light chain deposition disease and diabetes mellitus. Hum Pathol. 1985;16(5):477–84.

    Article  CAS  PubMed  Google Scholar 

  252. Yamamoto T, Nakamura T, Noble NA, Ruoslahti E, Border WA. Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy. Proc Natl Acad Sci U S A. 1993;90(5):1814–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Sharma K, Jin Y, Guo J, Ziyadeh FN. Neutralization of TGF-beta by anti-TGF-beta antibody attenuates kidney hypertrophy and the enhanced extracellular matrix gene expression in STZ-induced diabetic mice. Diabetes. 1996;45(4):522–30.

    Article  CAS  PubMed  Google Scholar 

  254. Ziyadeh FN, Sharma K, Ericksen M, Wolf G. Stimulation of collagen gene expression and protein synthesis in murine mesangial cells by high glucose is mediated by autocrine activation of transforming growth factor-beta. J Clin Invest. 1994;93(2):536–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Ohshiro Y, Ma RC, Yasuda Y, Hiraoka-Yamamoto J, Clermont AC, Isshiki K, et al. Reduction of diabetes-induced oxidative stress, fibrotic cytokine expression, and renal dysfunction in protein kinase Cbeta-null mice. Diabetes. 2006;55(11):3112–20.

    Article  CAS  PubMed  Google Scholar 

  256. He Z, Way KJ, Arikawa E, Chou E, Opland DM, Clermont A, et al. Differential regulation of angiotensin II-induced expression of connective tissue growth factor by protein kinase C isoforms in the myocardium. J Biol Chem. 2005;280(16):15719–26.

    Article  CAS  PubMed  Google Scholar 

  257. Bierman EL. George Lyman Duff memorial lecture. Atherogenesis in diabetes. Arterioscler Thromb. 1992;12(6):647–56.

    Article  CAS  PubMed  Google Scholar 

  258. Sobel BE. Insulin resistance and thrombosis: a cardiologist’s view. Am J Cardiol. 1999;84(1A):37J–41J.

    Article  CAS  PubMed  Google Scholar 

  259. Schneider DJ, Nordt TK, Sobel BE. Attenuated fibrinolysis and accelerated atherogenesis in type II diabetic patients. Diabetes. 1993;42(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  260. Feener EP, King GL. Vascular dysfunction in diabetes mellitus. Lancet. 1997;350(Suppl 1):SI9–SI13.

    Article  PubMed  Google Scholar 

  261. Feener EP, Northrup JM, Aiello LP, King GL. Angiotensin II induces plasminogen activator inhibitor-1 and -2 expression in vascular endothelial and smooth muscle cells. J Clin Invest. 1995;95(3):1353–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Ridker PM, Thuren T, Zalewski A, Libby P. Interleukin-1beta inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am Heart J. 2011;162(4):597–605.

    Article  CAS  PubMed  Google Scholar 

  263. Dinarello CA, Simon A, van der Meer JW. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov. 2012;11(8):633–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Van Tassell BW, Toldo S, Mezzaroma E, Abbate A. Targeting interleukin-1 in heart disease. Circulation. 2013;128(17):1910–23.

    Article  PubMed  PubMed Central  Google Scholar 

  265. Ridker PM, Howard CP, Walter V, Everett B, Libby P, Hensen J, et al. Effects of interleukin-1beta inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive protein, interleukin-6, and fibrinogen: a phase IIb randomized, placebo-controlled trial. Circulation. 2012;126(23):2739–48.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the contributions of several colleagues and collaborators that shaped the views expressed in this chapter; grants from the NIH (R01 EY016150, R01 DK071359, R01-DK-053105, 5P30-DK-036836), DERC (5 P30 DK36836-23), NIDDK (1DP3-DK-094333-01), ADA (1-08-RA-93), Joslin NIH Training Grant (5 T32 DK007260-33), Beatson Foundation Gift, and the Dianne Nunnally Hoppes Fund. J.F. is supported by Mary K. Iacocca Research Fellowship Award. M.G.Y. is supported by the American Diabetes Association (ADA; 9-18-CVD1-005). Q.L. was supported by the American Diabetes Association Mentor-Based Postdoctoral Fellowship Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George L. King .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fu, J., Yu, M.G., Li, Q., Park, K., King, G.L. (2023). Effects of Diabetes and Insulin Resistance on Endothelial Functions. In: Johnstone, M., Veves, A. (eds) Diabetes and Cardiovascular Disease. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-031-13177-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13177-6_3

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-031-13176-9

  • Online ISBN: 978-3-031-13177-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics